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Abstract: This paper is concerned with the adaptive neural network (NN) partial tracking control
problem for a class of completely unknown multi-input multi-output (MIMO) singularly perturbed
nonlinear systems possessing time-varying asymmetric state constraints. To satisfy the constraints,
we utilize the state-depended transformation technique to convert the original state-constrained
system to an equivalent unconstrained one, then the state constraint problem can be solved by
ensuring its stability. Partial state tracking can be achieved without the violation of state constraints.
The adaptive tracking controllers are designed by using singular perturbation theory and the adaptive
control method, in which NNs are used to approximate unknown nonlinear functions. The ill-
conditioned numerical problems lurking in the controller design process are averted and the closed-
loop system stability can be guaranteed by introducing an appropriate Lyapunov function with
singular perturbation parameter. Finally, a practical example is given to demonstrate the effectiveness
of our proposed adaptive NN tracking control scheme.

Keywords: adaptive control; neural network; state constraints; singularly perturbed nonlinear
uncertain systems

1. Introduction

It is well known that many practical industrial systems exhibit both slow and fast
phenomena at the same time due to the existence of some tiny parasiti parameters, for in-
stance, small time constants, masses, resistances, voltage regulators, capacitances, and so
on [1–5] which can be accurately modeled by two-time-scale systems, and are also named
as singularly perturbed systems (SPSs). Vising using a so-called singular perturbation
parameter (SPP) ε to distinguish two-time-scale behavior, the states of the original SPSs are
divided into slow and fast states. Nevertheless, the ill numerical conditioned properties
in SPSs leads to stiffness and unwieldiness into controller synthesis and stability analy-
sis in the feedback designs for SPSs. A critical research problem is how to eliminate or
alleviate the effect generated by SPP, which has drawn significant attention in the recent
years, with fruitful results available. The decentralized control method for multi-agent
linear SPSs was provided in [6], where the synchronization problem of networks of lin-
ear SPSs was rewritten as stabilization of uncertain linear SPSs to reduce the associated
energy and the communication load. The suboptimal control strategy for nonlinear SPSs
with known fast-subsystems was investigated in [7], in which it was innovative to the
suboptimal performance of the considered systems without having any knowledge of the
system. An adaptive dynamic programming scheme is designed for linear SPSs, whose
slow-subsystems are unknown [8]. The tracking control of nonlinear SPSs with model
errors and exogenous disturbances was established by using the sliding mode scheme
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in [4]. The inverse optimal synchronization for SPSs with constant time delays was studied
in [9]. The fixed-time stabilizing problem of linear SPSs in continuous time domains was
investigated in [10], based on the event-triggered mechanism. It should be pointed out that
the main method utilized in the control of SPSs above is based on decomposing the original
plant into a slow-subsystem and a fast-subsystem (a boundary-layer subsystem). However,
the aforementioned idea is mainly confined to linear SPSs or standard singular perturbation
model. Unfortunately, for SPSs with highly complex nonlinearities and strong couplings, it
is hard to decompose them into slow-subsystems and fast-subsystems and thus it is gener-
ally not applicable to industrial systems. To overcome this issue, the methods on the basis
of Takagi-Sugeno (T-S) fuzzy models [11–16] and neural networks (NNs) [17–19] have been
suggested as an effective treatment. Using T-S fuzzy methods, the H∞ control for fractional-
order SPSs in the presence of external disturbance and matched uncertainties based on
sliding mode control method in [20]. Cheng et al. [11] presented the output-feedback con-
trol approach for discrete-time SPSs based on a novel stochastic communication protocol
to solve the problems with the communication and the reliability of signal transmission.
Liu et al. [15] investigated the continuous-time slow-fast coupled model with known fast
dynamics and a suboptimal control problem for continuous-time slow-fast coupled systems,
given a composite suboptimal controller based on reinforcement learning and T-S fuzzy
methods, using them with a permanent-magnet synchronous motor. When the nonlinear
SPSs are partially or completely unknown, the approaches perform poorly. To overcome
such an issue, multi-time scales NNs were used to identify uncertain SPSs [17–19]. In the
above-mentioned identifiable framework of multi-time scales NNs, a nonlinear adaptive
observer and an optimal controller of uncertain nonlinear SPSs with input constraints were
presented in [21]. Fu et al. conducted adaptive optimal control for uncertain nonlinear
SPSs [22]. To improve the learning rate of multi-time scales NNs, Zheng et al. proposed a
modified optimal bounded ellipsoid algorithm for training the weights of multi-time scales
NNs during the identification process for nonlinear SPSs [23–25]. It should be noted that
these results are restricted to SPSs without the consideration of constraints.

