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Abstract: Graph neural networks (GNNs) build on the success of deep learning models by extending
them for use in graph spaces. Transfer learning has proven extremely successful for traditional deep
learning problems, resulting in faster training and improved performance. Despite the increasing
interest in GNNs and their use cases, there is little research on their transferability. This research
demonstrates that transfer learning is effective with GNNs, and describes how source tasks and the
choice of GNN impact the ability to learn generalisable knowledge. We perform experiments using
real-world and synthetic data within the contexts of node classification and graph classification. To
this end, we also provide a general methodology for transfer learning experimentation and present a
novel algorithm for generating synthetic graph classification tasks. We compare the performance of
GCN, GraphSAGE and GIN across both synthetic and real-world datasets. Our results demonstrate
empirically that GNNs with inductive operations yield statistically significantly improved transfer.
Further, we show that similarity in community structure between source and target tasks support
statistically significant improvements in transfer over and above the use of only the node attributes.

Keywords: graph neural networks; machine learning; transfer learning; multi-task learning

1. Introduction and Related Work

Deep learning has achieved success in a wide variety of problems, ranging from time-
series data to images and video [1]. Data from these tasks are referred to as Euclidean [2]
and specialised models such as recurrent and convolutional neural networks [3–5] have
been designed to leverage the properties of such data.

Despite these successes, not all problems are Euclidean. One particular class of such
problems involve graphs, which naturally model complex real-world settings involving
objects and their relationships. Recently, deep learning approaches have been extended to
graph-based domains using graph neural networks (GNNs) [6], which leverage certain
topological structures and properties specific to graphs [2]. Since graphs comprise entities
and the relationships between them, GNNs are said to learn relational information and
may have the capacity for relational reasoning [7].

One reason for the success of deep learning models is their ability to transfer previous
learning to new tasks. In image classification, this transfer leads to more robust models and
faster training [8–13]. Despite the importance of transfer in deep learning, there has been
little insight into the nature of transferring relational knowledge—that is, the representations
learnt by graph neural networks. There is also no comparison of the generalisability of
different GNNs when evaluated on downstream task performance. This lack of insight
is in part due to the lack of a model-agnostic and task-agnostic framework and standard
benchmark datasets and tasks for carrying out transfer learning experiments with GNNs.

Despite transfer learning being useful in traditional deep learning, there has been little
insight gained into the nature of transferring relational knowledge, i.e., the representations
learnt by graph neural networks. There is also no comparison of the generalisability of
different GNNs when evaluated on downstream task performance. This lack is partly
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due to the lack of a model-agnostic and task-agnostic framework for carrying out transfer
learning experiments with GNNs; and partly due to a lack of standard benchmark datasets
and tasks.

We conduct an empirical study within the contexts of node classification and graph
classification to determine whether transfer in GNNs occur and, if so, what factors influence
success. In particular, we make the following contributions: First, we provide a methodol-
ogy and additional metrics for evaluating GNN transfer learning empirically. Second, we
provide a novel method for creating synthetic graph classification tasks with community
structure. Finally, we evaluate the transferability of several popular GNNs on both real
and synthetic datasets. Our results demonstrate that we can achieve positive transfer
using graph neural networks; and that certain models exploit strong community structure
properties present in the source task to yield effective transfer.

1.1. Background

In this work, we consider problems for which the data can be modelled as a graph.
A graph G = {V, E} consists of a set of N vertices, V, and a set of edges E. Let vi ∈ V
denote a vertex, and eij = (vi, vj) ∈ E denote a directed edge from vi to vj. The adjacency
matrix, A ∈ RN×N , has aij = 1 where eij ∈ E, and 0 otherwise. A graph may have node
attributes of length C, where X ∈ RN×C is the node feature matrix, and xi ∈ RC is the
attribute vector for node vi. Similarly, a graph may have an edge attribute matrix Xe [6].
An important measure of a node’s connectivity is its degree, which is the number of edges
the node is connected to [14]. We denote the degree of the ith node as di. The degree matrix
D = diag(d1, . . . , dN) is the diagonal matrix containing the degrees of all vertices.

1.1.1. Graph Neural Networks

The success of CNNs for computer vision problems motivate the need to formulate a
counterpart to the convolution operator for graphs [2]. Similarly to that of Euclidean signals,
the problem of convolution for graphs can be tackled from either the spatial domain or spectral
domain. One popular model is Graph Convolution Networks (GCNs) [15], which make use
of a spectral graph convolution operation stacked layer-wise. We also consider two other
models, GraphSAGE [16] and Graph Isomorphism Networks (GINs) [17], which utilise
spatial graph convolutions to aggregate information from a node’s neighbourhood. GINs
have previously outperformed both GCN and GraphSAGE in experimental performance
on social media and biological datasets [17].

