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Abstract: This article addresses the problem of the detection of range-spread targets in the presence of
Gaussian disturbance which are in possession of unidentified covariance matrices. The detectors have
been derived by resorting to a design composed of two steps. Based on the Rao test and Wald test, the
corresponding strategies of detection were respectively derived, assuming the expression of disturbance
covariance matrix has been obtained. Afterwards, the unknown parameters in the detectors were
estimated on the basis of both the primary and the training data, utilizing the autoregressive property of
the disturbance. A remarkable characteristic of the Rao and Wald detectors is they both asymptotically
attain constant false-alarm rate (CFAR) in respect of the disturbance covariance matrix. Finally, we
completed a performance assessment by utilizing the simulated data, and the result demonstrated the
effectiveness of the existing proposals compared with the detectors previously proposed.

Keywords: Rao test; Wald test; autoregressive; range-spread target

1. Introduction

Over the past few decades, there has been more and more attention in the field of
detecting range-spread targets adaptively in the presence of disturbance which is described
by unknown covariance matrix [1–3]. The point-like target model is invalid with the
extensively application of the high resolution radars (HRRs), which have the ability to
resolve a target into multiple scattering centers appearing into different range cells [4].
Based on relevant theories of the generalized likelihood ratio test (GLRT), adaptive detectors
have been developed specially for range-spread targets in recent last decades [2,5], which
estimate all the unidentified parameters separately under each hypothesis. Moreover, the
design of the detectors have absorbed relevant theories of the Rao and Wald tests, which
not only perform with less complexity and stronger robustness than the GLRT, but also
have the same asymptotic performance as the latter [6]. Specifically, by applying theories of
the Rao test and Wald test, related scholars have successfully proposed constant false-alarm
rate (CFAR) detectors in the case of homogeneous scenarios [7], where the disturbance
covariance matrices of range cells under test are entirely identical to those of training data.
In [8,9], the disturbance respectively described as a spherically invariant random process
(SIRP) as well as complex Gaussian distribution are taken into consideration. In [10], the
problem of adaptively detecting multichannel signal in homogeneous Gaussian disturbance
and the generalization of the generalized multivariate analysis of variance (GMANOVA)
are thoroughly researched. Additionally, similar works of adaptive detection of subspace
signals are also considered [11,12].

Electronics 2022, 11, 1248. https://doi.org/10.3390/electronics11081248 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081248
https://doi.org/10.3390/electronics11081248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3651-1710
https://doi.org/10.3390/electronics11081248
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081248?type=check_update&version=1


Electronics 2022, 11, 1248 2 of 12

For the achievement of the detection performance within 3 dB of the optimal threshold,
it is required to set the training data number to no less than two times the data dimension
according to [13]. However, this condition could not always be met in several practical
applications, especially in heterogeneous scenarios [14] and dense-target [15] scenarios.
Fortunately, exploiting the autoregressive (AR) property of the disturbance can effectively
reduce the data set required for the estimation of unknown parameters [16]. Specifically,
Kay proposed an AR-based generalized likelihood ratio (ARGLR) detector for the circum-
stance of a target known up to a scaling factor by way of exploiting AR process in his
GLRT detector. Moreover, to effectively detect range-spread targets, a growing number of
AR-based detectors have been derived resorting to the adaptive matched filter (AMF) [17],
the Rao test [18] and so on. However, these detectors would suffer severe performance
degradation when the data record is relatively small since M (the order of the AR process)
samples are discarded [19].

Motivated by the works mentioned above and based on our previous relevant work [20],
we derived adaptive detectors for range-spread targets without discarding samples by
reconstructing the covariance matrix based on the AR parameters [21] specifically for the
small data problem. More concretely, to respectively derive the detection strategies in the
scenario of Rao test and Wald test is the first step. After this, the covariance matrices of
the disturbance are constructed using the maximum likelihood estimation of AR coeffi-
cients under each hypothesis. Eventually, the conclusion can be summed up by analyzing
simulation results, which demonstrates that the proposed improved autoregressive-Rao
(IAR-Rao) and improved autoregressive-Wald (IAR-Wald) detectors have the ability to
achieve a higher level of detection performance than existing ones for small data record.
The remainder of the paper is organized as follows. Section 2 introduces the process of
problem formulation, while the method and detailed design of the Rao and Wald detectors
is explained in Section 3. Section 4 provides the performance assessments of newly pro-
posed detectors. Finally, Section 5 gives a conclusion of our study. From the conclusion, it is
indicated that the proposed IAR-Rao and IAR-Wald detectors are able to achieve a detection
performance improvement compared to the regular AR-Rao and AR-Wald, especially in
the limited training case, while both the newly derived detectors are asymptotically CFAR,
which means the detection performance of both approaches that of the optimum matched
filter for large data record case. Additionally, both the detectors are proved to be effective
based on the analysis of real data.

