
����������
�������

Citation: Issa, H.; Tar, J.K.

Preliminary Design of a Receding

Horizon Controller Supported by

Adaptive Feedback. Electronics 2022,

11, 1243. https://doi.org/10.3390/

electronics11081243

Academic Editor: Jorge Pomares

Received: 22 March 2022

Accepted: 12 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Preliminary Design of a Receding Horizon Controller
Supported by Adaptive Feedback

Hazem Issa 1,*,† and József K. Tar 1,2,3,*,†

1 Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, Bécsi út 96/B,
H-1034 Budapest, Hungary

2 Antal Bejczy Center for Intelligent Robotics, Óbuda University, Bécsi út 96/B, H-1034 Budapest, Hungary
3 John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96/B, H-1034 Budapest, Hungary
* Correspondence: hazem.issa@uni-obuda.hu (H.I.); tar.jozsef@nik.uni-obuda.hu (J.K.T.)
† These authors contributed equally to this work.

Abstract: Receding horizon controllers are special approximations of optimal controllers in which the
continuous time variable is discretized over a horizon of optimization. The cost function is defined as
the sum of contributions calculated in the grid points and it is minimized under the constraint that
expresses the dynamic model of the controlled system. The control force calculated only for one step
of the horizon is exerted, and the next horizon is redesigned from the measured initial state to avoid
the accumulation of the effects of modeling errors. In the suggested solution, the dynamic model
is directly used without any gradient reduction by using a transition between the gradient descent
and the Newton–Raphson methods to achieve possibly fast operation. The optimization is carried
out for an "overestimated" dynamic model, and instead of using the optimized force components
the optimized trajectory is adaptively tracked by an available approximate dynamic model of the
controlled system. For speeding up the operation of the system, various cost functions have been
considered in the past. The operation of the method is exemplified by simulations made for new
cost functions and the dynamic control of a 4-degrees-of-freedom SCARA robot using the simple
sequential Julia language code realizing Euler integration.

Keywords: motion control; nonlinear robot control; optimal control; receding horizon control;
adaptive control; fixed point iteration; structured cost functions; reduced gradient; SCARA robot

1. Introduction

In control technology, various control methods are present in the inventory of possible
solutions. The appropriate choice can be selected according to various particular and
practical aspects related to a given task, and there is no way to generally state that a given
method would be superior in comparison with others. Such properties as mathematical
complexity, the need for computational power, the need for a more or less precise dynamic
model of the controlled system, robustness against modeling errors and external distur-
bances, adaptivity, and possibilities for implementation can be considered when a control
approach is chosen to tackle a given problem. In many cases, a simple PID-type controller
invented in the 1940s [1] can do well. In robotics, the direct use of the dynamic model
without inserting it into the mathematical framework of optimal controllers was initiated
in the 1980s [2] in the concept of computed torque control (CTC). This approach had to
cope with the problem of the existence of only imprecise dynamic models in the next ten
years [3]. The robust variable structure/sliding mode controllers that became popular in
the 1990s (e.g., [4]) are simple solutions that can solve the problem of modeling errors and
unknown external disturbance. In a similar manner, resolved acceleration rate control
(e.g., [5]) and acceleration feedback controllers (e.g., [6]) can be considered as improvements
of the CTC controllers. The model-based back-stepping control (e.g., [7]) is sensitive to
modeling imprecisions. The wide class of adaptive controllers tackle the imprecisions of
the models in different manners. The widest subset uses Lyapunov’s stability theorems
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and keeps prevailing from the early 1990s to the present (e.g., [8]) as well as the model
reference adaptive control (e.g., [9]). Normally, stability or asymptotic stability of these
solutions are guaranteed for a huge set of possible parameters of which the appropriate
ones can be selected on the basis of practical aspects often applying various versions of
evolutionary computation as genetic algorithms, particle swarm optimization, simulated
annealing, and so on. The comparison of the operation of these methods cannot be the
subject of the present paper. In the sequel, we concentrate on the subset of the wide set of
optimal controllers, the heuristic receding horizon control that allows the limitation of the
control forces in its cost function. Furthermore, we consider its adaptive extension based
on an alternative of the Lyapunov function-based approach.

Strong non-linearity is a natural feature of most physical, biological, economic, and
engineering systems and most traditional software packages solving optimization problems
can normally handle only linear time-invariant system models with typically quadratic cost
function structures because this restricted subject area can be tackled by well-elaborated
and efficient mathematical tools as the application of Riccati equations [10] (it provides
the solution of special first-order quadratic differential equations by solving second-order
linear ones), Schur’s decomposition method that obtains the solution of quadratic matrix
equations by solving linear ones [11,12]. For solving linear matrix inequalities in system
and control theory a complete program was announced by Boyd et al. in 1994 [13] for
which efficient MATLAB program packages have been developed [14]. The mainstream
of the engineering research efforts aimed at the elaboration of approximate linear system
models and quadratic cost functions for tackling optimization problems by the use of this
efficient mathematical apparatus.

