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Abstract: A design of a low-profile and printed array antenna for wireless access points and futuristic
healthcare devices is presented in this manuscript. The antenna design is derived from a printed
dipole configuration and is optimized using an empirical design approach to achieve enhanced
bandwidth, gain and efficiency performances. The antenna is printed on Rogers RT-5880 laminate
with a permittivity of 2.2 and a thickness of 0.508 mm. The overall footprint of the design covers
27.5 × 39.1 mm2 on a substrate of 36 × 42 mm2. Results have shown that the design covers a
wide bandwidth of more than 7 GHz, making it capable of covering 40.5–42.5 GHz, 42.5–43.5 GHz,
45.5–47 GHz and 47–47.2 GHz 5G bands as recommended in WRC-15. The design shows an average
gain of 11.5 dB and an average efficiency of 84% over the entire bandwidth. The simulation and
measurement results mostly agree, with minor disparities which might have been caused due to
substrate tolerance and testing setup.

Keywords: 5G; array antenna; MIMO antenna; millimeter wave; digital health

1. Introduction

The evolution of wireless communication standards dates back to 1979 when the
first generation (1G) of wireless communication was introduced. The handsets in those
days were able to cover analog services with a very narrow frequency bandwidth, thus
serving a very limited number of users [1]. With the growth in the demand for wireless
communication, the second generation (2G) GSM system was launched in 1991 which
showed an enhanced bandwidth and digital voice encryption [1]. The number of users
greatly increased and wireless voice communication captured the interest of the world [2].
Data communication, however, was not possible and soon the need for data protocols
became a necessity which gave rise to third generation (3G) and fourth generation (4G)
wireless systems [2]. The number of users accommodated by these protocols jumped
to millions and on-the-go data communication became possible [3]. From 1G to 4G, the
frequency of operation shifts from lower frequency to higher frequencies, making it possible
to have portable pocket-held or hand-held devices [4]. Wireless communication is not
limited to mobile communication anymore and it can be anticipated that in future healthcare
devices will be able to send and receive data wirelessly, making remote monitoring and
treatment possible. Wireless communication has already started to produce solutions
for supporting medical professionals over the last few years. The major applications in
which radio wave propagation is helping the medical field are wireless imaging using high-
frequency waves, wireless health monitoring and RFID support for physically disabled
people [5–8]. This has created another challenge for wireless communication engineers to
make such devices that can support seamless communication in dense indoor environments
such as in a hospital or a care home. An example of wireless health applications is presented
in [5]. In this paper, a Bluetooth-based fall detection and warning system has been proposed

Electronics 2022, 11, 1226. https://doi.org/10.3390/electronics11081226 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081226
https://doi.org/10.3390/electronics11081226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3957-5341
https://orcid.org/0000-0003-3937-5101
https://doi.org/10.3390/electronics11081226
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081226?type=check_update&version=2


Electronics 2022, 11, 1226 2 of 10

for elderly people. Another interesting work has been presented in [7] where the authors
have proposed an idea of monitoring cardiovascular health remotely using IoT. The health
sector needs digitization to reduce the load on hospitals. After the COVID-19 pandemic,
it has been realized that there should be a digital health system where patients can be
monitored and treated remotely and hospitals should be kept available for vulnerable and
seriously ill people [9]. Remote health monitoring can be made more efficient if patients’
health data are available on the go. For this purpose, health monitors need to be portable
and lightweight so that it is easier to carry the battery-powered equipment. Therefore, for
ever-increasing engineering and medical applications of wireless communication, the use
of higher frequency bands has become a necessity [10]. The latest wireless communication
technologies such as 5G can be employed for transferring patients’ data from one place
to another. The millimeter wave spectrum of 5G communication can be used to provide
this operation seamlessly from ultra-portable terminals [10]. Though the introduction of
5G can make communication better, there are certain shortfalls which then need to be
dealt with to achieve better-quality communication from a small battery-powered device.
The wavelength in a millimeter wave spectrum is usually very small which makes signal
attenuation and fading a major problem in dense terrains such as in urban indoor and
outdoor communication environments [11]. Additionally, handsets and wireless terminals
come with antennas inside the housing which affects their radiation performance [4].
It is thus very important to bring innovation and improvement to the current wireless
communication circuitry, especially the antennas. This paper presents a new design of
an antenna system for 5G frequencies. Conventional low-gain antennas are unable to
provide high gain over large bandwidths and are thus not suitable for 5G and beyond 5G
terminals [12]. In order to mitigate the effect of fading, modern transmission technologies
such as MIMO and array can be used. Antenna systems supporting MIMO and array
configurations can provide high gain and efficiency over wider frequency bandwidths such
as those in 5G [12]. Additionally, devices working at very high frequencies will be of much
smaller size which makes it a challenge to accommodate multiple antenna systems inside
the device housing [13–15]. It is thus a very important research assignment to design such
antennas for ultra-slim access points and portable terminals.