The symbols and notations which are frequently used in this article are stated as:

• H0: The hypothesis which there exists no target;
• H1: The hypothesis which there exist a target;
• zt: The collected complex data vector;
• αt: The unknown amplitude of corresponding scatterer of the target.;
• nt: The disturbance vector;
• p: The steering vector;
• [·]T: The transpose operation of the matrix;
• [·]†: The conjugate transpose operation of the matrix;
• E{·}: The statistical expectation operator;
• M: The covariance matrix of the disturbance vector;
• L: The lower triangular matrix after applying factorization to the covariance matrix;
• D: The real diagonal matrix after applying factorization to the covariance matrix.

2. Problem Formulation

Our research is based on a radar system which collects data using a coherent N-
pulse train, as well as detecting the presence of a range-spread target across L range cells.
Moreover, there exists an available set of training data, which is collected through sampling
from K range cells. When it comes to the t-th range cell individually, the corresponding
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procedure of detection will obey the rule of the binary hypothesis test which has the
following form: {

H0 : zt = nt t = 1, . . . , L + K
H1 : zt = αt p + nt t = 1, . . . , L + K

(1)

Here, zt ∈ CN (C stands for the vector of complex data) represents the data vector in N-
dimensional space collected from the t-th range cell (t = 1, 2, . . . , L + K), and is respectively
referred to as primary data (t = 1, . . . , L) and secondary data (t = L + 1, . . . , L + K), while
the latter may also be referred to as the training data. αt describes the unknown amplitude
corresponding to the scatterer of the target in the t-th range cell (t = 1, . . . , L), which
simultaneously takes the channel effects as well as the target reflectivity into consideration.

The steering vector has an expression of p =
[
1, ejΩ, . . . , ej(N−1)Ω

]T
, here Ω is the target

Doppler which is assumed to be perfectly known and [·]T denotes transpose operation.
The disturbance vectors, which are expressed by nt, are modelled as independent and
identically distributed (IID) zero mean complex Gaussian vectors of which the covariance
matrix is identical.

E
{

ntn†
t

}
= M (2)

where the statistical expectation operator is expressed by E{·}, † denotes conjugate trans-
pose operation.

By using the theory of Therrien [21], the AR coefficients and the noise power of nt are
related to the covariance matrix through the following factorization

M = LDL† (3)

In the formula above, L indicates a lower triangular matrix and the rows of its inversion
are the coefficients of the AR process of nt from orders 0 to N − 1. D stands for a real
diagonal matrix and its elements are the corresponding white noise power of nt.

3. Detectors Design

Aiming to examine detection problem in (1), we have adopted the two-step Rao and
Wald test procedures as described in [7], respectively. On the basis of Rao test and Wald
test, it is firstly required to derive the detection strategies respectively and correspondingly
under the assumption of known disturbance covariance matrix M. Afterwards, by using
the primary and the training data, an estimation value of M is plugged into the test
statistic by way of utilizing the AR property of the disturbance, which makes both of the
algorithms adaptive.

3.1. Detectors Design with Known M

With the aim of deriving the test statistics of the Rao test and the Wald test, a denotation
is proposed as θ = [α1,R, α1,I, α2,R, α2,I, . . . , αL,R, αL,I]

T, which stands for a real column vector
with 2L dimensions, the real part as well as the imaginary part of αt are expressed by αt,R
and αt,I (t = 1, . . . , L).

3.1.1. Rao Test with Known M

In the previously mentioned situation at hand, the Rao test obeys the decision rule
described as followed [22].

