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Abstract: In an Internet-of-Things system supported by Internet Protocol version 6 (IPv6), the
Routing Protocol for Low-Power and Lossy Networks (RPL) presents extensive applications in
various network scenarios. In these novel scenarios characterized by the access of massive devices,
path recovery, which reconstructs the complete path of the packet transmission, plays a vital role
in network measurement, topology inference, and information security. This paper proposes a
Lightweight Path recovery algorithm (LiPa) for multi-hop point-to-point communication. The core
idea of LiPa is to make full use of the spatial and temporal information of the network topology to
recover the unknown paths iteratively. Specifically, spatial and temporal information refer to the
potential correlations between different paths within a time slot and path status during different time
slots, respectively. To verify the effect of our proposal, we separately analyze the performance of
leveraging temporal information, spatial information, and their composition by extensive simulations.
We also compare LiPa with two state-of-the-art methods in terms of the recovery accuracy and the
gain–loss ratio. The experiment results show that LiPa significantly outperforms all its counterpart
algorithms in different network settings. Thus, LiPa can be considered as a promising approach for
packet-level path recovery with minor loss and great adaptability.

Keywords: path recovery; Internet-of-Things system; Routing Protocol for Low-Power and Lossy
Networks

1. Introduction

The proliferation of access devices creates an unprecedented difficulty for the Internet
Protocol version 4 (IPv4) to meet the growing scale of the network. As a result, the Internet
Protocol version 6 (IPv6) is envisioned as a maturing and promising solution to alleviate
the scarcity of network addresses. The IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL), which is specified by the IETF ROLL Working Group for a Low power
and Lossy Network (LLN) routing [1], is a highly modular and distance-vector-based
routing protocol [2,3]. It supports point-to-point communication in a large-scale network
with massive nodes. Due to the sufficient address space of IPv6 breaking the constraints
of network scale, RPL holds promise for a wide range of applications, e.g., healthcare
applications [4,5], smart grids [6,7], and smart cities [8].

In an IPv6 Internet-of-Things (IoT) system using the RPL protocol, nodes are con-
strained by local resources with respect to processing power, storage capacity, and battery
energy. Thus, nodes are interconnected by lossy links with the damaged performance of
data rates, stability, and packet delivery rates, which leads to a dynamic topology.

In network management (e.g., topology inference, network tomography, and traffic
engineering), learning the transmission path of received packets is significant to provide
a global view of the network. However, in such a multi-hop network with time-varying
topology, the routing path of packets cannot be obtained directly from the basic RPL proto-
col. Path recovery reconstructs the routing path from the source node to the destination
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node for each received packet in the network. Path recovery is supposed to achieve the
correct recovery of the packet’s path as much as possible with as little overhead as possible.
The successful recovery of packet-level path information will bring a wide range of ben-
efits, such as revealing the location of network failures [9], detecting latency and packet
loss problems of the internal links of a network [10], optimizing network coding of node
level to improve network throughput [11], etc. In the IoT system, path recovery faces the
following challenges:

• As the nodes in the network are always undergoing unpredictable failures and state
changes, the topology of the network is in constant change, making the path from the
same source node to the destination node diverse.

• The IoT is highly resource-limited in terms of the packet payload, which leaves little
space for carrying path recovery information.

• In most IoT scenarios, both the working status of nodes and the packets routing are
time-varying.

Existing work tends to utilize either spatial information or temporal information in the
network topology for path recovery. For example, iPath [12] is a path recovery algorithm
that uses spatial information. It performs iterative data recovery for packets within a
collection cycle, using correlations between the paths of the packets. This makes iPath
a performance bottleneck in network scenarios with low node activity and increasing
nodes. CSPR [13] is an algorithm that uses temporal information to recover paths. CSPR
uses data compression techniques so that each packet carries only a small amount of
compressed information at a time, and then decompresses the information of all packets in
the collection cycle to obtain the recovered paths. However, when node activity is low and
network dynamics increase, insufficient collection information causes decompression to be
incomplete, and CSPR has difficulty in achieving high-performance path recovery.

Unlike previous work, our key idea is to use both spatial and temporal information
for path recovery. As used by LiPa, spatial information refers to the possible correlations
between different paths, which can be used to recover unknown paths with known paths
iteratively. Temporal information refers to the fact that although the network topology is
randomly changing, correlations may exist between paths over time, and the size of such
a window time can be dynamically adjusted according to the activity level of the nodes.
By fusing spatial and temporal information, LiPa can maintain high recovery performance
even in those network scenarios with low node activity, massive nodes, and increased
network dynamics.

The contributions of our work are the following:

• We propose a lightweight path recovery scheme that explores the potential correlations
of routing paths between different nodes using the node information of the parent
and grandparent.

• We propose a modulated observation window size for path recovery based on the
activity level of the nodes. This enables effective path recovery with appropriate
computational effort for network scenarios with different traffic sizes.