On another research front, the output constraints and state constraints exist ubiqui-
tously in physical systems, for instance, in active suspension systems, robotic systems,
chemical plants, and so on. The low control performances will be acquired, that is, these sys-
tems are unstable and even both human operator and the process itself will be threatened if
predefined constraints of these systems are transgressed. Since then, many important and
effective strategies were proposed to handle constraint problems, involving extremum seek-
ing control [26], optimal control, model predictive control [27], and reference governors [28].
In the meantime, both theoretical proof and engineering practice have already proved that
barrier Lyapunov function (BLF) is an extremely valid way to handle constraints [29,30].
Very recently, abundant valuable and remarkable results have emerged with the help of
BLF [31–35]. For instance, based on time-varying asymmetric BLFs, Liu et al. [32] have
addressed the issues of adaptive tracking controller design for unknown strict-feedback
systems possessing full-state constraints. Following BLFs approach, Ref. [33] designed a
tracking controller for active suspension systems with an unknown car body mass subject
to vertical displacement and speed time-varied constraints. Assisted by estimating immea-
surable states through adaptive NNs state observer, an optimal output feedback control
for unknown system was proposed to achieve the full state constraints in [35].Compared
with aforementioned logarithmic type BLF, the tangent-BLF based controller needs less
control effort and simultaneously achieves good control performance in a closed-loop
system [36–38]. For example, taking the restriction of matching conditions and uncertain
nonlinear functions into account, ref. [36] has addressed the time-varying tangent-BLFs
for stochastic nonlinear systems with the adaptive backtracking technique. A drawback
of the above state/output constraints is that original constrains must be mapped into
new constraints on the error. To overcome the conservative limitation in traditional BLFs,
integral barrier Lyapunov functions (iBLFs) were proposed for nonlinear systems under
unknown gain functions [39], immeasurable state [40], and stochastic uncertain systems
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possessing state constraints [41]. The time-varying IBLFs were further established to deal
with the state constraints issues [42]. However, the current BLF-based or iBLF-based control
results make requests for the feasibility conditions on virtual control gain, that is, the virtual
control as well as its derivative must be assumed to satisfy certain bounds before stability
analysis for the closed-loop system is given, which poses a significant challenge for the
design and implementation for the corresponding control strategy [43]. To alleviate such a
restriction, a state-dependent system transformation method was developed for nonlinear
systems subject to state/output constraints [44–47].

Motivated by the above discussion, taking full-state constraints and prescribed per-
formance into consideration, we will address partial tracking and stability analysis for
uncertain nonlinear SPSs. Then, an intractable issue is naturally raised: can we achieve
partial tracking control for uncertain nonlinear SPSs subject to full-state constrains without
feasibility conditions?

The main contributions are summarized as follows.

1. For uncertain nonlinear SPSs, the design and analysis for both state constrained and
performance prescribed cases are considered, which have never occurred in other
studies on state/output constraints [44,46];

2. Compared with [34,37,38], the adaptive NN controller is proposed to handle both
full-state constraints and partial tracking by using the state-dependent system trans-
formation method without the feasibility conditions on virtual control gain;

3. An appropriate Lyapunov function with singular perturbation structure is established
to prove the system stability. The lurking ill-conditioned numerical problems in the
feedback control is prevented.