∂ ln f (z1, . . . , zL+K | θ, M)

∂θ

∣∣∣∣T
θ=θ̂0

[
J−1(θ̂0

)]
× ∂ ln f (z1, . . . , zL+K | θ, M)

∂θ

∣∣∣∣
θ=θ̂0

H1
≷
H0

ηr (4)
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Here we have

• ηr is defined as the threshold of detection which is set with the purpose of ensuring
the desired probability of false alarm (Pf a);

• ∂/∂θ = [∂/∂α1,R, ∂/∂α1,I, . . . , ∂/∂αL,R, ∂/∂αL,I]
T;

• J represents the Fisher information matrix (FIM);
• θ̂0 is used to describe the maximum likelihood estimate (MLE) of θ under hypothe-

sis H0;
• f (z1, . . . , zL+K | θ, M) is the denotation used to describe the probability density func-

tion (PDF) of the data under hypothesis H0, which can be expressed as

f (z1, . . . , zL+K | θ, M) =
1

πN(L+K)‖M‖L+K

× exp

{
−
[

L

∑
t=1

(zt − αt p)† M−1(zt − αt p) +
L+K

∑
t=L+1

z†
t M−1zt

]} (5)

For the problem at hand, the results are easily computed as

∂ f
∂αt,R

= 2 Re
{

p† M−1(zt − αt p)
}

(6)

∂ f
∂αtI

= 2Im
{

p† M−1(zt − αt p)
}

(7)

[
J−1(θ)

]
=

1
2

(
pM−1 p

)−1
I2L×2L (8)

and
θ̂0 = 02L×1 (9)

where I2L×2L indicates the 2L× 2L-dimensional identity matrix, 02L×1 is the 2L-dimensional
zero vector.

Substituting (6)–(9) into (4) followed by some algebra, the following formula can be
used to describe the Rao test

∑L
t=1

∣∣∣p† M−1zt

∣∣∣2
p† M−1 p

H1
≷
H0

ηr (10)

3.1.2. Wald Test with Known M

The following decision rule can thoroughly represent the Wald test [23]

(
θ̂1 − θ0

)T
[

J−1(θ̂1
)]−1(

θ̂1 − θ0
)H1
≷
H0

ηw (11)

where

• ηw represents the detection threshold which is set to ensure the desired Pf a;
• θ̂1 = [α̂1,R, α̂1,I, . . . , α̂L,R, α̂L,I]

T is an expression applied to indicate the MLE of θ under
hypothesis H1.

Through the utilization of the structure of the FIM according to (8), we can rewrite the
Wald test as

θ̂
T
1 J
(
θ̂1
)
θ̂1

H1
≷
H0

ηw (12)

Moreover

α̂t =
p† M−1zt

p† M−1 p
(13)
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Hence, substituting (8) and (13) into the decision rule (12) followed by some algebraic
operations, it is possible to obtain the Wald test with known M

∑L
t=1

∣∣∣p† M−1zt

∣∣∣2
p† M−1 p

H1
≷
H0

ηw (14)

According to (10) and (14), the detectors are accomplished once M is acquired. For
the estimation of M, it is efficient to adopt several methods on the basis of the sufficient
training data (see, e.g., [24,25]). Unfortunately, when it comes to realistic scenarios, this
requirement cannot be satisfied all the time. Thus, for the purpose of achieving better
detection performance under limited-training cases, we resort to the theory of Therrien [21]
and utilize the AR property of the disturbance to reconstruct M. The relevant information
is to be shown in the next subsection.

3.2. Estimation of M Based on AR Parameters

As mentioned in [18], the disturbance is described as a an AR process model of or-
der P, coefficient a, and noise power σ2. In the Rao test, all of these parameters can be
obtained by calculating their MLEs respectively under hypothesis H0, while the opera-
tions are conducted under hypothesis H1 for the Wald test. Once the MLEs are obtained,
the covariance matrices M0 and M1 can be reconstructed according to (3). Precisely,
M̂0 = L0D0L†

0 and M̂1 = L1D1L†
1, where

L−1
0 =


1 0 0 · · · 0

−â0(1) 1 0 · · · 0
−â0(2) −â0(1) 1 · · · 0

...
...

. . .
...

...
0 0 · · · −â0(1) 1

 (15)

D0 = σ̂2
0 IN×N (16)

L−1
1 =


1 0 0 · · · 0

−â1(1) 1 0 · · · 0
−â1(2) −â1(1) 1 · · · 0

...
...

. . .
...