• We propose new algorithms and obtain good performance in simulation experiments,
compared to the state-of-the-art. In addition, we analyze the performance improve-
ment of each highlight in the algorithm.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Section 3 describes the path reconstruction problem and system model in this paper.
Section 4 presents the proposed algorithms. Section 5 analyzes the recovery performance
of our work and two related works. Finally, Section 6 concludes this paper and gives future
research directions.

2. Related Work

For the path recovery problem, some of the existing works are highlighted as fol-
lows. PathZip [14] stores the routing path into a fifix-cost hash with topology-aware and
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geometry-assistant techniques by making each sensor node passively label every packet
forwarded. As the network scales increase, PathZip is facing the problem of rapid search
space growth. PAD [15] employs an intelligent packet-marking scheme for efficiently
reconstructing and dynamically maintaining the network topology. Based on a probabilis-
tic inference model that encodes internal dependencies among different nodes, PAD is
more suitable for sensor network systems that are not very dynamic. MNT [16] exploits
inter-packet correlations generated from spatially different nodes along the routing path to
reconstruct the routing path, the per-hop arrival order, as well as the per-hop arrival time of
individual packets. MNT shows excessive performance with relatively static topology and
high packet delivery rates, but is more vulnerable in coping with low node activity rates.
PAT [17] applies path compression, making each packet able to carry path information
with a length limit. Then, long paths can be inferred from sub-paths by path correlation.
For small-scale networks, PAT can demonstrate good performance. However, when the
network size increases, it will go through a longer initialization phase to discover the
network topology. In addition, the PAT algorithm has high overhead because it carries
compressed path information. RTI [18] adopts packet tracing and local probing to recon-
struct the route path. RTI determines whether the packet needs to be tagged according to
specific rules for each forwarder on the packet path. The significant advantage of RTI is
that it does not require the knowledge of the initial network topology or the prerequisites
that restrict single-path routing, and there is no need to repeat recovery for unchanged
paths. However, RTI requires resource-constrained relay nodes to dynamically maintain
a cache table and learn complex marking rules, which will significantly impact recovery
performance if a relay node fails. In addition, the storage overhead of the algorithm is
significant. cPathST [19] improves and integrates the two existing approaches. The initial
network topology is first obtained using compression-aware techniques in the path recov-
ery process, and then iterative recovery is performed using information of path correlation.
cPathST receives better path recovery performance in dynamic and complex networks. For
this reason, cPathST needs to be improved in terms of path exploration efficiency.

Table 1 shows the key ideas, limitations, and packet overhead of the existing path
reconstruction algorithms. In summary, these existing efforts described above have limita-
tions in the context of dynamic changes in network topology, low packet delivery rates,
and increasing network size. In contrast, our proposal advances in more complex network
scenarios and lower node activity.

There are several studies related to IPv6 and RPL routing protocols, indicating that
IoT systems using IPv6 face network instability. Hyung-Sin Kim et al. [20] review the
history of research efforts in RPL and present a topic-oriented survey, pointing out that
load balancing, which has the potential to cause the death of resource-constrained devices,
is a crucial and practical issue of RPL. Ioana Livadariu et al. [21] presented a measurement
study of IPv6 stability and performance measurements compared with IPv4 from the
control and data plane, indicating that the IPv6 routing system is less stable than IPv4.
Gu-Hsin et al. [22] propose a distributed RPL-based wormhole detection mechanism, while
the wormhole attack that threatens the network availability by disturbing routing paths
is one of the most common attacks on sensor networks. Daniel G. Waddington et al. [23]
presents Atlas, a system that facilitates the automated capture of IPv6 network topology
information, and encountered some network phenomena in their experiments such as
varied router responsiveness and unstable routing.

These existing efforts have the potential to benefit from the output of path recovery
for more accurate results and better performance. Meanwhile, the topological dynamics
resulting from these aforementioned phenomena and the large number of devices that
IPv6 itself represents access to make existing path recovery methods face performance
bottlenecks. Unlike previous path recovery strategies, our work records the association
information of nodes on similar paths with less overhead and adjusts the observation
window size with node activity, which makes it possible to cope well with larger and more
complex network situations.
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Table 1. Literature Review on Path Reconstruction Algorithms.

Algorithm Year Overhead Key Idea Limitation

cPathST [19] 2019 8B Exploits compression-aware techniques and
path correlations Not suitable for networks with inactive nodes

RTI [18] 2019 12B
Exploits packet tracing and local probing to
reconstruct the route path

(1) Sensitive to nodes fails
(2) High storage overhead

PAT [17] 2017 11B Exploits path compression and correlations (1) Initialization phase to reconstruct the
network topologies are needed
(2) High storage overhead

iPath [12] 2016 6B Exploits path correlations Not suitable for networks with inactive nodes

CSPR [13] 2016 8B Exploits compression-aware technique (1) Not suitable for dynamic networks
(2) Not suitable for networks with
inactive nodes

Pathfinder [24] 2015 9B Exploits path correlations and inconsistency
of packets Not suitable for sparse networks

INS-
RTR [25] 2015 11B Exploits path correlations (1) Not suitable for networks with

inactive nodes
(2) High storage overhead

PathZip [14] 2014 8B
Exploits path compression with
topology-aware and
geometry-assistant techniques