In [15], the linear matrix inequality (LMI) condition based on slack variables was used
to reduce the high gains of controlling, resulting in using the robust H∞ state feedback
controllers. Although the study [16] proposed a new condition that is presented in the
form of linear matrix inequality for designing the output feedback H∞ controller. The
published paper [17] used the formulation of LMI to design the quantized event-triggered
tracking controller that guarantees theH∞ tracking performance and maintain the system
asymptotically stable.

However, for more complex dynamical models and specially structured cost functions
the more general mathematical context does not allow such relatively “simple solutions”.
Instead of using ready-made program packages researchers have to develop their own
program codes that are not supported by the rigorous and reliable quality guaranties of the
MATLAB packages.

From a mathematical point of view, optimization can be formulated by the use of
variation calculus. In the 1950s, i.e., in the advent of the appearance of powerful computers,
Bellman introduced dynamic programming [18] that computationally is too greedy. The
problem was later simplified by the introduction of a discrete, evenly scaled time-grid of
resolution δt that is dense enough to allow numerical differentiation and Euler integration
over it. The sum of the cost function contributions in the grid points of a horizon of
discrete length H was minimized for a first-order dynamical system under the constraint
q(ti+1)−q(ti)

δt ≈ q̇(ti) in which the function q̇(ti) = F (q(ti), u(ti)) describes the dynamic
model of the controlled system, and u(ti) denotes the control force. By the use of the usual
constraint function gi(q(ti), q(ti+1), u(ti)) := q(ti+1)−q(ti)

δt − F (q(ti), u(ti)), a general cost
function (with a simpler notation) ∑H

`=1 Φ(q`, u`) has to be minimized over the horizon
by varying the coordinates {q2, . . . , qH} (q1 is given as the initial condition of the motion),
and force terms {u1, . . . , uH−1} (because uH has influence only on the next grid point at
time tH+1). The optimization must have done under the constraints gi(qi, qi+1, ui) = 0. It
traditionally can be solved by the use of Lagrange’s reduced gradient method by using
Lagrange multipliers for gradient reduction that was introduced in the late 18th century
for solving constrained problems in classical mechanics [19]. Later, it obtained ample
applications from the 1960s with the development of computer technology that provided
easy implementation possibilities (e.g., [20,21]). The scheme description is known as the
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receding horizon control (RHC) which is a reliable, heuristic practical tool that has many
applications (e.g., [22–27]). The adaptive version of RHC were investigated in many cases,
such as in [28] wherein the used ARHC is based on Lyapunov’s adaptation law, whereas in
[29], the adaptive controller is based on the set membership identification algorithm, which
iteratively calculates at each cycle a set of candidate plant models. The general ARHC is
used in [30] along with particle swarm optimization (PSO). Implementing the sliding mode
(SM) as an adaptive technique for ARHC is addressed in [31].

Because of the fact that the Lagrange multipliers normally have clear physical interpre-
tation (e.g., [32]), and the strong analogy with the canonical equations of classical mechanics
that provides solutions similar to the the flow of incompressible fluids, together with the
plausible mathematical consequences of this approach, the constraint-based formulation
of the problem generally prevailed, though it is not the computationally simplest and
cheapest approach. These analogies are derived from considering the auxiliary function of
the problem in (1)

Ψ({q}, {λ}, {u}) :=
H

∑
`=1

Φ(q`, u`)−
H−1

∑
`=1

λ`g`(q`, q`+1, u`) . (1)

Evidently, Ψ({q}, {λ}, {u}) is not bounded, and at the point where the gradient
reduction algorithm stops, it satisfies the equations as ∂Ψ

∂λj
= 0, meaning that the solution

satisfies the constraint conditions, ∂Ψ
∂qk

= 0 that can be so interpreted that the reduced

gradient is 0, and an additional condition ∂Ψ
∂ui

= 0. These partial derivatives allow the
interpretation of the appearance of the numerical approximation of a differential equation
for λ̇, considering the qi and λi pairs as canonical coordinate pairs, and interpreting Ψ
as a Hamiltonian with the conservation property’ Ψ̇ ≡ 0. The analogy with the flow of
incompressible fluids is related to the fact that the canonical state propagation equations
are related to symplectic transformations that conserve the volume of the phase space
(Liouville’s theorem, e.g., [33]).

The numerical algorithm that solves the above problem is commenced by finding
a point on the constraint surface by using the Newton–Raphson algorithm [34], then
making consecutive “small steps” along the reduced gradient ∇Φ−∑` λ`∇g` in which
the Lagrange multipliers are so chosen that for the constraint gradients it must be valid
that ∀j

(
∇gj

)T
(∇Φ−∑` λ`∇g`) = 0 (in this formulation the symbol∇ contains ∂

∂q and ∂
∂u

components). Gradient reduction needs the solution of this linear set of equations. The
algorithm stops when the reduced gradient becomes zero.