These three considered GNNs fall under the category of message-passing neural
networks (MPNNs) [18]. To provide comparison of the three GNNs’ operations, we rewrite
them as MPNN updates:

Model Update Rule

GCN h(k)v ← σ

[
W(k) ·

(
∑

u∈N (v)∪{v}

1√
d̃u d̃v

h(k−1)
u

)]

GraphSAGE h(k)v ← σ

[
W(k) ·

(
1

d̃in
v

∑
u∈N (v)∪{v}

h(k−1)
u

)]

GIN h(k)v ← σ

[
W(k) ·

(
(1 + ε(k)) · h(k−1)

v + ∑
u∈N (v)

h(k−1)
u

)]

where h(k)v and W(k) are the GNN embeddings for node v and the weight matrix at the
layer k respectively, σ(·) is a nonlinear activation function, N (v) is the neighbourhood
of node v, d̃v and d̃in

v are the renormalised degree and in-degree of node v (see Kipf and
Welling [15]), and ε(k) is GIN’s central node weighting parameter.
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1.1.2. Transfer Learning

Deep neural network and machine learning models are usually trained for a specific
task from a random initialisation of their parameters. If the task or nature of the input data
changes, the network must be retrained from scratch. This retraining differs from humans,
who reuse past knowledge and apply it to new contexts and tasks. The ability to reuse
knowledge beyond the context in which it was learnt is known as transfer learning [19].
Transfer with neural networks can be achieved by simply reusing a previously-trained
network’s weights. The transferred weights can either be used as a starting point for
training a network (fine-tuned transfer), or used as fixed features on the target task (frozen-
weight transfer). To formalise transfer learning, Pan and Yang [20] define the notion of
domains and tasks as used in this paper.

Taylor and Stone [19] present various metrics for the evaluation of transfer learning,
including Transfer Ratio, Jumpstart and Asymptotic Performance. The Transfer Ratio is the
ratio of the total cumulative performance of the transfer learner to the base learner, while
Jumpstart is the initial performance improvement by the transfer over the base learner.
Asymptotic Performance refers to the improvement made in the final learnt performance
in the target task. Figure 1 below describes these metrics.

Training time

P
e

rf
o

rm
an

ce

Transfer

Base

Jumpstart

Asymptotic

Performance

Transfer ratio:

Figure 1. An illustration of the jumpstart, asymptotic performance and transfer ratio metrics. The transfer
ratio is computed using the area under the curve (AUC).

1.1.3. Related Work

Bengio [21] notes that deep learning algorithms seem well suited to transfer learning
through learning ‘abstract’ representations. Knowledge is represented at multiple levels,
with higher level representations learnt as compositions of lower level features [22]. Ko-
rnblith et al. [23] and Huh et al. [24] investigate transfer learning with CNNs pretrained
on ImageNet [25] and find that networks train faster, and achieve improved accuracy as
a result.

Partly due to recency, and partly due to the multitude of approaches, not much
research exists which investigates transfer learning for GNNs. Hamilton [26] notes that
little success has been achieved by pretraining GNNs. This may be due to the fact that
randomly initialised GNNs extract features that are just as useful as a trained network’s [27].

However, Lee et al. [28] do propose a framework to transfer spectral information
between source and target tasks for node classification. Experiments on real-world datasets
show transfer is most effective when the source and target graphs are similar. Hu et al. [29]
develop a framework to effectively pretrain GNNs for downstream tasks by pretraining
a GNN at the level of individual nodes and the entire graphs. Thus, they describe two
techniques to exploit node-level knowledge: context prediction and attribute masking,



Electronics 2022, 11, 1202 4 of 19

as well as two approaches for graph-level pretraining. More recently, Dai et al. [30]
present AdaGCN: a framework for transfer learning based on adversarial domain adaption
with GCNs.

2. Materials and Methods

Errica et al. [31] notes that the experimental settings from GNN research papers
are often ambiguous, and the results are not reproducible. Reproducibility is, therefore,
a core objective, and as such, we provide the code for our experiments. We utilise the
PyTorch-Geometric [32] library for efficient GPU-optimised implementations of the three
selected GNNs [33]. We track our experiments using Comet.ml, and make them publicly
available for transparency.

Our experiments pretrain GNNs on various source tasks and fine-tune them on a
target task. All experiments are conducted in a fully supervised setting. The experiments
track the performance of pretrained models as well as the randomly initialised models
across training. This methodology allows us to compare transferability in terms of the
transfer learning metrics described earlier. We make use of synthetic and real-world data
in our experiments. To avoid the problems of a lack of meaningful data-splits [31] and
the instability of training on small graph datasets [34], we make use of the Open Graph
Benchmark [35] datasets for our real-world datasets. To ascertain the statistical significance
of our results, we employ a pairwise two-sided t-test for identical means of independent
sample statistics with the alternative hypothesis ‘greater than’ throughout.

2.1. Node Classification Experimental Design

Node classification involves assigning a class label to an unlabelled node in a graph.
Solving this problem considers structural properties of graphs (e.g., node degree), the node’s
attributes, or some relationship between them. Practical applications include real-world
contexts, such as social networks [36] or knowledge graphs [37]. Below we describe the
datasets and experimental methodology used.

2.1.1. Synthetic Data

For meaningful classifications, instances within a single class should be similar.
A graph where nodes in the same class are densely connected is said to contain strong
community structure.

The Modularity, defined as

M =
1

2|E|∑ij

(
aij −

didj

2|E|

)
δ(i, j),

is one measure of a graph’s community structure with respect to the structure of the
network [38], where δ(i, j) = 1 if vi and vj belong to the same class, and 0 otherwise.

The Within Inertia ratio is another measure of the community structure that takes into
account node attribute values [39]. Given a partition of the graph’s vertices P , the Within
Inertia is given by:

I =
∑

C∈P
∑

v∈C
dist(xv, gC)

2

∑
v∈V

dist(xv, g)2 ,

where dist(xvi , xvj) is the Euclidean distance between node attribute vectors, gC is the
centre of gravity of the vertices in C, and g the global centre of gravity of all vertices.

To generate synthetic datasets, we make use of DANCer: a generator for dynamic
attributed networks with community structure [39]. The generator produces graphs with
communities using micro-operations (local operations such as removing a node) and macro-
operations (community-level operations such as splitting a community). The generator
is designed with both structural and attribute homophily [40] in mind. It also models
phenomena such as preferential attachment, where nodes are more likely to connect with
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nearby or highly connected nodes [41]. These properties make DANCer an ideal generator
for our purposes.