(1) Sensitive to nodes fails
(2) High storage overhead

MNT [16] 2012 6B Exploits path correlations Not suitable for networks with inactive nodes

3. System Model and Problem Statement
3.1. Network Model

We assume that in the multihop RPL wireless sensor network, n nodes form a set
N that are fixed in a square region with side length L. Among them, N1, located in the
rectangular area’s center, is a sink node (i.e., gateway node or base station) with adequate
computing resource and energy, which collects data from other nodes and is responsible for
maintaining the network. The remaining n− 1 resource-constrained sensor nodes denoted
as N2, N3,. . . , Nn are randomly scattered in this square region, as shown in Figure 1.
During the initialization of the network, a sink node will assign a unique identifier to every
sensor node, represented by a two-byte ID. All nodes have a fixed and limited transmission
range TL.

In each collection cycle, the probability Pactive indicates that a sensor node is active,
and the probability Pf ault means that a sensor node temporary fails. Whether individual
sensor nodes are active or not is a mutually independent event, and an active sensor node
sends packets as well as receives packets from others themselves. The failure of each sensor
node is also independent of each other, and when a sensor node fails, it is unable to perform
the activities of sending, forwarding, and receiving packets.

In this network model, point-to-point traffic (between devices inside the sensor net-
work), point-to-multipoint traffic (from the sink node to a subset of sensor nodes), and
multipoint-to-point traffic (from nodes inside the sensor network towards the sink node)
are supported. Taking point-to-point traffic as an example, the shortest path from sensor
node Ni to sink node and then from sink node to sensor node Nj without passing through
the faulty node constitutes the routing path as shown in Figure 2. Where we assume that
the upstream routing from sensor node Ni to sink node and the downstream routing from
sink node to sensor node Ni are mirrored, i.e., the reverse path of the path from sensor
node Ni to sink node is the path from sink node to the sensor node Ni. As mentioned in
several studies [26–28], it is assumed in RPL that the links are symmetric and that both
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directions of the links are connected. Then, the paths consisting of symmetric links have
the reasonableness of symmetric assumption.
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Figure 1. The distribution of network nodes.
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Figure 2. The routing path from sensor node Ni to sensor node Nj through the sink node.

All routing paths in each collection cycle constitute the topology of the network as
shown in Figure 3. It is assumed that the next hop sent by the sensor node to the sink node
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in the upstream routing is fixed, i.e., the path from any source node to the destination node
in the cycle is unique if it exists.
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Figure 3. The topology of the network in a collection cycle.

3.2. Problem Statement

In the path recovery problem, a sequence consisting of the source node, the relay
nodes, and the destination node for the successfully delivered packet k, denoted as path(k),
is supposed to be recovered. Since path(k) goes through the sink node, it can be split into
two subsequences, i.e., the upstream routing path uppath(k), which comes from the source
node to the sink node, and the downstream routing path downpath(k), which is from the
sink node to the destination node.

It is the upstream routing of all packets that ought to be recovered since it has been
assumed that the upstream and downstream routing paths are mirrored and the active
nodes in each collection cycle both send and receive packets. For example, as shown in
Figure 4, in a certain collection cycle, while path(k) denotes the path of packet k sent from
node Ni to node Nj and path(k′) denotes the path of packet k′ sent from node Nj to node
Ni, those two paths just form a pair of inverse order. Then, when working on path recovery
at the sink node, it is only necessary to recover the path uppath(k) from node Ni to sink
node and the path uppath(k′) from node Nj to sink node, respectively, to obtain path(k)
and path(k′). After that, path(k) is the concatenated sequence of uppath(k) and the reverse
order of uppath(k′).

Our goal is to correctly recover as many paths of all packets as possible for a continuous
collection period. This goal, furthermore, can be translated into recovering the uplink
routing path of the packets to the side of sink node as much as possible.
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(a) (b)

Figure 4. An example of mirrored point-to-point traffic. (a) Up-path and downpath. (b) Inverse
order paths.

In each packet k, some information that will be recorded by the sink node and used in
our path recovery algorithm is as follows:

• The source node o(k) and destination node d(k). These can be retrieved by the sink
node based on the IPv6 address of the packet header, not requiring additional space
overhead for the packet.

• The parent node p(k) and grandparent node g(k). The parent node p(k) is the next
hop of the source node, and the grandparent node g(k) is the next hop of p(k). To
record the IDs of p(k) and g(k), an extra 4B of space is needed for a packet. The default
values of p(k) and g(k) are empty. When the forwarder is the parent or grandparent
node of the source node, its ID will be written into the corresponding field.

• The hash value of the upstream path of packet k is denoted as h(k). It also refers to
hash(N1, N2, ..., Sink) where (N1, N2, ..., Sink) represents a series of nodes ID. We set a
hash function to identify an upstream path, which requires additional 2B space for a
packet. Each node forwards packet k with a small computational overhead to update
the h(k), and the final h(k) received by the sink node is the hash value that records
an entire upstream path. The packets with the same hash value can be considered as
going through the same path.