It was realized that placing the dynamic model into the constraint term of the optimiza-
tion task is rather a tradition than a necessity. If we do not insist on the above mentioned
elegant formal analogies with classical mechanics, the complexity of the calculations can
be considerably reduced. In the original approach the free variables of the optimization
are the coordinate values {q}, and the force terms {F} over the horizon, and the quantities
that additionally have to be calculated are the {λ} Lagrange multipliers for reduction
of the gradient containing the partial derivatives according to the components {q} and
{F}. In [35], the structure of the auxiliary function was investigated in the case of a simple
paradigm, and it was found that the appropriate solution is at its saddle point. Furthermore,
instead of using a set of individual constraint functions for optimization as {g` = 0}, the
use of a single constraint term defined as G := ∑` g2

` = 0 can be successfully applied with
only one associated Lagrange multiplier that can very easily be computed. In [36], the
use of the Lagrange multipliers was completely evaded, and the method’s operation was
illustrated by controlling the dynamic model of two connected mass points that were able
to move in a given linear direction. In this approach, the free variables of the optimization
are only the force terms {F} over the horizon, the gradient in the optimization consists only
of the ∂

∂F components, and the simple gradient descent method can be applied without any
gradient reduction. Following this simple illustration, the method was used for simulating
the treatment of illness type 1 diabetes mellitus in determining the necessary insulin ingress
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rate, and the estimation of the evolution of the not observable internal model variables.
In [37], this approach was considered for the RHC control of the Furuta pendulum [38],
and in [39,40] application possibilities were considered in solving the inverse kinematic
task of redundant robots. In this paper the application of our method is considered for
a special robot model, the SCARA robot with specially designed cost function structure.
The paper is structured as follows. In Section 2 the description of the optimization task
without using constraint terms is expounded. In Section 3 the cost function’s structure
is detailed. The adaptive controller part described in Section 4. The simulation results
are discussed in Section 5 in two major parts: without (Section 5.1) and with (Section 5.2)
control force limitation. Finally, the purpose of the designed cost function with the used
optimal adaptive control conclusions are addressed in the discussion placed into Section 6.

2. Formulation of the Optimization Problem without Using Constraint Terms

The direct formulation of the problem without the use of constraint terms for a
second order system can be built up by the use of the principle of causality, the available
approximate dynamic model, and the forward differences as follows.

• It is given the horizon for design in the discrete time steps {t1, t2, t3 . . . , tH} con-
taining the state variables q, q̇ as {q1, q2, q3, . . . , qH}, and {q̇1, q̇2, q̇3, . . . , q̇H}, the
exerted control forces {F1, F2, F3, . . . , FH}, and the second coordinate time derivatives
as {q̈1, q̈2, q̈3, . . . , q̈H};

• in the discrete time representation the above data contain certain redundancy be-
cause the relationship q̇i ≈

qi+1−qi
δt must be valid for i ∈ {1, 2, . . . , H − 1}, and

q̈i ≈
qi+2−2qi+1+qi

δt2 for i ∈ {1, 2, . . . , H − 2};
• the dynamic model of the system determines q̈i = F (qi, q̇i, Fi); and
• the initial conditions are determined by {q1, q2} redundantly with {q̇1}.

According to the above considerations, by the use of the dynamic model, the inde-
pendent variable of optimization F1 with the initial conditions {q1, q2} and the redundant
{q̇1} determine q̈1 that determines q3 and redundantly q̇2. The next independent vari-
able of the problem, i.e., F2 with {q2, q3} and the redundant {q̇2} together determine q̈2
that determines q4 and redundantly q̇3, etc. The last independent variable is FH−2 with
{qH−2, qH−1} and the redundant {q̇H−2} that together determine q̈H−2 that determines qH
and redundantly q̇H−1.

In the mentioned approach, the independent variables are only {F1, . . . , FH−2}, i.e., the
number of the independent variables is much smaller than that in the problem formulated
by the constraint-based approach. Furthermore, in the simulation program simple functions
can be used that according to the initial conditions with the independent variables build up
all the important values within the horizon. The cost function afterward can be computed
from these values, and in principle the simple gradient descent method can be applied for
the independent variables for optimization.