Various designs of antennas for 5G terminals are presented in [16–31]. The designs
presented in the literature are mostly for lower frequency bands, whereas there are few
designs for higher frequency millimeter wave bands. It has been deduced from the literature
that the majority of the designs offer small bandwidth, low realized gain and efficiency.
The designs with enhanced gain and efficiency performances over wider bandwidths in the
millimeter wave spectrum are very few which makes it a necessity to design such antennas
for smart wireless terminals [32].

In this article, a design of a high-gain array antenna for wireless access points and
futuristic wireless healthcare devices is presented. The design is low profile and able to
provide an improved gain and efficiency. The design will cover devices such as wireless
routers, wireless endoscopes, wheelchairs, walking aids, oximeters and other medical
sensors and scanners. The antenna design can be implemented practically to enable health
devices to transmit and receive health data wirelessly to and from hospitals. The design
along with its modeling and testing results will be discussed in the coming sections.

2. Antenna Design

The proposed design of an array antenna system for 5G communications is shown
in Figure 1. The design is modeled and simulated in CST® MWS which uses the finite
integration technique (FIT) to solve complex electromagnetic computations.
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Figure 1. Array antenna for wireless terminals. (a) Computer model. (b) Manufactured model.

It can be seen from Figure 1 that the model is composed of eight major elements and
eight minor elements. Each element is based on a printed and modified dipole configuration
and the dimensions have been optimized using an empirical design approach through
repetitive simulations. The antenna is printed on the top layer of Rogers RT5880 laminate
with a 2.2 dielectric permittivity and a height of 0.508 mm. The ground plane of the design
is on the back side and is a completely copper layer. The overall footprint of the design
covers 27.5 × 39.1 mm2 on a substrate of 36 × 42 mm2. Each major element of the design is
9 × 8 mm2, whereas each minor element is 6 × 4 mm2. The manufactured model of the
proposed design is shown in Figure 1 which presents a microstrip pattern printed on the
top layer of the substrate and a complete ground plane on the bottom layer. The prototype
is composed of three parts: a PCB, an RF connector and a metallic housing. The microstrip
pattern on the PCB was etched using a CIF Technodrill PCB milling machine whereas the
input RF connector used in the prototype was a 2.4 mm type female connector. The metallic
housing was built to complete the ground plane of the antenna design.

The design flow for the presented design is presented in Figure 2 which shows how
the antenna is designed from a basic printed dipole element. The various parameters of
the model are shown in Table 1. The length of the printed dipole designed in step 1 is
approximately 1 λ at 45 GHz frequency.
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Figure 2. Design flow of the array antenna for wireless terminals. Units: mm.

Table 1. Various dimensions of the proposed array antenna.

S. No.
Antenna Dimensions

Parameter Value Parameter Value Parameter Value

1 sl1 10.00 sl2 18.00 fl3 7.65
2 sw1 6.00 sw2 12.00 fl4 6.70
3 l1 6.00 fl1 2.00 l2 9.0
4 fl 3.00 fl2 3.65 w5 1.40
5 fw 0.50 fw1 0.35 w6 0.69
6 w1 0.70 fw2 0.70 w7 0.30
7 w2 0.20 gap1 1.50 θ 90◦

8 w3 0.40 sl3 36.00 gap2 9.50
9 w4 0.30 sw3 15.00 fl5 4.73

10 fw3 0.30

The design flow in Figure 2 shows five distinct steps in which a one wavelength
dipole antenna is transformed into the proposed array. The target is to achieve a frequency
bandwidth of more than 7 GHz with gain of more than 11 dB and efficiency of more
than 80%. The design flow starts with the design of a simple dipole antenna printed on
Rogers RT5880 laminate. The dipole is then transformed into a modified and folded dipole
configuration to increase the gain and the frequency bandwidth. The antenna design is
further progressed to step 3 in which a dual element sub-array design is presented which
gives better gain and bandwidth than the previous step. The design is further improved
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in step 4 and step 5 to achieve the desired bandwidth, gain and efficiency performances.
A comparison between different configurations of the design flow is shown in Table 2.

Table 2. A comparison between different configurations of the design flow.

Design Step
Comparison Parameter

Average Efficiency Average Gain 6 dB Bandwidth

1 77.0% 5.52 2.5 GHz
3 80.0% 7.98 4.0 GHz
5 84.1% 11.52 7.8 GHz

It can be seen from Table 2 that the proposed design gives a larger bandwidth, a higher
gain and a better efficiency than the other configurations. The proposed array antenna is
low profile and it is deemed suitable for futuristic wireless access points and healthcare
devices. The design was then simulated and tested and the results will be shown in the
coming sections.

3. Simulation and Experimental Results

The design is modeled and run in CST MWS for the simulation results, whereas
the testing results of the antenna were obtained from the antenna laboratory at Xidian
University, China. Various simulation and measurement results will be discussed in the
coming sub-sections.