...
0 0 · · · −â1(1) 1

 (17)

D1 = σ̂2
1 IN×N (18)

Here, â0 and σ̂2
0 are obtained by maximizing the joint PDF given in [15] with respect to

a and σ2 respectively under hypothesis H0. The results are given as:

â0 = −
(

L+K

∑
t=1

X†
t X t

)−1(L+K

∑
t=1

X†
t ut

)
(19)

σ̂2
0 =

1
(N − P)(L + K)

[
L+K

∑
t=1

(ut + X t â0)
†(ut + X t â0)

]
(20)

where X t and ut are defined in [23]. When it comes to â1 and σ̂2
1 , there is a projection matrix

which is defined as H = I − ϕϕ†

ϕ†ϕ
, here we have:

ϕ =
[
1, . . . , ej(N−P−1)Ω

]T
(21)
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â1 = −
(

L

∑
t=1

X†
t HX t +

L+K

∑
t=L+1

X†
t X t

)−1( L

∑
t=1

X†
t Hut +

L+K

∑
t=L+1

X†
t ut

)
(22)

σ̂2
1 =

1
(N − P)(L + K)

[
L

∑
t=1

(ut + X t â1)
† H(ut + X t â1)

+
L+K

∑
t=L+1

(ut + X t â1)
†(ut + X t â1)

] (23)

By substituting M̂0 and M̂1 into (10) and (14) respectively, we obtain the so-named
improved AR-Rao detector (IAR-Rao detector) and improved AR-Wald detector (IAR-Wald
detector). For the scenario of a large number of data (i.e., N → ∞), both of the newly
derived IAR-Rao and IAR-Wald are able to achieve the same asymptotic performance as
GLRT. This prominently demonstrates that the proposed detectors are asymptotically CFAR
in respect of the disturbance covariance matrix [18]. Correspondingly, Figure 1 displays a
block diagram of the detectors design.

As it can be observed, Figure 1 illustrates the main concept and process of the aforemen-
tioned assumptions and derivations. Conclusively, it is firstly assumed that the covariance
matrix of the disturbance is previously known, then the intermediate form of the Rao
test and the Wald test is respectively derived. Afterwards, both the primary data and
the secondary data are exploited to attain the autoregressive property of the disturbance.
The estimation values are directly substitute to the intermediate form of the detectors and
relevant decisions are evident to obtain.

Figure 1. Block diagram of the detectors design procedure.

4. Numerical Results

In Section 4, an analysis of the detection performance of the newly derived IAR-Rao
and IAR-Wald detectors is completed by utilizing the simulated data of range-spread
targets. With the purpose of comparison, the tradition AR-Rao [18] and AR-Wald [26]
are also taken into consideration. The definition of signal-to-noise plus interference ratio
(SINR) is given by the following formula.

SINR =
L

∑
t=1
|αt|2 p† M p/L (24)

For complex numbers, the modulus is denoted by | · |. The disturbance signals nt are
generated with given parameters from an AR process of order 2. We apply 105 independent
Monte Carlo trials for the purpose of estimating the thresholds, and 104 independent trials
in order to figure out the detection probability (Pd). Moreover, we set Pf a = 10−4, Ω = 0
and P = 2.
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The Pd versus SINR of the newly derived IAR-Rao and IAR-Wald are plotted in
Figure 2 comparing with AR-Rao and AR-Wald. Additionally, the detection probability
curve of the ideal matched filter (MF) is also drawn in Figure 2. Although the MF cannot
be achieved in a realistic scenario, it provides a baseline comparison. It is quite evident
that the IAR-Rao outperforms AR-Rao and IAR-Wald outperforms AR-Wald especially
at high SINR. That is because the traditional methods of AR detectors discard samples of
which the number is equivalent to the autoregressive order P. When the pulse number N
becomes larger, the traditional AR detectors become very close to the IAR detectors. This
phenomenon is caused by the truth that the number of the discarded pluses (P) can be
ignored as N increases. For all of AR and the IAR detectors, there are always a performance
loss compared with the MF, which can be explained as the estimated covariance matrices
(M̂0 and M̂0) are always inaccurate when compared with its true value (M).

Figure 2. Pd versus SINR of the MF, of the IAR-Rao, of the IAR-Wald, of the AR-Rao, and of the AR-
Wald for L = 8, K = 3 and various N. (left) Detection performances while setting N = 8; (right) detection
performances while setting N = 16.

In Figure 3, we abbreviate “IAR-Rao” as “IAR-R” and “IAR-Wald” as “IAR-W”. It can
be seen that the IAR-Wald detector can still achieve good detection performance under the
circumstance of insufficient data for training, which is in agreement with that of AR-Rao
detector. Figure 3 directly shows the AR-Rao detector performance decreases under high
SNR. This is because Rao test uses both the primary and the training data to estimate
the covariance matrix of the clutter. When the SINR is large, the signal is to influence
and contaminate the estimated value of the clutter covariance matrix. The mentioned
phenomenon does not exist in the newly derived IAR-Rao algorithm.