3. Solution for the Minimization

Both the simple gradient descent and the reduced gradient methods generally suffer
from the lack of reliable information with regard to the question of what is the appropriately
small step that simultaneously provides fast convergence, and good precision. It is well
known that the Newton–Raphson algorithm, that can be applied if it is known that the
minimum is zero, produces fast convergence. However, when the minimum is not zero it
becomes divergent and is apt to make finite jumps around the argument of the minimum.
In this paper, the following simple “tricks”´ were performed:

1. The minimization was commenced from zero force components, and started with a
big step using the Newton–Raphson algorithm. A parameter α = 1 was introduced in
the first step.
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2. Until the Newton–Raphson algorithm with the given step-length yielded a smaller
cost value than the previously visited point, it proceeded forward with this big step
length;

3. When in the suggested next point the function value found was bigger than that in the
starting point, α has been halved, and α times the step-length of the Newton–Raphson
algorithm was applied. If it yielded a better point, the calculated step-length was
used; otherwise α was kept halved until it either provided a better next point, or it
achieved a preset minimum value αmin at which point the algorithm stopped.

The speed of optimization certainly strongly depends on the properties of the cost
functions in use. In [41,42] very complex cost functions were introduced that were based on

polynomial behavior of the functions
(
|x|
∆

)p
. If p > 1 such functions have little contribution

if |x| � ∆ > 0 (this is an “error tolerant region”), and drastically increase as |x| � ∆ (it
corresponds to a “strongly penalized region”). However, numerical problems often arose.
In this paper, for the generalized coordinate qj the contribution in the function was set

as Cqj

∣∣∣(qN
j (t)−qO

j (t))/δ
∣∣∣p+1

1+
∣∣∣(qN

j (t)−qO
j (t))/∆

∣∣∣p . For the big tracking error, its graph looks like that of a linear

function to evade numerical problems, whereas for small errors it is tolerantly flat and
small (typical shapes are given in Figure 1). For the penalization of the driving force term

the appropriate contributions were given in the form Cuj


|Fj − ∆u|pu if Fj > ∆u
0 if − ∆u ≤ Fj ≤ ∆u
|Fj + ∆u|pu if Fj < −∆u

. This

means that a range of forces were exerted without any penalization.
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Figure 1. The schematic structure of the cost function shape for penalization (for arbitrary physical
dimensions) δ = 10−5, ∆ = 2000δ, and various p values: (a) in full scale; (b) zoomed in excerpt.

In this manner, a relatively fast algorithm was created for seeking the possible min-
imum of the cost function, because the linear part gives very fast convergence in the
Newton–Raphson algorithm.

4. Utilization of the Result of Cost Minimization

Taking into account that the above minimization technique can yield strongly scatter-
ing force values, the optimization was realized for a very “heavy” model. In the dynamic
models used in robotics the kinematic model parameters normally are precisely known but
only imprecise knowledge is available on the distribution of the masses in the space. This
fact was an issue in the use of the available dynamic model of the robot in the computed
torque control of a PUMA robot in 1986 [2]. Various investigations in the 1990s made it clear
that it is not possible to obtain very precise models and some consensus was achieved in [3].
However, it can be assumed that for achieving a given acceleration of the robot’s compo-
nents, for higher masses higher force or torque components are needed. Furthermore, for
working against a higher gravitational acceleration higher force or torque components are
also needed. For this reason, in Table 1, the length data are identical for the “heavy” and
the “exact” models, but the masses, the inertia moments, and the gravitational acceleration
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are overestimated for the heavy model. Intuitively it can be expected that if a motion can
be realized for the heavy components, it can be realized, too, if less weighty components
have to be moved along the same trajectory.

Therefore, the force values that were calculated in the optimization process were
dropped and the smoothed version qOs(t) of the optimized trajectory qO(t) was adaptively
tracked by the use of an available approximate dynamic model of the actual system under
control. For smoothing, a third-order solution inspired by [43] was applied as(

Λ f ilt +
d
dt

)3
qOs(t) = Λ3

f iltq
O(t) , qOs(t0) = 0 , q̇Os(t0) = 0 , q̈Os(t0) = 0 , (2)

with 0 < Λ f ilt = constant For very high frequencies it has the transfer function characteris-
tic in the Laplace transform as ∝ s−3 (very drastic rejection), and at zero frequency it has
the value 1.

This smoothed function was adaptively tracked by a fixed point iteration-based adap-
tive controller. This design is a further development of the computed torque control method
that directly uses the dynamic model of the robot [2] without including it in the mathemati-
cal framework of the optimal controllers. It contains a kinematic block in which a special
PID-type tracking strategy is defined in (3) as(

Λ +
d
dt

)3
eInt(t) ≡ 0⇒

q̈Des(t) = Λ3eInt(t) + 3Λ2e(t) + 3Λė(t) + q̈o(t) ,

(3)

in which each feedback gain is determined by the use of a single positive constant parameter
Λ, and the integrated error eInt(t) :=

∫ t
t0

(
qN(ξ)− q(ξ)

)
dξ. In simulations, the output of

the kinematic block was moderated by the function q̈Des = q̈maxk tanh(q̈Des
Unmod/q̈maxk) that

limited its possible output approximately at q̈maxk to evade numerical difficulties. This
strategy has the property that following a relatively large initial overshoot and undershoot
it asymptotically converges to zero. In the possession of the exact dynamic model this
desired value directly can be introduced into this model to compute the necessary control
forces. In the possession of only an approximate model, as the first element of a sequence, in
the beginning of the control action, it is introduced into the approximate model, but in the
forthcoming steps it is adaptively deformed before being introduced into the model. In this
manner, an adaptive controller can be created that has a simpler mathematical background
than the Lyapunov function-based design, and directly tackles the convergence of the
individual error components to zero. (In most cases the Lyapunov function-based approach
guarantees only the convergence of some quadratic norm made of these components.
Non-quadratic Lyapunov functions can be constructed, too).