• The length of the uplink path, denoted as len(k). This can be inferred from the Hop
Limit of the IPv6 header without the additional space overhead of the packet.

• The timestamp t(k). This can be inferred from the packet arrival time to which
the packet belongs to the collection cycle, without the additional space overhead of
the packet.

The performance of the path recovery algorithm can be measured by two metrics:
Accuracy and GainLossRatio:

• Accuracy. We define the Accuracy of the path recovery problem as:

Accuracy =
NumcorrectRecovery

Numreceived
, (1)

where Numreceived denotes the number of all successfully communicated packets, and
NumcorrectRecovery denotes the number of all correctly recovered packets whose paths
were correctly recovered. The purpose of path recovery is to improve the Accuracy as
much as possible.
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• Gain Loss Ratio. The meaning of this metric is how many bytes of gain we can
exchange for one byte of overhead, which is defined as:

Gain Loss Ratio =
Gain
Loss

, (2)

where

Gain =
Numreceived

∑
i=1

CID × Leni × Ri, (3)

and
Loss = Overhead× Numgenerate. (4)

The CID is the number of bytes occupied by a node ID, i.e., 2 bytes in our network
model, and Leni is the path length of the packet i. The Ri ∈ {0, 1} is an indicator
variable of the packet i where Ri = 1 means the packet path was correctly recovered,
while Ri = 0 means the packet path does not exist or has not been recovered correctly.
The Overhead is the extra overhead added to each packet for path recovery in this
algorithm. As seen in the previous section, the overhead is 6 bytes in our network
model, including 2 bytes for the parent node ID, 2 bytes for the grandparent node ID,
and 2 bytes for the hash value. Numgenerate represents the packets generated by all
active nodes, although some source nodes could not be successfully communicated to
the destination node due to a failure of the original route node, which is limited by
the transmission distance.

4. Design of LiPa
4.1. Solution Overview

Our proposed algorithm consists of two parts, i.e., path information encoding during
packet delivery and path recovery of the received information at the server-side.

During packet delivery, the information required for path recovery is passed along the
uplink path from the source node to the sink node. The information needed in packet k
is as follows: the source node o(k) and the destination node d(k), which can be looked up
by the sink node based on the IP address in the IPv6 header; the length of the uplink path
len(k); the timestamp t(k), which can be directly inferred from the IPv6 header; and three
additional data—the parent node p(k) and grandparent node g(k) combined with the hash
of the uplink path h(k).

For the parent node, p(k), it will take 2 bytes of the packet space to store the ID of the
parent node. We specify that when a forwarder finds p(k) empty in a packet, the forwarder
is the parent node and will write its ID into p(k). For the grandparent node g(k), the space
of 2 bytes of the packet is occupied to store the ID of the grandparent node. Analogously,
when p(k) is not empty and g(k) is empty, the forwarder is the grandparent node and
needs to write its ID to g(k). Note that once p(k) or g(k) are filled in, their value will not
be changed. In addition, if the parent node or grandparent node is already a sink node,
the corresponding value will be all zeros. For the upstream path h(k), 2 bytes of overhead
is used to store the hash value of the route, which is continuously updated during the
transmission. Starting from the source node, for each node of such an upstream route, they
update the hash value by the following functions [12]:

hi(k) = hi−1(k)⊕ f ID(i) (5)

based on their ID value, where

f ID(i) = (ID× α << dlog2 IDe) mod 2m, (6)

h1(k) = f ID(1). (7)
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We set m = 16, i.e., the number of bits occupied by this hash is 16, and the space size is
2 bytes. Note that LiPa is used to extract the full path information by measurements of the
packet traces. It works independently from the routing protocols. The 6 bytes overhead,
i.e., the p(k), g(k), and h(k) fields, are directly appended to the packet to participate in the
transmission, rather than an additional packet being routed through to recover the path.

For server-side information processing, the above packet information is used for uplink
path recovery within the sliding observation window to recover the point-to-point routing
path through the mirroring feature. Specifically, the required information mentioned above
is recorded when the packet arrives at the sink node through the uplink; then, the packet is
forwarded following the downlink to the destination node. We set a sliding window of the
following size:

τ = [
1

Ratioactive
], (8)

where Ratioactive is the proportion of active nodes in the network. At time t, the sink node
will recover all packets’ paths in the period [t− τ, t]. For path recovery within this sliding
window, the possible correlations in different paths are explored, starting from the short
one-hop and two-hop paths based on the information of the parent and grandparent nodes
and then iteratively solving for more unknown paths. To ensure whether the recovered
paths are correct, the hash value of the uplink is needed.

During the running of system, the operation of LiPa is divided into two operation
parts. (1) For sensor nodes, the information encoded during packet delivery is updated
by every forwarder, and their IDs are attached to headers when they work as the first-hop
or second-hop forwarder of a packet. (2) For the sink node which collects packets from
all sensor nodes, the received packet information can be merged to perform the recovery
algorithm in the style of online (real-time) or offline.