Figure 4 provides a display of the receiver operating characteristic (ROC) of the newly
derived detectors, which is depicted respectively for various numbers of target scatterers L,
while we keep K = 0 and SINR = 5 dB. By the comprehensive observation of the figure, it is
clear to conclude that the performance of the proposed detection methods will grow when
the L value increases. To put it differently, the detectors’ performance is capable of being
improved by increasing the radar resolution. Obviously, the IAR-Wald outperforms IAR-
Rao in the realistic detection environment (low Pf a); However, it has a heavy computation
compared to the latter.
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Figure 3. Pd versus SINR of the IAR-Rao and of the IAR-Wald for N = 16, L = 8, and various K.

Figure 4. ROC of the IAR-Rao and of the IAR-Wald under conditions of N = 16, K = 0, SINR = 5 dB
and various L.

In Figure 5 (left), we have plotted the detection curves of the conventional AR-Rao
detector and the newly derived IAR-Rao detector. It can be seen that the collapse loss exists
under high SINR is vanished by the method of two-step detector design. All the curves in
Figure 5 indicate that both AR-Rao and AR-Wald achieve improved detection performance
by means of matrix reconstruction. Moreover, the detection performance deteriorates with
the increase of M for each detector, which is so-called order mismatched.
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Figure 5. Pd versus SINR for Pf a = 10−4, N = 16, L = 8 and K = 3. (left) Performances of AR-Rao
and IAR-Rao; (right) performances of AR-Wald and IAR-Wald.

5. Real Data Analysis

For evaluating the performance of the two new detectors, we complete a further
assessment using the high-resolution range profiles (HRRPs) gathered from the actual data
of Tiangong-1, which are collected from the measurement of inverse synthesis aperture
radar (ISAR). Figure 6 (left) gives a display of the original echo data, which demonstrates
that range migration would occur in moving targets scenarios. Firstly, envelope alignment
and self-focusing are needed to eliminate the influence of target translation. Then the IAR-
Rao detector and the IAR-Wald detector are used to detect the processed data. Figure 6b
shows the aligned echo. Additionally, we set L = 80 as the target occupies 67 range cells.

Figure 6. HRRP of Tiangong-1 collected from the measurement of inverse synthesis aperture radar.
(left) Original HRRP of Tiangong-1; (right) aligned HRRP of Tiangong-1.

In order to evaluate the impact of sample number N to the performances of two detec-
tion methods, we draw corresponding detection curves in Figure 7 under the circumstance
that L = 80 and K = 0. From the figure we can easily sum up that the performance of
the IAR-Rao detector does not decrease at high SINR (existing in AR-Rao detector), which
indicates that the performance of the newly raised and developed IAR-Rao detector is better
than that of AR-Rao detector at high SINR. The four measured data curves are also close to
the simulation results. Figure 8 displays the receiver operating characteristic (ROC) curves
in correspondence with each detector, all of these mentioned curves are depicted under the
circumstance of different L values, while keeping K = 0 and SINR = −3 dB unchanged.
We are able to conclude that the detector performance improves in respect of the increase
of target range number L. That is to say, it is possible to improve the detection performance
by increasing the radar resolution, which is consistent with our traditional cognition.
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Figure 7. Pd versus SINR for Pf a = 10−4, L = 80, K = 0 and various N.

Figure 8. ROC of the AR-Wald detector for N = 16, K = 0, SINR = −3 dB and various L.

Results of further analysis shows the consistence of the detection results of real data
and simulation data, both of which prove the effectiveness of the proposed IAR-Rao and
IAR-Wald detection algorithms.

6. Conclusions

The contribution and conclusion of our study are described as follows. We successfully
proposed the design of two detectors for circumstances of range-spread target detection,
in the presence of disturbance which is in possession of unknown covariance, based on
two-step design. An autoregressive process is used to model the disturbance, of which
parameters are estimated respectively. Unlike traditional AR-based detector designs, dis-
carding P samples, we constructed the covariance matrix based on the estimated AR
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parameters resorting to the theory of the relationship between the AR process and tri-
angular matrix decomposition. Simulation results indicate that the proposed IAR-Rao
and IAR-Wald detectors achieve detection performance improvement over the regular
AR-Rao and AR-Wald, especially in limited training case. Moreover, both of the newly
derived detectors are asymptotically CFAR, which means the detection performance of
both approached that of the optimum matched filter for large data-record cases. Both the
IAR-Rao and the IAR-Wald are proved to be effective on the basis of the analysis of the real
data. In the future, we will aim to utilize the two-step method based on the AR covariance
estimation in order to improve the performance of the existing detectors [10,27].
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