We provide four benchmark configurations: one for each combination of strong
and weak structural and attribute community structure. We fix a single target task with
these datasets (Configuration 4), and pretrain on the other three configurations as de-
scribed in Table 1. The parentheses indicate the strength of Modularity and Within Inertia
respectively—e.g., M↑I↓indicates strong Modularity and weak Within Inertia.

Table 1. The four configurations of the synthetic node classification datasets. The average modularity
and Within Inertia ratios are computed on the generated datasets.

Modularity Within Inertia

Configuration 1 (M↑I↑) Strong 0.64 Strong 0.37
Configuration 2 (M↑I↓) Strong 0.64 Weak 0.47
Configuration 3 (M↓I↑) Weak 0.32 Strong 0.39
Configuration 4 (M↓I↓) Weak 0.28 Weak 0.99

2.1.2. Real-World Data

A common node classification domain is citation networks, where each node in the
graph represents a publication, and edges indicates citations. We perform several transfer
learning experiments using Open Graph Benchmark real-world citation networks, and com-
plement the experiments with synthetic data. In particular, we select Arxiv and MAG—both
are directed citation networks, where each node has an attribute vector containing a 128-
dimensional word embedding of the paper. In addition, a paper’s year of publication is
also associated with its node in the network.

Arxiv contains 169,343 Computer Science papers, and the task is to predict which
of the 40 subject areas a paper belongs to. MAG is taken from a subset of the Microsoft-
Academic-Graph [42], and contains four types of node entities: papers, authors, institution
and field of study. For consistency we will only make use of the papers, which consist of
736,389 nodes, making it a much larger and more complex network than Arxiv. The task
here is to predict which of 349 venues (conferences or journals) each paper belongs to.
Open Graph Benchmark also provides model evaluators, which use the standard accuracy
score.

To evaluate how MAG transfers to itself, we split it into a source and a target graph.
Papers from 2010–2014 are placed in the source split, and those from 2015–2019 belong to
the target split. Any edges between nodes in separate splits are removed. Table 2 lists the
statistics of the above datasets.

Table 2. Statistics of real-world node classification datasets used in our experiments.

Nodes Edges Features Modularity Within Inertia Classes Metric

Arxiv 169,343 1,166,243 128 0.495 0.890 40 Accuracy

MAG
(Source) 402,598 1,615,644 128 0.299 0.813 349 Accuracy

MAG
(Target) 333,791 1,390,589 128 0.286 0.806 349 Accuracy

2.1.3. Experimental Methodology

Table 3 presents the source and target tasks for our experiments using both real-world
and synthetic datasets. We evaluated transfer from both Arxiv and the MAG source split
to the target MAG split. Lastly, to investigate how important attributes are for our node
classification tasks, we damaged the node attributes for both Arxiv and the MAG source
graph. To damage the attributes, we replaced the attributes with Gaussian distributed
random noise with a mean of 0 and a standard deviation of 1.
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Table 3. Experiments conducted for node classification using both real-world and synthetic datasets.

# Source Task Target Task

Real-world

1 Base [Random seed]

MAG
(Target Split)

2 Arxiv
3 Arxiv [Damaged features]
4 MAG (Source split) [Old layer]
5 MAG (Source split)
6 MAG (Source split) [Damaged features]

Synthetic

1 Base [Random seed]
Configuration 4

(M↓I↓)
2 Configuration 1 (M↑I↑)
3 Configuration 2 (M↑I↓)
4 Configuration 3 (M↓I↑)

We performed 10 runs of each of the six sets of experiments for each of the three
GNNs. We used the same network architecture used by Open Graph Benchmark [35]
for their experiments on Arxiv and MAG, which allows us to compare the performance
for the base models as a sanity check. The network comprises three GNN layers: with
an input dimensionality of 128, an output dimensionality of 349 (for MAG), and a hidden
dimensionality of 256. We trained the networks on the target task for 2000 epochs using
the Adam optimiser [43]. The best performing learning rate for each GNN was selected
and fixed across our 6 experiment sets. GCN, GraphSAGE and GIN were all trained with a
learning rate of 0.001 in this case.

For synthetic data experiments, we generated 10 unique graphs each for Configurations
1, 2, and 3. Throughout, we used a single instance of Configuration 4 so that the target
task was fixed. The task was 5-class node classification, and we trained the models
for 2000 epochs using the Adam optimiser with a learning rate of 0.01 for GCN and
GraphSAGE, and 0.001 for GIN.

2.2. Graph Classification Experimental Design

Graph classification is the problem of categorising whole graphs. To investigate GNN
transfer for graph classification, we conducted experiments involving both real-world and
synthetic problems. We followed the same experimental procedure as for node classification.
We wanted to evaluate whether a dataset contains graphs with community structure at a
graph-level. To this aim, we present an extension of the concept of community structure
from node to graph level for both structural and attribute properties. The Within Inertia
is a general measure of community structure since it does not depend on graph-theoretic
properties, but only on the Euclidean distance between data points. Given a dataset D,
and a partition of classes P , a general form of the Within Inertia can be written as:

∑
C∈P

∑
i∈C

dist(ρi, gC)
2

∑
i∈D

dist(ρi, g)2 , (1)

where ρi is a graph property we are interested in measuring for graph i in class C, gC is the
centre of gravity of the graphs in C and g is the global center of gravity of all the graphs.
The Euclidean distance dist(·) may be replaced by other distance metrics if the generation
process is unknown [44,45].