3.1. S-Parameters

The simulated and tested S-parameters S11 of the proposed array antenna are shown
in Figure 3. It can be seen from Figure 3a that the antenna is resonating with a large 6 dB
frequency bandwidth ranging from 40.5–48.3 GHz. The antenna is thus capable of covering
40.5 GHz to 42.5 GHz, 42.5 GHz to 43.5 GHz, 45.5 GHz to 47 GHz and 47 GHz to 47.2 GHz
5G bands as recommended in WRC-15 [33]. The tested S-parameters of the antenna are
obtained by connecting it to a calibrated vector network analyzer and the graph is presented
in Figure 3b. The measured bandwidth ranges from 40.7 GHz to greater than 50 GHz, thus
covering the aforesaid 5G bands of communication.

3.2. Radiation Performance

The simulated 2D and 3D radiation pattern of the proposed array antenna at different
frequencies is shown in Figure 4. It can be seen that the radiation pattern is directional and
the peak radiation lies perpendicular to the plane of the array, thus making it a broadside
array. The radiation pattern of the proposed array antenna after testing is shown in Figure 5.
The measured radiation patterns were extracted from an anechoic chamber as 2D Cartesian
plots. It can be seen from the E-plane and H-plane radiation patterns that the array
possesses a fairly directional radiation pattern. Moreover, the testing results approximately
match with the simulation results, making the design more realizable in practice.

3.3. Antenna Gain

The simulated and tested antenna gain at different frequencies is shown in Table 3.
The gain is calculated using a standard method of gain comparison [34]. The simulation
results agree well with the measurement results. The average gain thus covered by the
antenna is 11.5 dB in simulations, whereas in measurements it is 10 dB.
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Table 3. Gain and efficiency of the proposed array antenna at different frequencies.

Freq. (GHz)
Antenna Gain (dB) Efficiency (%)

Simulated Measured Simulated

40.5 8.66 7.50 70
41.5 10.14 8.60 91
43.9 12.61 10.5 79
45.9 12.25 10.6 92
47.0 13.72 11.2 93
48.3 11.78 11.6 76

3.4. Antenna Efficiency

The simulated efficiency of the proposed array antenna at different frequencies is
shown in Table 3. The average value of efficiency thus achieved over the entire band-
width is approximately 84% which makes the design suitable for futuristic access points
and terminals.

3.5. Surface Current Distribution

The simulated surface current distribution of the proposed array antenna is shown
in Figure 6. It can be seen that the lower rows of the array contribute more towards the
radiation as compared to the upper rows at both frequencies of observation. The upper
elements of the antenna array make the radiation pattern directional, thus contributing
more towards the enhancement of the antenna’s directivity and gain.
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3.6. Effect of Notches and Cuts

The proposed design includes notches and cuts near the feeding point in each ar-
ray element. The dimensions of these notches and cuts have been selected empirically
through parametric analysis in CST Microwave Studio. Simulations have shown that these
notches and cuts change the distribution of the surface current and contribute towards
an enhancement in the overall bandwidth. Moreover, they also improve the gain of the
antenna, especially at the edge frequencies. The gain improvement with the introduction of
these notches and cuts is, however, not significant and it is approximately around 5.5%.

3.7. Performance Comparison

A comparison of the proposed antenna with some of the similar designs in the
literature is presented in Table 4. It can be seen that the antenna presents an overall
better performance.

Table 4. Gain and efficiency of the proposed array antenna at different frequencies.

Citation Shape/Type Size Fractional
Bandwidth

Average
Gain

[16] Multilayer Printed Microstrip 15 × 13 0.18 7.00 dB
[29] Multilayer SIW-Based Microstrip 33 × 18 0.20 9.00 dB
[35] Printed 8-Element MIMO 31 × 31 0.15 6.40 dB
[36] SICL-Excited SIW Patch Antenna 30 × 60 0.18 8.60 dB
[37] CP Antenna Array 30 × 30 0.14 8.00 dB
[38] Dual-Dipole SIW 10 × 40 0.32 3.00 dB
[39] Tapered Slot, SIW 20 × 70 0.07 12.0 dB

Proposed Printed Microstrip Array 28 × 40 0.18 11.5 dB

4. Conclusions

A new design of an array antenna for wireless access points and digital health termi-
nals is presented along with the simulation and the measurement results. The design is
composed of eight major and eight minor elements each realized from a modified printed
dipole configuration. The design gives a large bandwidth of around 8 GHz in the fre-
quency spectrum of 40–50 GHz, thereby covering several 5G bands. The simulation and
measurement results strongly agree, except for a few changes which might have been
caused due to substrate tolerance, fabrication precision and the testing setup involving
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the connecting cables and the connectors. The design is small and low profile, making it
suitable for millimeter wave 5G devices for engineering and medical applications. Further
modifications in the design will be made in future to reduce the antenna size and to en-
hance the antenna gain. Additionally, improvements will be carried out to achieve a wider
10 dB frequency bandwidth. Moreover, an in-depth analysis including aperture efficiency
and SAR measurement will be included in the immediate future work. Finally, on-body
testing will be carried out to examine the compatibility of the antenna with body-worn
medical devices.
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