4.2. Path Correlation Inference

The core operation of path recovery lies in the correlation inference of paths. The
question we want to answer is whether two paths are correlated? What kind of correlations
exists? How can we use such a correlation to recover an unknown path?

Algorithm 1 answers these questions above. For a packet i whose path is unknown
and a packet k whose path is known already, the algorithm examines whether a correlation
exists between the two paths. If it does, it uses the path(k) of packet k to recover the path(i)
of packet i. The different correlations and the corresponding methods of path recovery are
summarized in the following cases.

The following examples will describe different correlation and path recovery methods.
Case 1: When len(i) of packet i is two hops longer than len(k) of packet k, the sink

will check whether the grandpa node g(i) of packet i is the source node o(k) of packet k.
If it is, path(i) is the combination of o(i), p(i), and path(k). To avoid the error of path(k)
making the path(i) is also recovered incorrectly, it is necessary to evaluate whether the
hash value h(i) is equal to hash(o(i), p(i), path(k)). This recovery path can be assigned to
path(i) if equal. The example is given in Figure 5a: In a collection cycle, node K generates
packet K1, and node A generates packet A1. Since K is the grandpa node of A, path(K1)
with path (K, G, H, I) can be used to recover path(A1), i.e., path(A1) = (A, B, K, G, H, I).

Case 2: When len(i) is one hop longer than len(k), the sink will determine whether
p(i) is equal to o(k). If so, path(i) is the combination of o(i) and path(k). Similarly, once h(i)
is equal to hash(o(i), path(k)), this recovery path can be assigned to path(i). The example is
given in Figure 5b: In a collection cycle, node K generates packet K1, and node B generates
packet B2. Since K is the parent node of B, path(K1) with path (K, G, H, I) can be used to
recover path(B2), i.e., path(B2) = (B, K, G, H, I).



Electronics 2022, 11, 1220 10 of 17

Algorithm 1 The Recovery Core Algorithm.

Require: k: a packet whose path has been recovered;
i: a packet whose path is unknown;

Output: True or False: whether packet k can be used to recover the path of packet i;
1: if len(i)− len(k) /∈ {2, 1, 0,−1} then
2: return False
3: end if
4: if len(i)− len(k) ≡ 2 then
5: if g(i) ≡ o(k) and h(i) ≡ hash(o(i), p(i), path(k)) then
6: path(i)← (o(i), p(i), path(k)) //Case 1
7: return True
8: end if
9: else

10: if len(i)− len(k) ≡ 1 then
11: if p(i) ≡ o(k) and h(i) ≡ hash(o(i), path(k)) then
12: path(i)← (o(i), path(k)) //Case 2
13: return True
14: else
15: if g(i) ≡ p(k) and h(i) ≡ hash(o(i), p(i), path(k)− o(k)) then
16: path(i)← (o(i), p(i), path(k)− o(k)) //Case 3
17: return True
18: end if
19: end if
20: else
21: if len(i)− len(k) ≡ 0 then
22: if p(i) ≡ p(k) and h(i) ≡ hash(o(i), path(k)− o(k)) then
23: path(i)← (o(i), path(k)− o(k)) //Case 4
24: return True
25: else
26: if g(i) ≡ g(k) and h(i) ≡ hash(o(i), p(i), path(k)− o(k)− p(k)) then
27: path(i)← (o(i), p(i), path(k)− o(k)− p(k)) //Case 5
28: return True
29: end if
30: end if
31: else //len(i)− len(k) ≡ −1
32: if p(i) ≡ g(k) and h(i) ≡ hash(o(i), path(k)− o(k)− p(k)) then
33: path(i)← (o(i), path(k)− o(k)− p(k)) //Case 6
34: return True
35: end if
36: end if
37: end if
38: end if
39: return False

Case 3: When len(i) is one hop longer than len(k), there is another possibility that
g(i) is equal to p(k). In this case, path(i) is the combination of o(i), p(i), and the part of
path(k) that removes o(k). If h(i) is equal to hash(o(i), p(i), path(k)− o(k)), this recovery
path can be assigned to path(i). An example is given in Figure 5c: In a collection cycle,
node K generates packet K1, and node C generates packet C3. Since the grandparent node
of C and the parent node of K are both G, path(K1) with path (K, G, H, I) can be used to
recover path(C3), i.e., path(C3) = (C, D, G, H, I).
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The correlations of paths. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

Case 4: When len(i) is equal to len(k) and p(i) is equal to p(k), path(i) is the combina-
tion of o(i) and the part of path(k) that removes o(k). If h(i) is equal to hash(o(i), path(k)−
o(k)), this recovery path can be assigned to path(i). The example is given in Figure 5d: In a
collection cycle, node K generates packet K1, and node D generates packet D4. Since the
parent node of D and the parent node of K are both G, path(K1) with path (K, G, H, I) can
be used to recover path(X4), i.e., path(D4) = (D, G, H, I).