The adaptive deformation depends on the deformed signal applied in the previous
step and on the observed response obtained by it (details are given in [44]). Under certain
conditions, the sequence of the deformed signals converges to a fixed point that provides
q̈Des ≈ q̈, i.e., in spite of the modeling errors, the kinematic tracking strategy is well ap-
proximated. The mathematical background of the convergence is based on Banach’s Fixed
Point Theorem’ of contractive maps that map a Banach Space (i.e., a linear, normed, com-
plete metric space) into itself [45]. For the realization of the adaptive deformation various
“deformation functions” can be invented (e.g., given in [44,46–48]). In the present paper
the version given in [48] is applied that so augments the array q̈Des(t) ∈ R4 into A ∈ R5,
the array q̈(t− δt) ∈ R4 array into B ∈ R5 that in the Frobenius sense ‖A‖ = ‖B‖ = Ra,
then constructs a rotation that rotates B into A with the angle ϕ, then augments the array
q̈De f (t − δt) ∈ R4 into C ∈ R5 so that ‖C‖ = Ra, then rotates C with an interpolated
rotational angle λa ϕ (λa ∈ (0, 1]), and finally returns the first four components of this
rotated array. Before returning, these components were moderated for very big (i.e., of the
order of magnitude of |q̈| ≥ q̈maxa values) by the function q̈De f = q̈maxa tanh(q̈De f

Proj/q̈maxa).
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As a result, in the physically interpreted projection space, i.e., in R4, simultaneous rotation
and shrinking/dilatation happens with the “deformed value” to be used in the time instant
t. The approximate model and the actually controlled system approximately defines a
response function’ q̈ = f

(
q̈De f

)
that only slightly drifts with the state variables (q, q̇)

whereas the controller quickly and abruptly can modify its argument q̈De f (t). As a gener-
alization of the idea of “monotonic increasing function” that realizes a mapping R 7→ R,
function f (x) : Rn 7→ Rn is called approximately direction-keeping if for an infinitesimally
small ∆x ∈ Rn the angle between the vectors ∆ f := f (x + ∆x) − f (x) and ∆x is acute.
Practically it means that a small modification of the input causes similar modification of the
output. For instance, in car driving, this behavior is valid for the operation of the steering
wheel, the brake, and the accelerator pedals, and for this reason an adaptive system such
as a human driver can learn how to drive a car. It also gives satisfactory basis for the
convergence of the deformed signals in the fixed point iteration process. The whole control
process for having each optimal coordinate qO

i , filtered optimal coordinate qOs
i and the

realized one qi can be recognized through the flow chart in Figure 2.

  

Horizon and
model for 

optimization 

Noise filtering Λ filt

Kinematic block   ΛAdaptive block   Approximate
model for tracking 

Controlled 
system

Delay

Delay

qNNominal trajectory Optimized trajectory qO

qOs

q̈Desq̈Deform

F a
Adaptive control force 

q̈

Realized response 
∫
t0

t

q̈ (ξ)d ξ ∫
t0

t

q̇ (ξ)d ξq̇

Figure 2. The flow chart of the controlling mechanism.

In this paper, the above ideas were applied for a 4 DoF SCARA robot arm the dynamic
model of which was taken from [49]. The generalized coordinates of the robots are q1 [m] is
the only prismatic joint, and q2, q3, q4 are rotary ones measured in [rad] units. Accordingly,
the generalized forces are F1 [N] for the first joint, and F2, F3, F4 have the dimension [N ·m].
The equations of motion are given in (4)–(7),

F1 = (m1 + m2 + M + Mload)q̈1 − g(M + m1 + m2 + Mload) , (4)

F2 = (m1L2
1/4 + m2L2

1 + m2L2
2/2 + m2L1L2 cos(q3) + Mload(L2

1 + L2
2 + 2L1L2) + Θload)q̈2

+ (m2L2
2/2 + m2L1L2 cos(q3)/2 + Mload(L2

2 + L1L2 cos(q3)) + Θload)q̈3 + Θload q̈4

− q̇2(m2L1L2 sin(q3) + Mload2L1L2 sin(q3))q̇3 − q̇2
3(m2L1L2 sin(q3) + MloadL1L2 sin(q3)) ,

(5)

F3 = (m2L2
2/2 + m2L1L2 cos(q3)/2 + Mload(L2

2 + L1L2 cos(q3)) + Θload)q̈2

+ (m2L2
2/4 + MloadL2

2 + Θload)q̈3 + Θload q̈4 + q̇2
2L1L2sin(q3)(m2/2 + Mload) ,

(6)

F4 = Θload q̈2 + Θload q̈3 + Θload q̈4 . (7)

The dynamic parameters of the heavy model used for optimization, the exact system
model (not known by the controller), and the available approximate system model used for
trajectory tracking are given in Table 1.
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Table 1. The Dynamic Model Parameters in Equations (4)–(7).