2. Problem Formulation and Preliminaries
2.1. System Descriptions

We consider the following MIMO continuous-time completely unknown SPSs:{
E(ε)ẋ = F(x) + G(x)u

y = x
(1)

where E(ε) = [In1×n1 0; 0 εIn2×n2 ] ∈ Rn×n(n1 + n2 = n), 0 < ε < 1 represents the SPP,
x = [xT

s , xT
f ] ∈ Rn is the states of the SPS nonlinear, where xs and x f denotes “slow” and

“fast” system state, respectively, F(x) = [Fs(x); Ff (x)] ∈ Rn and G(x) = [Gs(x); G f (x)] ∈
Rn×n are smooth but completely unknown nonlinear functions with F(x) containing all the
modeling uncertainties and external disturbances, u = [u1, u2, · · · , un]T ∈ Rn denotes the
control input vector, and y is output vector.

The goal of the partial states tracking problem is to design an adaptive NN control
policy u for the SPSs to meet the goals below in the presence of ill-conditioned numerical,
completely unknown nonlinear functions, and full-state constraints.

1. The slow states xs track a reference trajectory xd(t) ∈ Rn1 ;
2. The full system states are forced to be within the asymmetric and time-varying

constraints for all times, e.g.,

ci(t) < xi(t) < ci(t), i = 1, 2, · · · , n (2)

where ci(t) and ci(t) are the lower and upper bounds for the state xi(t);
3. All the signals in the closed-loop system are semi-globally uniformly ultimately

bounded (SGUUB).

Remark 1. Practically, since the controller matrices involve small SPP, the SPSs (1) may experience
abrupt changes in their structures and parameters, which usually leads to low control performance
and even instability of the system.
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Remark 2. For actual systems, many states cannot be tracked in advance since they have no actual
physical significance. Therefore, this paper studies the tracking problem of a partial system state,
that is, the slow state tracks the ideal signal.

Assumption 1. The matrices G(x) are definite, and there exist unknown positive constants g
0

and g0 such that g
0
< |λ(G(x))| < g0, x ∈ Ωx with Ωx being a compact set and λ being the

eigenvalue operator.

Assumption 2. The desired trajectory xd = [xd1, xd2, · · · , xdn1 ] is continuously differentiable
and available for controller design.

Assumption 3. The bounds ci(t) and ci(t) are smooth functions with their n-th derivatives
available for controller design.

2.2. Neural Network Online Approximation

Due to the advantages of NNs in function approximation [48–50], we can use them to
estimate unknown nonlinear functions in uncertain MIMO nonlinear SPSs [23,24]. Consider
continuous function h(X) : Rn → R, approximated by NN

hnn(X) = ŴTS(X) (3)

where X ∈ Rn is the NN input variable, Ŵ = [ŵ1, ŵ2, · · · , ŵp]T ∈ Rp is the NN weight vector
with p > 1 being the number of hidden layer nodes. S(X) = [S1(X), S2(X), · · · , Sp(X)]T ∈
Rp , Si(·) is the commonly named activation function, which is selected by the Gaussian func-
tion in our article, i.e., Si(X) = exp(−(X− µi)

T(X− µi)/σ2
i ), where µi = [µi1, µi2, · · · , µil ]

T

∈ Rl and σi denotes adjustable parameters of the Gaussian function Si(X). According to
the definition of activation function S(X), there exists a constant ζ such that

S(X)TS(X) ≤ ζ (4)

As a general rule, if l is large enough, and µi and σi are appropriately chosen, NN (3) is
capable of approximating any continuous function h(X) : Rn → R with any arbitrary accuracy

h(X) = W∗TS(X) + εX (5)

over a compact set ΩX ⊂ Rn, where W∗ denotes the optimal constant weight vector of
the output layer, and εX is the approximation error such that |εX | ≤ ε̄, where εX > 0 is
unknown and only used for analytical purpose. For all X ∈ ΩX ⊂ Rn, the ideal weight W∗

can be defined as:

W∗ := arg min
Ŵ∈Rl

{
sup

X∈Rn
|h(X)− hnn(Ŵ, X)|

}
(6)

Remark 3. To overcome the nonlinear, complex, multi-variable, uncertain dynamics systems,
refs. [51,52] have studied the design of fractional-order control for photovoltaic (PV)/battery systems
with the help of type-3 fuzzy logic systems. Type-3 fuzzy logic system has one more degree of freedom
and can deal with higher-order and complex uncertainty, so the type-3 fuzzy logic controller can
obtain better control performance and have higher robustness. Inspired by this, we will use the
type-3 fuzzy logic systems to deal with the higher-order uncertainty in future research to improve
the control performance.