We replace ρi in Equation (1) with any property we want to measure community
structure for. For the attribute community structure we substitute the mean of each graph’s
attribute matrix, X̄, for ρi:
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IA =

∑
C∈P

∑
i∈C

dist
(
X̄i, gC

)2

∑
i∈D

dist
(
X̄i, g

)2 .

There is no consensus on how to approach structural community structure. There are
numerous ways of measuring graph similarity [46], the most common being graph-edit
distance [47]. Another approach is to compare graph spectra. However, these methods are
slow to compute and are thus not useful for measuring entire datasets with multiple graphs.

Modularity takes node degrees as a valuable property for determining community
structure for nodes. Since we wanted to measure community structure at the graph level,
we used the average node degree for a graph. We substituted the average node degree, d̄i,
for ρi in Equation (1). This serves as the structural community structure measure for our
datasets:

IS =

∑
C∈P

∑
i∈C

dist
(
d̄i, gC

)2

∑
i∈D

dist
(
d̄i, g

)2 .

2.2.1. Synthetic Data

In this subsection we present a novel process for generating synthetic datasets for the
task of graph classification. To create a meaningful graph classification task, we param-
eterise a generator to control the community structure for both structure and attributes.
To do this, we generated the dataset using the following four steps:

1. Create a random n-class classification problem with a sample X and labels y;
2. For each label yi in y, generate several graphs and set their node attributes to the

relevant example from X. Label these graphs with yi;
3. Optionally, swap the labels assigned to some of the graphs to weaken community

structure;
4. Optionally, replace node attributes with noise to weaken attribute community structure.

Steps 1 and 2 create community structure for attributes and structure, respectively,
and the final two steps weaken the community structure if selected to do so. Figure 2
illustrates this process, where the blue blocks create community structure and the pink
blocks weaken it.

The generator takes the following parameters as input:

• num_classes: the number of classes or labels in the dataset;
• n_per_class: the number of graphs to generate per class;
• n_features: the length of the node feature vector;
• percent_swap: the percentage of graphs to swap;
• percent_damage: the percentage of graphs where node attributes are to be damaged.

The num_classes, n_per_class and n_features parameters allow for dataset level
properties to be varied, while percent_swap and percent_damage influence the structural
and attribute community structure respectively. We fixed the size of the graphs at 30 nodes.
More details regarding this generation process are provided in the Appendix A.

Similarly to the synthetic node classification datasets, we generated four configu-
rations for each strong and weak community structure combination (see Table 4). We
again indicated the strength of the Structural and Attribute Within Inertia using arrows.
For example, IS

↑ IA
↓ indicates strong Structural Within Inertia and weak Attribute Within

Inertia. We selected Configuration 8 (IS
↑ IA
↑ ) as our target task, and used the remaining three

as source tasks.
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1 Create attribute-level task 2

Generate graphs 

& Assign attributes

3
 Swap graphs (optional) 4
 Damage attributes (optional)

Figure 2. Generation process for synthetic graph classification datasets.

Table 4. The four configurations of synthetic graph classification datasets.

w.i.struct w.i.attr percent_swappercent_swappercent_swap percent_damagepercent_damagepercent_damage

Configuration 5 (IS
↓ IA
↓ ) Weak Weak 0.95 0.95

Configuration 6 (IS
↑ IA
↓ ) Strong Weak 0.92 0.95

Configuration 7 (IS
↓ IA
↑ ) Weak Strong 0.95 0.92

Configuration 8 (IS
↑ IA
↑ ) Strong Strong 0.92 0.92

2.2.2. Real-World Data

Many real-world problems within bioinformatics and chemistry present themselves as
graph classification problems. We selected datasets from Open Graph Benchmark where the
task is molecular property prediction: BBBP and HIV. BBBP (Blood–Brain Barrier Penetration) is
a physiological dataset where the task is to predict whether a given compound penetrates
the blood–brain barrier or not [48]. HIV is a biophysics dataset where the task is to predict
whether a compound has anti-HIV activity or not.

Both datasets are preprocessed in the same manner and are both binary classifica-
tion tasks. Nodes are atoms and chemical bonds are edges, while node attributes are
9-dimensional and contain information about atomic properties. BBBP is a much smaller
dataset than HIV, so we split HIV into a source and target split similar to the real-world
node classification experiments: half the HIV is randomly sampled for each split, and this
sample is kept fixed. A summary of the datasets is given in Table 5.

2.2.3. Experimental Methodology

We conducted experiments similar to those for real-world node classification. The tar-
get task, HIV target split, is fixed, and we pretrained our GNNs on BBBP and the HIV
source split and then evaluated them on the target task. We also evaluated the transfer
performance where the models are pretrained on the source datasets with damaged node
attributes, i.e., where the node attributes are replaced by Gaussian distributed random
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noise with a mean of 0 and a standard deviation of 1. The experiments are described in
Table 6.

Table 5. Statistics of real-world graph classification datasets used in our experiments.

No. Graphs Average Nodes Features IS IA Classes Metric

BBBP 2039 24.06 9 0.99 0.98 2 ROC-AUC

HIV (Source split) 20,563 25.49 9 0.99 0.99 2 ROC-AUC

HIV (Target split) 20,564 25.53 9 0.99 0.99 2 ROC-AUC

Table 6. Experiments conducted for graph classification using both real-world and synthetic datasets.

