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Abstract: Strip steel surface defects occur frequently during the manufacturing process, and these
defects cause hidden risks in the use of subsequent strip products. Therefore, it is crucial to classify the
strip steel’s surface defects accurately and efficiently. Most classification models of strip steel surface
defects are generally based on convolutional neural networks (CNNs). However, CNNs, with local
receptive fields, do not have admirable global representation ability, resulting in poor classification
performance. To this end, we proposed a hybrid network architecture (CNN-T), which merges CNN
and Transformer encoder. The CNN-T network has both strong inductive biases (e.g., translation
invariance, locality) and global modeling capability. Specifically, CNN first extracts low-level and local
features from the images. The Transformer encoder then globally models these features, extracting
abstract and high-level semantic information and finally sending them to the multilayer perceptron
classifier for classification. Extensive experiments show that the classification performance of CNN-T
outperforms pure Transformer networks and CNNs (e.g., GoogLeNet, MobileNet v2, ResNet18) on
the NEU-CLS dataset (training ratio is 80%) with a 0.28–2.23% improvement in classification accuracy,
with fewer parameters (0.45 M) and floating-point operations (0.12 G).

Keywords: CNN; Transformer network; multi-head self-attention; strip steel surface defect classification

1. Introduction

As global manufacturing changes, the standards for strip quality are also increasing.
Hot-rolled strip steel is a multi-functional low carbon steel with excellent properties such
as low hardness, easy processing, and excellent malleability. It has been widely used in
automobile manufacturing [1], bridges [2], and pipelines. However, a hot-rolled strip
steel surface commonly causes defects (e.g., rolled-in scale, cracks, pitted surface) in the
production process due to numerous factors such as production environment, materials,
rolling equipment, and processing technology [3]. The performance of the strip steel (e.g.,
corrosion resistance, wear resistance, and toughness) may change due to these defects,
which will reduce the quality of the final product [4]. Therefore, it is crucial to classify the
strip steel’s surface defects accurately and efficiently.

A convolutional neural network (CNN) is preferable to other types (e.g., artificial neu-
ral network, recurrent neural network) of deep learning models. Specifically, CNN learns
local patterns and captures promising semantic information, and it is also known to be effi-
cient (e.g., GPU parallelization, less number of parameters) compared to other types [5,6].
The traditional CNNs and their variants, such as ResNet [7], SENet [8], ShuffleNet [9], and
MobileNet [10], are commonly used to classify strip steel surface defects. However, CNN
has an aptitude for local features but not global features since each convolutional operation
only correlates pixels within a local area. Thus, there are certain limitations and challenges
when considering CNN as a feature extractor to extract the features of the strip steel’s
surface defects images [11]. In contrast, Transformer [12] networks based on self-attention
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mechanisms ignore local information in the early stages, but they have outstanding abilities
in global modeling [13]. To this end, we propose a hybrid architecture based on CNN and
Transformer (CNN-T), which has both satisfactory inductive bias and global modeling
capabilities.

The main contributions to this paper are listed below.
(1) We propose a hybrid network architecture (CNN-T) based on CNN and Trans-

former with prior knowledge and global modeling ability, outperforming pure transformers
and most CNNs (e.g., GoogLeNet, MobileNet v2, ResNet18) on the NEU-CLS dataset.

(2) The data samples in the experiments are insufficient, which cause severe overfitting
in training. We explore several data augmentation strategies to address this problem, such
as cropping, Gaussian noise, pseudo-color augmentation, etc., which increase the number
and diversity of samples.

The rest of this paper is as follows. Section 2 introduces the related work. Section 3
details the CNN, the Visual Transformer (ViT) [14], and the proposed architecture CNN-T.
Section 4 describes the data processing work. Section 5 shows the experiment’s details and
analyzes the experimental results. Section 7 gives the conclusion of this paper.

2. Related Works

In the past, professionals identified defects in a non-automated way, which were
inefficient and error-prone [15–17]. In addition, different experienced professionals will
make diverse judgments for the same defects, resulting in incorrect types and grades of
strip steel defects, thus reducing the reliability of defect identification. In general, the
recognition results obtained by relying on the subjective estimation of professionals are
unreliable [18].