Parameter Exact Model for
Simulation

Heavy Model for
Optimization

Approximate Model for
Adaptive Control

M[kg] component’s mass 10.0 15.0 12.0
m1[kg] component’s mass 20.0 25.0 21.0
m2[kg] component’s mass 10.0 13.0 12.0

Mload [kg] load’s mass 50.0 55.0 52.0
g
[
m · s−2

]
grav. accel. 9.81 10.0 9.0

θload
[
kg ·m2

]
load’s inertia

moment 45.0 50.0 42.0

L1[m] arm length 2.0 2.0 2.0
L2[m] arm length 1.0 1.0 1.0

5. Simulation Results

The necessary time-grid resolution depends on various factors such as the dynamics
of the nominal trajectory to be tracked, the structure of the cost function applied, the param-
eters used in smoothing the optimized trajectory, and that of the adaptive controller that
tracks the smoothed trajectory. In general, the precise mathematical analysis of these factors
is quite time-consuming. From a practical point of view, making numerical simulations for
a given problem seems to be an easier way. A simple check of reliability is the comparison
of the results obtained for the sets {δt = 10−4 s, STEPS = 4000, HL = 12} (referred to as
set 1) and {0.5δt, 2 · STEPS, 2 · HL} (referred to as set 2) that physically corresponds to
computing the same task with a finer time resolution. If the results obtained for the tracking
precision and the control force needs can be well compared to each other, the original time
resolution δt can be considered as acceptable. All simulations were made with a Dell vostro
1540 laptop operated by a CORETMi3 Intel processor under the Windows 10 Home 64-bit
operating system. The simulation consists of two parts. The first part (in Section 5.1) was
tested without force limitation and has two sub-simulations as seen in Section 5.1.1 where
set 1 and set 2 are compared. In Section 5.1.2, we see the effect of increasing the stopping
limit α. The second simulation part was tested with the limited forces by choosing the
proper of the two examined sets in addition to the better value of α. Table 2 shows the
controller parameters values that used during the all simulation parts.

Table 2. The Controller’s Parameters.

Parameter Meaning Value

δt Discrete time resolution 10−4[s]

Λ Trajectory tracking
exponential coeff. 36.0

[
s−1]

Λ f ilt
Trajectory smoothing

exponential coeff. 800.0
[
s−1]

Cq1 = Cq3 = Cq4 Cost contribution coeffs. 106

Cq2 Cost contribution coeff. 2× 106

δ Cost parameter 1 10−5[rad] or [m]
∆ Cost parameter 2 2000 · δ

Cu1 = Cu2 = Cu3 = Cu4 Force cost parameter 1 104

p Cost parameter 3 1.1
∆u Force cost parameter 2 varying [N ·m] or [N]
pu Force cost parameter 3 1.5

Ra
Augmented arrays’ Frobenius

norm 106[m · s−2] or
[
rad · s−2]

H Discrete horizon length 12

q̈maxa
Moderating factor in adaptive

control 104[m · s−2] or
[
rad · s−2]

q̈maxk
Moderating factor in

kinematic block 107[m · s−2] or
[
rad · s−2]

αmin
Stopping limit in minimum

seeking 10−2

λa Adaptive interpolation factor 1.0



Electronics 2022, 11, 1243 9 of 19

5.1. Simulations without Force Limitation
5.1.1. Investigations for Different Time Resolutions

In the simulation investigations, the operation of the method at first was considered
for a cost function without control force penalizing terms (in this case ∀j Cuj = 0). The
common control parameters of these simulations are given in Table 2. Some sinusoidal
motion was chosen for the nominal trajectory to be tracked.