Case 5: When len(i) is equal to len(k), another possibility is that g(i) and g(k) are
the same. In this case, path(i) is the combination of o(i), p(i), and the part of path(k) that
removes o(k) and p(k). Similarly, this recovery path can be assigned to path(i) if h(i) is
equal to hash(o(i), p(i), path(k) − o(k) − p(k)). The example is given in Figure 5e: In a
collection cycle, node K generates packet K1, and node E generates packet E5. Since the
grandpa node of E and the grandpa node of K are both H, path(K1) with path (K, G, H, I)
can be used to recover path(E5), i.e., path(E5) = (E, F, H, I).

Case 6: When len(i) is one hop less than len(k), path(i) is the combination of o(i) and
the part of path(k) that removes o(k) and p(k) if p(i) is equal to g(k). Then, this recovery
path can be assigned to path(i) after determining that h(i) is hash(o(i), path(k)− o(k)−
p(k)). An example is given in Figure 5f: In a collection cycle, node K generates packet
K1, and node F generates packet F6. Since the parent node of F and the grandparent
node of K are both H, path(K1) with path (K, G, H, I) can be used to recover path(F6), i.e.,
path(F6) = (F, H, I).

4.3. Iterative Path Recovery

The proposed LiPa will iteratively use the known paths to recover unknown paths
until no more paths can be recovered.

Algorithm 2 gives the complete flow of this algorithm. At moment t, the sliding
window [t − τ, t] is used as the observation interval. The input is two sets, Pinit and
Punknown. Since the packets record the parent and grandpa nodes, Pinit is formed by
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packets whose path length is one or two hops, while the rest of the packets have unknown
form Punknown. The packets with unknown paths will try to recover unknown paths
according to the path correlation inference given in Algorithm 1. The algorithm terminates
when no more unknown paths or no more paths can be recovered. The output is the packets
with recovered paths.

Algorithm 2 The Lightweight Path Recovery Algorithm.

Require: Pinit: a set of packets during [t− τ, t] whose paths have been recovered;
Punknown: a set of packets during [t− τ, t] whose paths are unknown;

Output: Pknown: a set of packets during [t− τ, t] whose paths are recovered;
1: Pknown ← Pinit
2: while Punknown 6= {} do
3: Plearn ← Pknown
4: for each packet k ∈ Pknown do
5: for each packet i ∈ Punknown do
6: if RecoveryCore(k, i) ≡ TRUE then // Recalling the Algorithm 1
7: Plearn ← Plearn ∪ i
8: Punknown ← Punknown − i
9: end if

10: end for
11: end for
12: if Plearn ≡ Pknown then
13: Break
14: end if
15: Pknown ← Plearn
16: end while

Time complexity analysis. We set the number of nodes to be N, the Ratioactive to be α,
α ∈ [0, 1], and the window size to be τ. For Algorithm 1 (i.e., The Recovery Core Algorithm),
its complexity is O(Alg.1) = O(1), due to it consisting of up to seven operations of if-then-
else-then. For Algorithm 2 (i.e., The Lightweight Path Recovery Algorithm), the basic
operation is to call Algorithm 1. As all active nodes will send packets, and the number of
packets at each time slot is α× N. The window size τ = [ 1

α ] for path recovery is obtained
from Equation (8), so the total number of packets in the time interval [t− τ, t + τ] is N,
which consists of Pinit and Punknown. The algorithm’s complexity for Lines 4–11 in
Algorithm 2 is obtained as O(N2). Since packet k with len(k) is able to recover packet i
with len(i) ∈ [len(k)− 1, len(k) + 2] and the algorithm terminates when no more path can
be recovered, the executed times of the whole loop can be considered as N. Therefore, the
total complexity of the LiPa algorithm is O(N3).

The characteristic of this algorithm is that, for an unknown path of packet k at time t,
all known paths in the time interval [t− τ, t + τ] will try to recover using correlation, which
makes the search space of the problem expand. The setting of τ, as given in Equation (8),
keeps the computational effort at a suitable level.

5. Performance Evaluation and Analysis

Based on a series of simulations, this section compares the performance of LiPa with
two state-of-the-art approaches, iPath [12] and CSPR [13], to analyze the effectiveness and
efficiency of our proposal in different network environments.

5.1. Evaluation Setup

Our simulation experiments are performed on Matlab, conducted in a 1000 × 1000 m2

field. The sink node is located in the center of this field, and the sensor nodes are randomly
distributed. The maximum transmission range of each node is 100 m. The number of nodes
varies from 100 to 500, the active ratio of nodes (i.e., the percentage of nodes generating
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packets) varies from 10% to 100%, and the percentage of fault nodes is set to 2.5%, 5%, 7.5%,
or 10%.

The Accuracy is defined as
NumcorrectRecovery

Numreceived
× 100%, reflecting the effectiveness of the

path recovery algorithm. The Gain–Loss Ratio is defined as Gain
Lost × 100%, which reflects the

tradeoff between the overhead and the benefit of the path recovery algorithm.
We compare LiPa with the iPath and CSPR algorithms. iPath utilizes the information

of the parent node carried by packets and the hash value identifying the path in a collection
cycle, recovering the routing path by correlating the paths between different packets. CSPR
employs a compression sensing technique, allowing each packet to carry partially encoded
information, then collects and decodes information of path recovery in the multi-collection
cycles to obtain the routing paths.