3. Main Results

To ensure that the pre-defined range (2) is satisfied, a new system transformation
method is proposed, which converts the original SPSs (1) with state constraints into a new
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SPSs with no constraints. Thus, if we guarantee the stability of the new system, we can
achieve the asymmetrical yet time-varying state constraints.

3.1. System Transformation

The tracking error between the actual and the desired outputs is defined as

ed(t) = xs(t)− xd(t) (7)

where ed(t) = [ed1, · · · , edn1 ]
T ∈ Rn1 and xdj satisfies

cj(t) < xdj < cj(t) (8)

Subtract xdj from both sides of (2) and yield

cj(t)− xdj < edj(t) < cj(t)− xdj (9)

where j = 1, 2, · · · , n1. Define ζ j(t) = cj(t)− xdj, ζ j(t) = cj(t)− xdj, where ζ j(t) < 0 and

ζ j(t) > 0. Equation (9) turns into

ζ j(t) < edj(t) < ζ j(t) (10)

In this way, the state constraints (2) of the original systems are converted to the tracking
error constraints described by (10). Considering Equation (7) and system (1), we have

E(ε)χ̇ = F (x) + G(x)u (11)

where χ = [(ed(t)T , xT
f ] ∈ Rn, F (x) = [Fs(x)− xd(t); Ff (x)].

To eliminate the feasibility conditions on the virtual control based on the error trans-
formation technique, we investigate the state constraints design control for tracking error
edj subject to (10) and x f subject to (2). Assume that C1j, j = 1, · · · , n is the initial con-
ditions of the nonlinear SPSs (1). By introducing time-varying asymmetric constraints
functions ξi that only depend on χ, we directly implement the time-varying asymmetric
state constraints for system (11)

ξi(t) =
χ1i + ki

χ1i + Fi(t)
+

χ1i − ki

Fi(t)− χ1i
, i = 1, 2, · · · , n (12)

where Fj(t) = ζ j(t), Fj(t) = ζ j(t), j = 1, 2, · · · , n1, Fv(t) = cv(t), Fv(t) = cv(t),

v = n1 + 1, n2 + 2, · · · , n2, ki and ki are constants and satisfy ki < Fi(t) and ki < Fi(t).
From (12), it is seen that βi(t) tend to infinity when x1i → Fi(t) or χ1i → Fi(t), and βi(t)
are bounded if χ1i(t) ∈ C′1i $ C1i. Under the initial condition χ1i(0) ∈ C′1i $ C1i, it can
be seen that χ1i(t) ∈ C1i if ξi(t) ∈ L∞ for ∀t ≥ 0, which implies that asymmetric yet
time-varying output constraints are achieved. Now, the problem turns to how to guarantee
ξi(t) to be bounded.

Differentiating ξi(t) with respect to t yields

ξi(t) = ψ1i(t)χ̇1i(t) + ψ2i, i = 1, 2, · · · , n (13)

with

ψ1i(t) =
Fi(t)− ki

(χ1i(t) + Fi(t))2 +
Fi(t)− ki

(Fi(t)− χ1i(t))2
(14)

ψ2i(t) = −
(χ1i(t) + ki)Ḟi(t)
(χ1i(t) + Fi(t))2 −

(χ1i(t)− ki)Ḟi(t)
(Fi(t)− χ1i(t))2

(15)



Electronics 2022, 11, 1209 6 of 13

It can be used for control design in the set χ1i ∈ C1i. Equivalently, Equation (13) is
also written as a vector as follows

ξ = ψ1χ̇1 + ψ2 (16)

where ψ1 = diag{[ψ11, ψ12, · · · , ψ1n]} ∈ Rn×n, ψ2 = [ψ21, ψ22, · · · , ψ2n] ∈ Rn, and
ξ = [ξ1, ξ2, · · · , ξn]T ∈ Rn.