It can be seen in Figures 3–6 that halving the time-resolution δt = 10−4 did not produce
significantly different results. The figures of the second time derivatives (Figures 7–10) and
that of the control forces (Figures 11 and 12) show more significant differences. However, they
definitely are in the same order of magnitude and reveal qualitative similarities. Figure 13 shows
the perceptible difference of the required optimal forces values for the two sets. The adaptive
abstract rotations has no noticeable differences (Figure 14). Naturally, the computational burden
of the method strongly depends on the time resolution which can be noticed in the big differences
of the computational time need in Figure 15. On this basis, it was determined that for a
preliminary design the computationally less greedy set 1 parameters’ setting will be used in the
case of force limitations. It worth mentioning that the big initial transient is a typical consequence
of a PID-type tracking policy formulated in (3).
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Figure 3. Trajectory tracking without force limitation for q1 and q2: (a) For the set 1. (b) For the set 2.
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Figure 4. Trajectory tracking without force limitation for q3 and q4. (a) For the set 1. (b) For the set 2.
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Figure 5. Nominal optimized trajectory tracking errors qN − qO without force limitation. (a) For set 1.
(b) For set 2.
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Figure 6. Optimized realized trajectory tracking errors qO − q without force limitation. (a) For set 1.
(b) For set 2.
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Figure 7. Second time derivatives without force limitation for the joint coordinates q1(t) and q2(t) in
full scale. (a) For set 1. (b) For set 2.
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Figure 8. Second time derivatives without force limitation for the joint coordinates q1(t) and q2(t)
without the initial transient. (a) For set 1. (b) For set 2.
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Figure 9. Second time derivatives without force limitation for the joint coordinates q3(t) and q4(t) in
full scale. (a) For set 1. (b) For set 2.
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Figure 10. Second time derivatives without force limitation for the joint coordinates q3(t) and q4(t)
without the initial transient. (a) For set 1. (b) For set 2.
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Figure 11. The adaptive control forces without force limitation in full scale. (a) For set 1. (b) For set 2.
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Figure 12. The adaptive control forces without force limitation and without the initial transient.
(a) For set 1. (b) For set 2.
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Figure 13. The optimal forces without force limitation and without the initial transient. (a) For set 1.
(b) For set 2.
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Figure 14. The adaptive abstract rotations. (a) For set 1. (b) For set 2.
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Figure 15. The computational time need of the main cycle without force limitation. (a) For set 1.
(b) For set 2.
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5.1.2. Computations for Less Precise Minimum Seeking

Based on previous comparison, set 1 will be chosen for the upcoming investigations. In
the sequel, to decrease computational burden, the setting αmin = 10−1 value was used. This
corresponds to a less precise approximation of the local minimum, but the noise filtering
applied for adaptive tracking can tackle the effects of this increased imprecision. According
to Figures 16 and 17, it can be stated that the RHC controller was able to generate a good
optimized trajectory that was successfully tracked by the adaptive controller. Figures 18 and 19
reveal what happens in the background: due to the necessary adaptive deformation it was
possible to track the smoothed optimal trajectory well. The strong smoothing depicted in
(2) was absolutely necessary and resulted in the adaptive control forces given in Figure 20.
The comparison of Figures 15a and 21b reveals quite considerable reduction in the necessary
computational time. The optimal forces (Figure 22) are decreased noticeably, whereas the
adaptive abstract rotation is within accepted range as it can be seen in Figure 21a.
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Figure 16. Trajectory tracking without force limitation for the increased αmin = 0.1. (a) For q1 and q2.
(b) For q3 and q4.
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Figure 17. Trajectory tracking errors without force limitation for the increased αmin = 0.1. (a) For
nominal-optimized: qN − qO. (b) For optimized-realized: qO − q.
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Figure 18. Second time derivatives without force limitation for the increased αmin = 0.1 for the joint
coordinates q1(t) and q2(t). (a) In full scale. (b) Without the initial transient.
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Figure 19. Second time-derivatives without force limitation for the increased αmin = 0.1 for the joint
coordinates q3(t) and q4(t). (a) In full scale. (b) Without the initial transient.
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Figure 20. The adaptive control forces without force limitation for the increased αmin = 0.1. (a) In full
scale. (b) Without the initial “transient”.
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Figure 21. The adaptive abstract rotations (a) and the computational time-need of the main cycle
without force limitation (b) for the increased αmin = 0.1.
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5.2. With Force Limitation

These simulations were made by keeping the increased αmin = 0.1 and by choosing
the set 1; otherwise the parameters given in Table 2 were in use. The value of the parameter
∆u = 495.0 N or N ·m considerably corrupted the optimized trajectory by not allowing
it to exert the necessary control forces. Figures 23 and 24 reveal that in the optimization
phase the force limitation seriously concerned the optimized trajectories qO

1 (t), qO
2 (t), qO

3 (t),
and qO

4 (t), the smoothed versions of which were adaptively well tracked. Figure 25 shows
considerable fluctuations in the optimized forces that, due to the smoothing applied, have
limited effect on the adaptive tracking forces in Figure 26. According to Figure 27b the time
need of the optimum seeking was kept at a relatively low level.
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Figure 23. Trajectory tracking with force limitation ∆u = 495.0 N or N ·m for the increased αmin = 0.1.
(a) For q1 and q2. (b) For q3 and q4.
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Figure 24. Trajectory tracking errors with force limitation ∆u = 495.0 N or N ·m for the increased
αmin = 0.1: (a) For nominal-optimized: qN − qO. (b) For optimized-realized: qO − q.
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Figure 25. Second time derivatives with force limitation ∆u = 495.0 N or N ·m for the increased
αmin = 0.1 (a) for the joint coordinates q1(t) and q2(t), (b) for the joint coordinates q3(t) and q4(t).