5.2. Performance Improvement Analysis

Our proposed LiPa algorithm has two features compared to other existing works: On
the one hand, it adds the information of grandparent nodes in addition to that of parent
nodes. On the other hand, it utilizes the information of multiple collection cycles instead of
the present cycle only. Therefore, we specifically analyze the effect of these two features on
the performance improvement of the LiPa algorithm separately. To this end, two variation
of LiPa are introduced:

LiPa-S mainly leverages the spatial information of the parent and grandparent nodes
but sets τ = 0, i.e., the LiPa algorithm with a sliding window size of 1. Without the
temporal information of multiple collection cycles, this variation is introduced to verify the
effectiveness of the adaptive sliding window of LiPa.

LiPa-T mainly uses the temporal information of the sliding window size of τ =
[ 1

Ratioactive
] but only records the information of the parent node, i.e., the LiPa algorithm with

only two path relevance cases, case 2 and case 4, mentioned in Section 4. Without sufficient
spatial information, we can observe the performance improvement of LiPa by appending
the grandpa node’s information, thus adding the other four possible path correlations cases
mentioned in Section 4.

Figure 6 shows the accuracy of LiPa-S, LiPa-T, and LiPa in different network scenarios.
As shown in Figure 6a, when the number of nodes is 300, and the percentage of fault
nodes is 5%, the accuracy of the 3 LiPa algorithms improves as the active ratio of nodes
changes, and LiPa’s accuracy is consistently higher than LiPa-S and LiPa-T. The accuracy
improvement of the LiPa algorithm over LiPa-S is 33% on average and up to 78%. The
accuracy improvement of the LiPa algorithm over LiPa-T reaches an average of 19% and
34% at the most. As shown in Figure 6b, when the percentage of fault nodes is 5%, and
the active ratio of nodes is 30%, the accuracy of the 3 LiPa algorithms decreases as the
number of nodes changes, but the accuracy of LiPa is still consistently higher than that of
LiPa-S and LiPa-T. The accuracy improvement of the LiPa algorithm over LiPa-S reaches an
average of 55% and a maximum of 62%. The accuracy improvement of the LiPa algorithm
over LiPa-T reaches an average of 19% and 25% at most. As shown in Figure 6c, when the
number of nodes is 300, and the active ratio of nodes is 30%, the accuracy of the 3 LiPa
algorithms decreases as the percentage of fault nodes changes, but the accuracy of LiPa
is still consistently higher than that of LiPa-S and LiPa-T. The accuracy improvement of
the LiPa algorithm over LiPa-S is 59% on average. The accuracy improvement of the LiPa
algorithm over LiPa-T is the highest, reaching an average of 26%. These results are because
both LiPa-S and LiPa-T are neutered versions of LiPa, drawing only one of the two features
of LiPa.

We can conclude that: (1) From the difference between LiPa and LiPa-S, our practice
of setting an observation window can improve the performance by about 50% on average.
(2) From the gap between LiPa and LiPa-T, our practice of appending grandparent nodes
can improve the performance by about 20% on average. (3) In combination, the perfor-
mance improvement from setting observation windows is more significant than appending
grandparent nodes.
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(a) (b) (c)

Figure 6. The Performance Improvement of LiPa. (a) Accuracy with varying number of nodes.
(b) Accuracy with varying active ratio of nodes. (c) Accuracy with varying percent of fault nodes.

5.3. Comparison of the Accuracy

Figure 7 demonstrates the accuracy of the three algorithms in different network
scenarios. As shown in Figure 7a, when the number of nodes is 300, and the percentage
of fault nodes is 5%, the accuracy of the 3 algorithms improves as the active ratio of the
nodes changes. This is because, with the active ratio of the nodes increasing, the more
packet information the algorithm can utilize, the more beneficial it is to path recovery. The
accuracy of the LiPa algorithm is consistently higher than iPath and CSPR, improving by
over 30% on average. As shown in Figure 7b, when the percentage of fault nodes is 5% and
the active ratio of the nodes is 30%, the accuracy of LiPa and CSPR is stable, while iPath
decreases as the number of nodes changes. This is because the higher the number of nodes,
the more complex the network topology is. iPath has a specific performance bottleneck by
using only the path correlations at that moment. In contrast, LiPa and iPath can use the
information for longer time durations to solve the complex topology. The accuracy of LiPa
is still consistently higher than that of the other 2 algorithms, improving by over 50% on
average compared with iPath and over 20% on average compared with CSPR. As shown
in Figure 7c, when the number of nodes is 300, and the active ratio of nodes is 30%, the
accuracy of the 3 algorithms decreases as the percentage of fault nodes changes. This is
because the more fault nodes there are, the more dynamic the network topology is and the
more difficult it is to recover the path. The accuracy of LiPa is still consistently higher than
that of iPath and CSPR, improving by over 55% on average compared with iPath and by
over 35% on average compared with CSPR.