Then, the system (1) under partial state tracking can be expressed as the following
dynamic systems: {

E(ε)ξ̇ = ψ1[F (x) + G(x)u] + ψ2

y = x
(17)

3.2. Adaptive Controller Design and Stability Analysis

In the subsection, a novel NNs-based adaptive partial states tracking control approach
of uncertain MIMO nonlinear SPSs (1) possessing constraint condition (2) is proposed.
For that purpose, coordinate transformation is defined as follows

V1 =
1
2

ξTE(ε)T Pξ (18)

where P = [P11, εP12; PT
12, P22] such that

E(ε)T P = PTE(ε) (19)

The derivative of V1 along (17) and (19) is

V̇1 = ξTE(ε)T Pξ̇

= ξT PT{ψ1[F (x) + G(x)u] + ψ2}
= ξT PTψ1{[F (x) + G(x)u] + ψ−1

1 ψ2}
= ξT PTψ1G(x){G(x)−1[F (x) + ψ−1

1 ψ2] + u} (20)

where F (x), G(x) are unknown and how to eliminate the uncertainty is a significant
challenge. We approximate F (x) and G(x) by the aforementioned NNs by using the
information of available state x1. For clarity, (20) can be rewrite as

V̇1 = ξT PTψ1G(x)(Γ + u) (21)

where Γ(Υ) = G(x)−1[F (x) + ψ−1
1 ψ2] with Υ = [xT , xT

d , F(t)T , F(t), Ḟ(t)T , Ḟ(t)] ∈ R6n.
It goes without saying that function Γ(Υ) is unknown. Therefore, to eliminate the high
degree of uncertainty in the system and provide an executable controller for the system,
NNs are utilized to approximate Γ(Υ), that is

Γ(Υ) = W∗TS(Υ) + εχ (22)

according to (5), we have that ‖W‖ ≤ ω, ‖εχ‖ ≤ εχ in which ω and εχ are unknown
positive constants and are only used for stability analysis. Then, (21) becomes

V̇1 = ξT PTψ1G(x)(W∗TS(Υ) + εχ + u) (23)

Let Ŵ be the estimate of W∗, and an implementable controller is presented as:

u = −k1ξ − ŴS(Υ) (24)

where k1 = k10 + k11‖ψ1‖, the constants k10 > 0, k11 > 0. The adaptive law for Ŵ is selected
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˙̂W = PΦ(S(Υ)ξT − $‖ξ‖Ŵ) (25)

where ΦT = Φ > 0 represents the adaptation gain matrix, and $ is a small design parameter.

Lemma 1. For adaptive NNs law (25), there is a compact set such as

C = {Ŵ|‖Ŵ‖ ≤ v

$
} (26)

where ‖S(χ)‖ ≤ v with v > 0, Ŵ(t) ∈ C, ∀t ≥ 0 and Ŵ(0) ∈ C.

Proof. Design the positive Lyapuonv function below.

Vw1 =
1
2

tr
(

ŴT(PΦ)−1Ŵ
)

(27)

where tr(·) denotes the matrix trace. The time derivative of Vw1 is obtained as

V̇w1 = tr
{

ŴT
(

S(Υ)ξT − $‖ξ‖Ŵ
)}

= tr
(

ŴTS(Υ)ξT
)
− $‖ξ‖ tr

(
ŴTŴ

)
= S(Υ)TŴξ − $‖ξ‖

∥∥Ŵ
∥∥2

≤ ‖ξ‖
∥∥Ŵ
∥∥v− $‖ξ‖

∥∥Ŵ
∥∥2

= −‖ξ‖
∥∥Ŵ
∥∥($∥∥Ŵ

∥∥−v
)

(28)

V̇w will be negative as long as Ŵ‖ < v
$ . Hence, Ŵ ∈ C if Ŵ(0) ∈ C for t > 0.