Electronics 2022, 11, 1243 16 of 19

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time [s]

2500

0

2500

5000

7500

10000

12500

Fo
rc

e
 
[N

] 
o
r 

T
o
rq

u
e
 [
N

m
]

Adaptive Torque/Force, PID, = 36.0

Fa1 [N]

Fa2 [N.m]

Fa3 [N.m]

Fa4 [N.m]

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time [s]

8000

6000

4000

2000

0

2000

4000

6000

Fo
rc

e
 
[N

] 
o
r 

T
o
rq

u
e
 [
N

m
]

Optimal Torque/Force, PID, = 36.0

Fo1[N]

Fo2 [N.m]

Fo3 [N.m]

Fo4 [N.m]

(b)

Figure 26. The control forces with force limitation ∆u = 495.0 N or N ·m for the increased αmin = 0.1.
(a) The adaptive control forces. (b) The optimized forces.
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Figure 27. The adaptive abstract rotations (a) and the computational time need (b) of the main cycle
with force limitation ∆u = 495.0 N or N ·m for the increased αmin = 0.1.

It is interesting to observe how sharply the parameter value ∆u concerns the results
for pu = 1.5. If the limits of the penalty-free force region are increased from ∆u = 495.0 to
∆u = 500.0 N or N ·m the optimized trajectory suffered far fewer distortions (Figure 28).
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Figure 28. Trajectory tracking with force limitation ∆u = 500.0 N or N ·m for the increased αmin = 0.1:
(a) For q1 and q2. (b) For q3 and q4.

6. Discussion

The detailed steps in Sections 2–4 and simulation results can be summarized as follows:

1. In general it seems to be an interesting research area to consider the problem of adap-
tive optimal control design for a wider set that is exempt of the limitations of linear
time-invariant dynamic system models and quadratic cost function contributions.

2. The prevailing general approach in this field is linear programming that tackles the
problem in discrete time grid approach and the use of Lagrange’s reduced gradient
algorithm that is professionally implemented e.g., in the EXCEL’s Solver package.
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3. It is evident that the direct problem formulation applied for evading the use of the
constraint-based formalism leads to considerable reduction in complexity and compu-
tational needs. The number of the independent variables of the original approach is
considerably decreased. Instead of the variables {q}, {u}, only the variables {u} remain
the independent ones, and there is no need to calculate the Lagrange multipliers {λ}.

4. The problem of small steps in the case of the suggested solution can be tackled by a
modification of the Newton–Raphson algorithm (generally it is an issue in using the
reduced gradient method, too).

5. It was found that for keeping the computational time low, it is expedient to use not
very precise minimum seeking.

6. The scattering of the force values and the related effects rather can be tackled by a simple
noise-filtering approach applied for the optimized trajectory to be adaptively tracked.

7. The suggested adaptive controller can well track the smoothed signal.
8. The mathematical frameworks of optimization and adaptive tracking can be separated

from each other in a simple manner.
9. The basic concept was that the force-limited optimization can be executed by the use

of a heavy dynamic model. Therefore, the force limitation issues can be tackled in
the optimization phase. It can be expected that the trajectory that was optimized
for the heavy model can be tracked by an easier mechanical construction for the
acceleration of the components of which smaller force or torque components can be
expected. For tracking the optimized trajectory, a simple CTC type or an improved
adaptive CTC type control strategy can be used that is free of the burden of the
force-limitation issues.

10. The necessary time grid resolution depends on various factors as the dynamics of
the nominal trajectory to be tracked, the structure of the cost function applied, the
parameters used in smoothing the optimized trajectory, and that of the adaptive
controller that tracks the smoothed trajectory.

11. In general all the above factors can be clarified via making numerical simulations for
a given problem or problem class.

12. In the given investigations, the execution time was measured by the use of the given
hardware that was a laptop with a single CPU and a multitasking operating system.
Consequently, the measured data also contain the time sections during which the
actual task was interrupted and the processor was working on other tasks. However,
because during the calculations no heavy software application was running, these
data provide approximate and reliable information. (Parallel or simultaneous’use for
instance of a video player drastically modifies these observed data.)

13. The PID-based tracking policy still has huge initial signal swinging that should be
reduced. In the literature, various fractional order controllers can be found that tackle
this and similar problems (e.g., [50–56]). More general information can be obtained
from resources [57,58].

On the basis of these considerations in the future works, it seems to be expedient
to make investigations for various cost function types, dynamical systems, and nominal
trajectory types, and hardware possibilities for realization.
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