# Source Task Target Task

Real-world

1 Base [Random seed]

HIV
(Target Split)

2 BBBP
3 BBBP [Damaged features]
4 HIV (Source split)
5 HIV (Source split) [Damaged features]

Synthetic

1 Base [Random seed]

Configuration 8 (IS
↑ IA
↑ )2 Configuration 5 (IS

↓ IA
↓ )

3 Configuration 6 (IS
↑ IA
↓ )

4 Configuration 7 (IS
↓ IA
↑ )

3. Results
3.1. Node Classification Results
3.1.1. Real-World Data

In Figure 3 we see the training curves for the experiments in Table 3. We note for GCN,
all the pretrained model curves rise above the base model, indicating we have positive
knowledge transfer. This phenomenon is noted for both GraphSAGE (except for Arxiv
[Damaged]), and GIN. Since the pretraining datasets are all citation networks, positive
transfer is a reasonable outcome.

Concerning the Transfer Ratios in Table 7 we note that only GIN and GCN have
significant transfer from the completely new Arxiv dataset. Interestingly, for GCN and
GIN, we note that Arxiv with damaged attributes, in absolute terms, performs somewhat
better than just Arxiv, indicating that graph characteristics beyond attribute values are
being used for transfer. Although some of the GraphSAGE Transfer Ratios are positive,
these are not statistically better than the control. Turning to Table 8, we note that GIN
statistically always outperforms the other GNNs in this metric, indicating that GIN benefits
the most from sharing knowledge from the source domains.

The MAG (Source split) [Old layer] tasks, in Table 7, have a greater Jumpstart than
the rest, since the ouptut layer does not need to be retrained. We note that both GCN
and GraphSAGE show significant Jumpstart with the completely new task Arxiv. In fact
GraphSAGE exploits graph characteristics beyond attribute values as evidenced by the
Arxiv [Damaged] results. In Table 8 we note that GCN is either on par or significantly better
than the other GNNs across all datasets on this metric; however, the result is not compelling.



Electronics 2022, 11, 1202 10 of 19

0 500 1000 1500 2000
Epochs

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

 S
co

re

GCN

0.0

0.1

0.2

0.3
Start of training

0.28

0.30

0.32
End of training

0 500 1000 1500 2000
Epochs

0.0

0.1

0.2

0.3
GraphSAGE

0.0

0.1

0.2

0.3
Start of training

0.28

0.30

0.32
End of training

0 500 1000 1500 2000
Epochs

0.0

0.1

0.2

0.3
GIN

0.0

0.1

0.2

0.3
Start of training

0.28

0.30

0.32
End of training

Random Seed Arxiv Arxiv [Damaged] MAG (Source split) [No new layer] MAG (Source split) MAG (Source split) [Damaged]

Figure 3. Real-world node classification training curves.

Table 7. Transfer metrics for real-world node classification experiments (10 runs). Bold results
are positive and statistically greater than the control at p = 0.1. We evaluate significance for each
model/metric combination.

Model Source Task
→ MAG-Target Transfer Ratio Jumpstart Asymptotic

Performance

Control MAG-Source [Damaged] 0.011 ± 0.006 0.000 ± 0.001 −0.001 ± 0.002

GCN

MAG-Source [Old layer] 0.042 ± 0.007 0.228 ± 0.023 0.003 ± 0.003
MAG-Source 0.032 ± 0.011 0.001 ± 0.002 0.002 ± 0.003

Arxiv 0.021 ± 0.007 0.001 ± 0.001 0.008 ± 0.002
Arxiv [Damaged] 0.028 ± 0.006 0.000 ± 0.001 0.009 ± 0.002

Control MAG-Source [Damaged] 0.023 ± 0.037 0.000 ± 0.001 0.000 ± 0.009

G’SAGE

MAG-Source [Old layer] 0.044 ± 0.041 0.239 ± 0.018 0.001 ± 0.010
MAG-Source 0.046 ± 0.041 0.000 ± 0.001 0.003 ± 0.011

Arxiv 0.028 ± 0.040 0.001 ± 0.001 0.007 ± 0.010
Arxiv [Damaged] −0.050 ± 0.033 0.001 ± 0.001 −0.021 ± 0.009

Control MAG-Source [Damaged] 0.030 ± 0.011 −0.002 ± 0.004 0.000 ± 0.002

GIN

MAG-Source [Old layer] 0.183 ± 0.008 0.226 ± 0.004 0.024 ± 0.002
MAG-Source 0.089 ± 0.007 −0.001 ± 0.004 0.009 ± 0.001

Arxiv 0.048 ± 0.009 −0.001 ± 0.004 0.005 ± 0.001
Arxiv [Damaged] 0.061 ± 0.016 −0.001 ± 0.004 0.006 ± 0.003

Table 8. Transfer metrics for real-world node classification experiments (10 runs). Bold results
are not statistically greater than the best at p = 0.1. We evaluate significance for each source-
task/metric combination.

Source Task
→ MAG-Target
(Spectral Dist.)

Model Transfer Ratio Jumpstart Asymptotic Performance

MAG-Source [Old layer]
GCN 0.042 ± 0.007 0.228 ± 0.023 0.003 ± 0.003

G’SAGE 0.044 ± 0.041 0.239 ± 0.018 0.001 ± 0.010
GIN 0.183 ± 0.008 0.226 ± 0.004 0.024 ± 0.002

MAG-Source
GCN 0.032 ± 0.011 0.001 ± 0.002 0.002 ± 0.003

G’SAGE 0.046 ± 0.041 0.000 ± 0.001 0.003 ± 0.011
GIN 0.089 ± 0.007 −0.001 ± 0.004 0.009 ± 0.001

Arxiv
GCN 0.021 ± 0.007 0.001 ± 0.001 0.008 ± 0.002

G’SAGE 0.028 ± 0.040 0.001 ± 0.001 0.007 ± 0.010
GIN 0.048 ± 0.009 −0.001 ± 0.004 0.005 ± 0.001

All GNNs achieve significant positive asymptotic performance above the control on
the new Arxiv task. GraphSAGE is inconsistent and does not always show transfer at the
end of training. Despite the huge Jumpstart with MAG (Source split) [Old layer], only GIN
retains a large absolute improvement in Asymptotic Performance. Both GCN and GIN
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once again exploit structural characteristics beyond the attribute values as evidenced by
the Arxiv [Damaged] results. In Table 8 we see a mixture of best-performing GNNs with
both GCN and GraphSAGE performing well on the completely new Arxiv task.