We can conclude that LiPa consistently outperforms iPath and CSPR in the above net-
work scenarios. The reason for this is that LiPa takes similar features of both iPath and CSPR
and makes further enhancements. On the one hand, both LiPa and iPath have the idea of
path correlation. Still, LiPa uses the information of parent and grandparent nodes to extend
the possible cases of correlation, using the information of a sliding window to perform path
recovery. On the other hand, both LiPa and CSPR utilize temporal information, but LiPa
processes this information by path correlations rather than compression-aware methods.
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(a) (b) (c)

Figure 7. Comparison of the Accuracy: (a) Variation in accuracy rate with different node activity;
(b) Variation in accuracy rate with the number of nodes; (c) Variation in accuracy rate with the different
node failure rate.

5.4. Comparison of the Gain–Loss Ratio

Figure 8 compares the gain–loss ratio of the three algorithms in different network
scenarios. The gain–loss ratio is a composite performance metric that reflects the ratio of the
gain (i.e., the numerical metric of correctly recovered paths) to the overhead (i.e., the sum
of the additional storage overhead used for recovery), which is defined in Equations (2)–(4).
In other words, this measurement covers not only the accuracy but also the length of the
recovered path and overhead. A larger gain–loss ratio for an algorithm means that it has a
higher accuracy or a smaller overhead, or both.

As shown in Figure 8a, when the number of nodes is 300, and the percentage of fault
nodes is 5%, the gain–loss ratio of the 3 algorithms improves as the active ratio of nodes
changes. The overhead of the three algorithms is constant individually, so their accuracy
determines the trend of their respective gain–loss ratios. The gain–loss ratio of LiPa grows
in a high range because its accuracy rate also grows in an increased range. CSPR’s gain–loss
ratio grows to a certain point and remains stable because CSPR’s accuracy has stabilized
when the node activity rate is more significant than 50%. Furthermore, the accuracy of the
LiPa algorithm is consistently higher than iPath and CSPR. The difference among their
gain–loss ratios is affected by both accuracy and overhead. Among them, LiPa and iPath
have smaller overheads, requiring only 6 bits of extra overhead per packet. However,
CSPR, with low accuracy, has an extra overhead of 8 bits per packet, which makes its
gain–loss ratio much lower than the other two algorithms. As shown in Figure 8b, when
the percentage of fault nodes is 5%, and the active ratio of nodes is 30%, the gain–loss ratios
of the 3 algorithms start fluctuating after improving to a certain level. Their respective
accuracy rates influence this. Meanwhile, the gain–loss ratio of LiPa is still consistently
higher than that of the other two algorithms. Among them, LiPa’s higher gain–loss ratio
than iPath is due to its higher accuracy rate, and LiPa’s higher gain–loss ratio than CSPR is
due to the former’s higher accuracy rate and its more negligible overhead. As shown in
Figure 8c, when the number of nodes is 300, and the active ratio of nodes is 30%, LiPa and
iPath are more stable, while CSPR has a specific downward trend, which is also influenced
by their individual accuracy rates. Moreover, the gain–loss ratio of LiPa is still consistently
higher than that of iPath and CSPR. For similar reasons, in this network scenario, LiPa has
higher accuracy than iPath and CSPR while having a lower additional overhead than CSPR.

We can conclude that: LiPa’s gain–loss ratio consistently outperforms iPath and CSPR
in the above network scenarios. This is because, on the one hand, LiPa’s higher accuracy
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rate leads to more significant gains; on the other hand, LiPa’s overhead is not larger than
CSPR and iPath. Thus, the higher gain ratio of LiPa is reflected.

(a) (b) (c)

Figure 8. Comparison of the Gain–Loss Ratio: (a) Variation in the gain–loss ratio with different node
activity; (b) Variation in the gain–loss ratio with the number of nodes; (c) Variation in the gain–loss
ratio with the different node failure rate

6. Conclusions

In this paper, we propose a lightweight path recovery algorithm in a dynamic network,
namely, LiPa. Based on the path correlation inference in the network topology, LiPa
reconstructs the routing path of each packet within a sliding window that varies according
to the activity the ratio of nodes. The distinctive feature of LiPa is that the path recovery is
performed in two dimensions: temporal information and spatial information. We analyze
the performance improvement effect of both dimensions of LiPa and compare it with two
related approaches. The experimental results show that LiPa exhibits superior performance
in different network settings.

For the limitations, the system model denotes the target scenario of our work is a
wireless sensor network (WSN) with fixed-location nodes. The proposed LiPa cannot be
appropriately applied in mobile networks (e.g., vehicular networks, UAV networks) whose
path correlations are weak and frequently change due to the movement of nodes.

In future work, an asymmetric network with RPL routing should be further exploited.
The uplink and downlink routing is assumed to be symmetric in our present work. How-
ever, when this assumption is not satisfied, both the uplink and downlink paths should be
reconstructed for point-to-point path recovery.
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