Thereafter, substituting the control input (24) into (23) generates

V̇1 = ξT PTψ1G(x)(W∗TS(Υ) + εχ − k1ξ − ŴS(Υ))

= −k1ξT PTψ1G(x)ξ − ξT PTψ1G(x)W̃TS(Υ)

+ ξT PTψ1G(x)εχ (29)

where W̃ = Ŵ −W∗.
As implied in Lemma 1, Ŵ1 is bounded. Then, following Assumption 1, it holds

that
∥∥W̃1

∥∥ ≤ εw1 with the constant εw1 > 0 is unknown. In addition, ‖S(Υ)‖ ≤ φm1 and
‖ε1‖ < εm1. Due to the fact that the diagonal matrix R > 0 and G1(x1) > 0, it comes that
RG1(x1) > 0. Thus, V̇1 can be further rewritten as

V̇1 ≤ −k1‖ξ‖2λmin

(
PTψ1G1(x1)

)
+ ‖ξ‖‖ψ1‖λmax(G1(x1))m1 (30)

with m1 = vεw1 + εw1. Using k1, Equation (30) is derived as

V̇1 ≤−
(

k10 + k11‖ψ1‖2
)
‖ξ‖2λmin(ψ1G1(x1))

+ ‖ξ‖‖ψ1‖λmax(G1(x1))m1

=− k10‖ξ‖2λmin(ψ1G1(x1))− k∗11‖ψ1‖2‖ξ‖2

+ ‖ψ1‖‖s‖m∗1 (31)

where k∗11 = k11λmin(ψ1G1(x1)), and m∗1 = λmax(G1(x1))m1. Utilizing the completion of
squares, it becomes

−k∗11‖R‖2‖s‖2 + ‖R‖‖s‖m∗1 ≤
m∗21
4k∗11
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Thus, it follows that

V̇1 ≤− k10λmin(ψ1G1(x1)) +
m∗21
4k∗11

(32)

Theorem 1. Consider the system (1) satisfying Assumptions 1–3. Using the controller (24) and
adaptive NNs law (25), we have

• The full state constraints of the system are maintained in (2);
• The boundedness of all signals in the closed-loop system are guaranteed.

Proof. Choose a Lyapunov function.

V = V1 =
1
2

ξTE(ε)T Pξ (33)

Following (32), we have

V̇ ≤ −k10λmin(ψ1G1(x1))‖ξ‖2 +
m∗21
4k∗11

= −CV + ζ (34)

where C = k10λmin(ψ1G1(x1)) and ζ =
m∗21
4k∗11

. It can be seen from (34) that the signals ed and
˙̂W are bounded. Notice that u ∈ L∞ in a compact set Cdi := {(t, ydj) ∈ R+ ×R| − cj(t) ≤

xdj(t) ≤ cj(t), j = 1, 2, · · · , n1}} and ed = xs − xd. Then it is guaranteed that β ∈ L∞.
Hence, under the initial conditions x1i(0) ∈ C1i, i = 1, 2, · · · , n, the state x does not violate
state constraints (2), i.e., it remains in the pre-given constrained space C1j.

Furthermore, according to e1 = [e11, e12, · · · , e1n] ∈ Rn, we get

e1i =

(
Fi − ki

(x1i + Fi)(xdi + Fi)
+

Fi − ki

(Fi − x1i)(Fi − xdi)

)
ζ1i

which can be expressed as

e1i = viζ1i (35)

where vi = (Fi − ki)/((x1i + Fi)(xdi + Fi)) + (Fi − ki)/((Fi − x1i)(Fi − xdi)). According
to Assumption 2, the positive constants ϑ1i, ϑ1i, ϑ2i and ϑ2i satisfy ϑ1i ≥ Fi(t) − ki ≥
ϑ1i > 0 and ϑ2i ≥ Fi(t) − ki ≥ ϑ̄2i > 0. Additionally, based on the above analysis,
it is easy to see that x1i is in the subset of C1i, i = 1, 2, · · · , n, which shows that the
positive constants ϑ3i, ϑ3i, ϑ4i and ϑ4i such that 0 < ϑ3i ≤ (x1i + Fi)(xdi + Fi) ≤ ϑ3i and
0 < ϑ4i ≤ (Fi − x1i)(Fi − xdi) ≤ ϑ4i, this further shows that the positive constants $i and $

i
satisfy 0 < $

i
< vi < $i. Then, it shows from (35) that ζ1i is bounded as e1i ∈ L∞.