Takeaway 1: We have statistical evidence that transfer to a new task for node classification
does occur across all metrics and GNNs. We demonstrate that GCN and GIN exploit
structural rather than attribute information for achieving a positive Transfer Ratio and
Asymptotic Performance, as does GraphSAGE for Jumpstart.

Next we consider our synthetic data to interrogate exactly which characteristics of
graphs are being transferred by the above GNNs.

3.1.2. Synthetic Data

In Figure 4 and Table 9 we note that the performance of GIN is as a result of the
strong Modularity in Configurations 1 (M↑I↑) and 2 (M↑I↓). For GraphSAGE, this distinction
between Modularity and Within Inertia is less clear as the results for Configurations 2
(M↑I↓) and 3 (M↓I↑) are statistically equivalent. The absolute performance of Configuration
3 (M↓I↑) for GraphSAGE does suggest that Within Inertia is being exploited, but further
investigation is required.
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Figure 4. Synthetic node classification training curves.

Table 9. Transfer metrics for synthetic node classification (10 runs). Bold results are not statistically
greater than the best at p = 0.1. We evaluate significance for each model/metric combination.

Model Source Task Transfer Ratio Jumpstart Asymptotic
Performance

GCN
C.1 - M↑I↑ −0.203 ± 0.031 0.031 ± 0.044 −0.103 ± 0.026
C.2 - M↑I↓ −0.108 ± 0.065 0.012 ± 0.039 −0.036 ± 0.038
C.3 - M↓I↑ −0.176 ± 0.026 0.001 ± 0.068 −0.092 ± 0.020

G’SAGE
C.1 - M↑I↑ 0.083 ± 0.086 0.026 ± 0.024 0.041 ± 0.042
C.2 - M↑I↓ 0.100 ± 0.102 0.004 ± 0.031 0.073 ± 0.051
C.3 - M↓I↑ 0.169 ± 0.139 −0.024 ± 0.042 0.082 ± 0.084

GIN
C.1 - M↑I↑ 0.161 ± 0.099 0.010 ± 0.059 0.050 ± 0.042
C.2 - M↑I↓ 0.211 ± 0.076 0.001 ± 0.046 0.061 ± 0.029
C.3 - M↓I↑ 0.112 ± 0.070 −0.006 ± 0.060 0.031 ± 0.023

For Jumpstart, we are unable to see any significant difference in Table 9 across all
configurations for the GCN and GIN, making it unclear as to which of Modularity or
Within Inertia is responsible for the positive transfer. GraphSAGE is significantly better
in Configuration 1 (M↑I↑) indicating both the Strong Modularity and Within Inertia are
being exploited, supporting our real-world assertion that it exploits graph characteristics
beyond attribute values. We do note in Table 9 that all methods show positive Jumpstart
on Configuration 1 (M↑I↑) and 2 (M↑I↓) suggesting that it is might be the Strong Modularity
that all the GNNs are exploiting.
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With Asymptotic Performance, our results do not allow us to say anything about
which of structure or attributes GraphSAGE is exploiting. However, GIN, as evidenced in
Table 9, is able to build on the Modularity from Configuration 1 (M↑I↑) as the Weak Inertia
of Configuration 2 (M↑I↓) is not significantly better.

Takeaway 2: In general, GIN predominately exploits Strong Modularity for transfer—while
GraphSAGE can exploit both Modularity and Within Inertia for Jumpstart—in support of
our real-world data findings.

3.2. Graph Classification Results
3.2.1. Real-World Data

Figure 5 shows that GCN and GraphSAGE have more stable training curves than GIN,
which is poorer in its performance. We observe clear transfer with GCN and GraphSAGE
for both undamaged source tasks. In addition, we observe negative transfer for both
damaged source tasks for GCN and GraphSAGE. GIN achieves positive self-transfer with
HIV (Source split), and negative transfer with the remaining pretrainings. GIN’s training
curves also show a decay over training with BBBP pretrainings. The training curves indicate
GraphSAGE and GIN suffer from worse negative transfer than GCN.

0 50 100 150 200
Epochs

0.5

0.6

0.7

0.8

RO
C-

AU
C

GCN

0 50 100 150 200
Epochs

0.5

0.6

0.7

0.8

GraphSAGE

0 50 100 150 200
Epochs

0.5

0.6

0.7

0.8

GIN

Random Seed BBBP BBBP [Damaged] HIV (Source split) HIV (Source split) [Damaged]

Figure 5. Real-world graph classification training curves.

From Table 10, we see that across the transfer metrics, GCN and GraphSAGE achieved
significant positive Transfer Ratios for HIV (Source split) and BBBP when compared to the
control. This result indicates that they are able to transfer to a completely new task. GIN
shows transfer from the similar task HIV (Source split) but not from the new task BBBP
for any of the metrics. The biggest jumpstart is seen with HIV (Source split), which is
understandable since it is a self-transfer task. None of the GNNs for any of the tasks show
any significant transfer from the damaged task, indicating that the node attributes are
likely exploited over graph structural characteristics.