4. Simulation

A nonlinear circuit is used to validate the effectiveness of the adaptive controller for
MIMO uncertain SPSs possessing state constraints, whose state equations are as follows

L İL = −ILR− υc + u(t)

C υ̇c(t) = IL −
1
5
(υ3

c − υc) + γu(t) (36)

where γ = 0.5,R = 2 Ω and L = 0.1H. Let C = ε, ζ1(t) = L · IL and ζ2(t) = νc.
Equation (36) comes to the following nonlinear SPSs
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ζ̇1(t) = −20ζ1(t)− z(t) + u(t)

εζ̇2(t) = 10ζ1(t)− 0.2(ζ2
2(t)− 1)ζ2(t) + 0.5u(t)

which can be rewritten as

E(ε)
[

ζ̇1
ζ̇2

]
=

[
−20ζ2

1 − ζ2
10ζ1 − 0.2(ζ2

2 − 1)ζ2

]
+

[
1 0

0 0.5

]
u (37)

where E(ε) =
[

1 0
0 ε

]
, ζ = [ζ1, ζ2]

T ∈ R2, initial state condition ζ(0) = [0, 0]T , ε = 0.001,

u ∈ R2. Our purpose is to design an adaptive full state constraints tracking controller
for (37) to achieve: (1) the state xs possessing state constraints follows the desired sig-
nal xd = 0.5sin(0.5t); (2) the boundedness of all signals of the closed-loop system are
not violated.

In order to guarantee the reliability of the nonlinear circuit system, its system states
must satisfy the following constraints

x1 ∈ D11 := {ζ1 ∈ R : −Fc1 < ζ1 < Fc1} (38)

x2 ∈ D12 := {ζ2 ∈ R : −Fc2 < ζ2 < Fc2} (39)

where Fc1 = −2−0.8t− 0.05+ xd(t), Fc1 = −0.99× 2−t + 0.04+ xd(t), Fc2 = −0.99× 2−1.2t−
0.06, and Fc2 = 2−4t + 0.05. Set the initial condition ζ(0) = [ζs(0), ζ f (0)]T = [0.8, 0.8]T .
Ŵ(0) is selected as 11.5. Choose the design parameters: E(ε) = [1 0; 0 0.1], P11 = 6,
P12 = 10, P22 = 7, ρ1 = 9, ρ2 = 10, γ1 = 0.1, γ2 = 0.2.

The general block diagram is shown in Figure 1. We display the simulation results for
the nonlinear circuit (36) with the parasitic capacitor and nonlinear resistor. Figures 2 and 3
express the curves of state ζ = [ζT

s , ζT
f ]

T satisfying the constraint regions (38) and (39),
which shows with the updating law (25) that the system states do not violate the predefined
time-varying yet asymmetric region. The tracking error ed = ζs − ζd is plotted in Figure 4.
The response curves of the designed control inputs are shown in Figure 5. We select the
activation function S(·) as the Gaussian function. The L2 norm of the updated parameters
Ŵ is plotted in Figure 6. Furthermore, the systems state ζ2 (fast dynamic states ) are shown
in Figure 3. It shows that satisfactory tracking performance is ensured while possessing
time-varying state constraints.

Adaptive 

Neural 

Controller

Singularly Perturbed

Nonlinear Systems

NNs

ˆ

d
x

x

d
x

F

F

F

F
States constraint 

conditions

System 

Transfor-

mation

u

Figure 1. The general block diagram of the problem description.
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Figure 2. The tracking trajectories of xs and xd1.
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Figure 3. The trajectories of the system states x f .
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Figure 4. The curve of the tracking error ed1.
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Figure 5. Trajectories of control input u1 and u2.
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Figure 6. The norm of Ŵ.

5. Conclusions

For nonlinear SPSs with unknown functions, we thoroughly solve the full-state con-
strained partial tracking control issue without introducing the feasibility conditions. The
key feature of the designed algorithm lies in that the original state constrained control
with respect to the partial state tracking error system is converted into a stabilization
one. We have proved that slow state tracking is met with its state evolved in a pre-given
time-varying constraint boundaries. In addition, the closed-loop system signals are SGUUB
along with the ill-conditioned numerical, which was prevented via specially designing an ε-
dependent Lyapunov function. Finally, a practical system example indicates the satisfactory
control performance.
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