In Table 11 we note that GraphSAGE is significantly better than all other GNNs
across all metrics when transferring from the completely new BBBP task. For the transfer
from the more similar HIV (Source split) results are mixed with GCN requiring further
experimentation to determine outperformance.

Takeaway 3: We have significant statistical evidence to support that transfer happens for
graph classification for both GCN and GraphSAGE across all metrics considered. We can
also reject the hypothesis that the transfer is as a result of graph structure beyond the node
attributes alone.

In the following section, we consider synthetic data to further investigate which
structural characteristics of graphs are being transferred by the GNNs.
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Table 10. Transfer metrics for real-world graph classification experiments (10 runs). Bold results are
statistically greater than the control at p = 0.1. We evaluate significance for each model/metric com-
bination.

Model Source Task
→ HIV-Target Transfer Ratio Jumpstart Asymptotic Performance

Control HIV-Source [Damaged] −0.002 ± 0.015 0.002 ± 0.017 0.014 ± 0.012

GCN
HIV-Source 0.065 ± 0.010 0.148 ± 0.009 0.031 ± 0.017

BBBP 0.036 ± 0.012 0.047 ± 0.016 0.026 ± 0.011
BBBP [Damaged] −0.007 ± 0.013 −0.008 ± 0.021 0.000 ± 0.011

Control HIV-Source [Damaged] −0.069 ± 0.023 −0.029 ± 0.049 −0.038 ± 0.021

G’SAGE
HIV-Source 0.030 ± 0.006 0.160 ± 0.016 0.011 ± 0.014

BBBP 0.048 ± 0.008 0.072 ± 0.011 0.035 ± 0.009
BBBP [Damaged] −0.064 ± 0.058 −0.067 ± 0.052 −0.042 ± 0.064

Control HIV-Source [Damaged] −0.197 ± 0.037 0.039 ± 0.048 −0.130 ± 0.051

GIN
HIV-Source 0.033 ± 0.016 0.186 ± 0.045 0.029 ± 0.040

BBBP −0.059 ± 0.033 0.026 ± 0.046 −0.081 ± 0.075
BBBP [Damaged] −0.157 ± 0.038 −0.013 ± 0.017 −0.136 ± 0.049

Table 11. Transfer metrics for real-world graph classification experiments (10 runs). Bold results
are not statistically greater than the best at p = 0.1. We evaluate significance for each source-
task/metric combination.

Source Task
→ HIV-Target Model Transfer Ratio Jumpstart Asymptotic

Performance

HIV-Source
GCN 0.065 ± 0.010 0.148 ± 0.009 0.031 ± 0.017

G’SAGE 0.030 ± 0.006 0.160 ± 0.016 0.011 ± 0.014
GIN 0.033 ± 0.016 0.186 ± 0.045 0.029 ± 0.040

BBBP
GCN 0.036 ± 0.012 0.047 ± 0.016 0.026 ± 0.011

G’SAGE 0.048 ± 0.008 0.072 ± 0.011 0.035 ± 0.009
GIN −0.059 ± 0.033 0.026 ± 0.046 −0.081 ± 0.075

3.2.2. Synthetic Data

When considering the graph classification Transfer Ratios in Table 12, only Graph-
SAGE and GIN showe any positive transfer. Interestingly, for both models, the result is
significant for Configuration 7 (IS

↓ IA
↑ ) indicating that it is the strong Attribute Within Inertia

that is being transferred. The amount of Jumpstart achieved by all GNNs is low, as shown
in Figure 6, indicating that transfer is not achieved at the start of training, and that the
pretrained model performs similarly to the base models initially. For graph classification
on the synthetic data, we note from Table 12 that none of the considered methods are able
to achieve positive Jumpstart. These values are not discussed further here. The values for
the asymptotic performance show similar results to the Transfer Ratios.
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Figure 6. Synthetic graph classification training curves.

Since there is minimal Jumpstart, any positive or negative transfer appears to be
achieved by the GNNs towards the end of training. GraphSAGE and GIN both achieve
positive Asymptotic Improvements as seen Table 12; however, for GraphSAGE, these
values are not significantly different from negative transfer. We note for both GraphSAGE
and GIN that the best transfer occurs for Configuration 5 (IS

↓ IA
↓ ) and 7 (IS

↓ IA
↑ ). In absolute

terms, we might infer that due to the higher values in Configuration 7 (IS
↓ IA
↑ ), transfer results

from the strong Attribute Within Inertia. However, these differences are not statistically
significant and require further experimentation to confirm.

The fact that no Jumpstart but improved Asymptotic Performance is observed is
interesting: it indicates that the transferred knowledge is not immediately useful but rather
leads to better performance on downstream training. This observation would be supported
by an argument that the transferred knowledge is not in the linear output layers but instead
available in the deeper nonlinear feature layers and exposed later in training.

Table 12. Transfer metrics for synthetic graph classification (10 runs). Bold results are not statistically
greater than the best at p = 0.1. We evaluate significance for each model/metric combination.

Model Source Task Transfer Ratio Jumpstart Asymptotic
Performance

GCN
C.5 - IS

↓ IA
↓ −0.026 ± 0.012 −0.046 ± 0.024 −0.019 ± 0.011

C.6 - IS
↑ IA
↓ −0.029 ± 0.009 −0.047 ± 0.022 −0.019 ± 0.009

C.7 - IS
↓ IA
↑ −0.020 ± 0.005 −0.046 ± 0.028 −0.012 ± 0.012

G’SAGE
C.5 - IS

↓ IA
↓ 0.007 ± 0.006 −0.009 ± 0.030 −0.003 ± 0.011

C.6 - IS
↑ IA
↓ 0.008 ± 0.010 −0.006 ± 0.024 −0.005 ± 0.014

C.7 - IS
↓ IA
↑ 0.015 ± 0.011 −0.016 ± 0.038 0.001 ± 0.011

GIN
C.5 - IS

↓ IA
↓ 0.012 ± 0.021 −0.010 ± 0.020 0.025 ± 0.016

C.6 - IS
↑ IA
↓ 0.001 ± 0.016 −0.023 ± 0.017 0.004 ± 0.016

C.7 - IS
↓ IA
↑ 0.027 ± 0.017 −0.021 ± 0.026 0.027 ± 0.013

Takeaway 4: There is significant evidence that GraphSAGE and GIN exploit Strong Attribute
Within Inertia in order to achieve transfer. These results support our real-world findings
with respect to GraphSAGE.

4. Discussion

Our research presented several contributions for understanding transfer learning
using graph neural networks. We proposed a framework for evaluating transfer with
GNNs by testing various source tasks on a fixed target task. We employed this framework,
along with transfer learning metrics and notions of community structure, to evaluate the
transferability of three useful GNNs: GCN, GraphSAGE and GIN. We tested and compared
these models using real-world and synthetic graph data for node-classification and graph-
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classification contexts. In addition, we presented a novel procedure for generating synthetic
datasets for graph classification.

All three of the GNNs we selected can transfer knowledge across training on the target
task. GCN and GIN can exploit Strong Modularity in the source task, while GraphSAGE
can leverage both structural and attribute information for node classification. For graph
classification, it is less clear that any model exploits either attribute or structural community
structure, and they appear to leverage a combination of the two to achieve transfer.

5. Conclusions

This research begins to standardise the procedure and metrics for evaluating trans-
fer learning using GNNs. Research on deep learning with graphs is expanding rapidly,
and understanding how we can achieve effective transfer is therefore of great benefit. There
remains large scope for future research. Our results considered node and graph classifica-
tion; but our experiments for transfer learning may be extended to other common graph
domains such as link prediction and edge classification. Another avenue for future research
is to repeat our experiments with other GNNs such as Graph Attention Network [49],
and other Graph Network types described by Battaglia et al. [7].
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Appendix A. Data Generation for Graph Classification

As described in the main article, we present a novel approach for synthetic graph
classification datasets. We want to be able to control the level of community structure
for both structure and attributes. To this end, we generated the datasets in the following
four steps:

Appendix A.1. Step 1: Create an Attribute-Level Task

The first step in the generation process is to create a attribute-level classification
task, where vectors of length n_features are generated belonging to num_classes classes.
The total number of these vectors is num_classes × n_per_class × 30, so that each
node in each graph for each class has an attribute vector that can be assigned to it. We
followed Morris et al. [50] in generating this attribute level task using the scikit-learn
library (See https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
classification.html, accessed on 4 August 2021). This tool generates the classification task
using a modified algorithm from Guyon [51]. After this step, the attributes have a high
level of community structure.

Appendix A.2. Step 2: Generate Graphs and Assign Attributes to the Graphs

Now that we have attribute vectors that are labelled, we want to generate graphs to
assign them to. We wanted the graphs in each class to have different average degrees, so
that strong community structure in terms of w.i.struct exists. A common and useful graph-
generation algorithm is the Barabási-Albert (BA) model [52]. The BA algorithm models

https://ogb.stanford.edu
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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preferential attachment, and takes in two parameters: the number of nodes n, and m the
number of edges to attach from a new node to existing nodes while growing the graph.

m = 1
d = 1.93

m = 2
d = 3.73

m = 3
d = 5.40

m = 4
d = 6.93

Figure A1. Average degrees d̄ for varying m in the Barabási-Albert model.

Varying the m parameter changes the connectivity of a generated graph, and thus its
average node degree. This can be seen in the figure above. By assigning graphs generated
with different values of m to different classes, we ensured structural community structure
with respect to average node degrees.

Once n_per_class graphs were generated for num_classes with different m values,
the corresponding attribute vectors from the previous step were assigned to graphs with
the same label. At the end of this step, we had a labelled dataset with strong community
structure for both nodes and attributes.

Appendix A.3. Step 3: Swap Graphs

This step weakens the structural community structure of the dataset by swapping
graphs. This is an optional step, and the extent to which the community structure is
weakened is controlled by the percent_swap parameter. This parameter may be in the
range [0, 1], and the default value is 0 (no graphs are swapped). A random sample of pairs
of graphs to swap is selected, corresponding to the specified percentage of the dataset.
By swapping more graphs, the classes have less distinct average node degrees compared to
one another, resulting in weaker community structure. This is demonstrated in Figure A2.
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Figure A2. The effect of varying the percent_swap parameter on w.i.struct. The shaded region is the
1σ interval variance over 10 runs.

Appendix A.4. Step 4: Damage Attributes

The final step weakens attribute community structure by replacing node attribute
vectors with random noise. This step is also optional, and is controlled by the percent_
damage parameter. This parameter also has a range of [0, 1], with a default value of 0,
and defines the percentage of graphs which will have their node attributes damaged
(replaced with random values). The higher the percentage is, the less distinct the attributes
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from different classes are from one another, and thus a weaker community structure. This
is demonstrated in Figure A3.
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Figure A3. The effect of varying the percent_damage parameter on w.i.attr. The shaded region is the
1σ variance over 10 runs.
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