To overcome the shortcomings of manual identification, scholars have studied vari-
ous algorithms based on machine learning technology. Ref. [19] proposed a classification
method combining the Grayscale Covariance Matrix (GLCM) and the Discrete Shear Trans-
form (DST). First, multi-directional shear features are extracted from the images, followed
by a GLCM calculation. Then it performs main components analysis with high-dimensional
feature vectors, and finally, it is sent to the support vector machine (SVM) to identify the
surface defects of the strip steel. Ref. [20] proposed a novel multi-hypersphere SVM with
additional information (MHSVM+) method, which learns extra information hidden in
defect data sets through an additive learning paradigm. It has better classification accuracy
on defect datasets, specifically damaged datasets. Ref. [21] proposed a one-class classi-
fication method based on generative adversarial network (GAN) [22] and SVM for the
identification of strip steel’s surface defect. It uses GAN generated features to train an SVM
classifier. In addition, it improves the loss function to enhance the stability of the model.
However, the above conventional Machine Learning algorithms usually require complex
feature engineering, which adds significantly to the cost.

In recent years, deep learning-based methods have achieved remarkable success for
image classification tasks, especially CNN. CNN has powerful characterization capabilities
and has shown excellent performance in strip surface defect recognition [23–25]. Ref. [23]
adopted GoogLeNet [26] as the base model and added an identity mapping to it, which
improved it to some extent. In addition, data augmentation strategies augmented the
dataset to alleviate overfitting. Ref. [24] proposed an end-to-end and efficient model based
on SqueezeNet [8]. SqueezeNet added the multiple receptive fields module, which can
generate scale-related high-level features. It is suitable for low-level feature training and
enables fast yet robust classification for strip steel surface defects. Ref. [25] proposed an
intelligent recognition system of surface defects for hot-rolled steel strip images using
modified AlexNet [27] and SVM. Classification models based on CNN have great fitting
ability but do not have excellent global representation ability due to the limitation of
receptive fields.

In addition to using pure CNNs for classification tasks, some researchers have also
explored combining CNNs and Transformers with the ability to capture long-range de-
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pendencies, aiming to fully integrate the advantages of both CNNs and Transformers
to improve classification performance. Ref. [28] combined CNN with the Bidirectional
Encoder Representations from Transformers (BERT) [29] for Intent Determination. First,
context representations of a sentence are obtained through BERT, and then these represen-
tations are fed into CNN to get feature maps. Finally, the predicted labels are given by
the softmax layer. Ref. [30] introduced two convolution-based operations into the ViT to
improve the performance and efficiency of ViT on the ImageNet dataset.

In contrast to the above works, this work aims to create a hybrid architecture based on
CNN and a Transformer encoder (CNN-T), which employs a Transformer encoder with
global modeling capability to overcome the limitation of pure CNN, which can only capture
local information.

3. Methods
3.1. CNN

CNNs have made significant breakthroughs in recent years, benefiting from the rapid
development of deep learning and artificial neural networks, as well as massive advance-
ments in computing hardware and data storage technologies [31]. CNNs can automatically
adjust the weights between neurons and have the advantage of non-linear mapping [32].
CNNs are end-to-end processing mechanisms that usually include a convolutional layer, a
pooling layer, and a fully connected layer [33]. Figure 1 depicts the structure of a CNN.
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Figure 1. Structure of the CNN.

Hidden layers, which include convolutional and pooling layers, are complex neuronal
layers with a multilayer non-linear structure. The network can autonomously extract visual
characteristics during convolution and pooling without relying on the experience and
knowledge of professionals [34]. One of the important components of the convolutional
layer is the convolution kernel, which performs feature extraction on the input image.
Convolution’s task is to filter the input data and keep the key features to improve the infor-
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mation in the object image. By reducing the number of model parameters and compressing
the feature map, the pooling layer aids in the reduction of computing effort.

CNN models benefit from convolution and pooling, with the advantages of translation
invariance and weight sharing, and have been widely yet effectively applied to image
classification [35]. However, its limitations are relatively obvious. Since the receptive
field of CNN is limited by the size of the convolutional kernel, CNNs are limited to
modeling relationships between local pixels and cannot represent large distances. The
attention technique is used in this research to build global pixel-to-pixel dependencies,
which addresses CNNs’ shortcomings.

3.2. Vision Transformer

Vision Transformer (ViT) [14] is the first to apply a pure Transformer architecture to
image classification and achieves results comparable to CNN. ViT consists of three main
basic modules, patch embedding, encoder, and multilayer perceptron (MLP) classifier.
The patch embedding consists of conv2d (16 × 16, stride = 16) and reshape. Multiple
vertically stacked Transformer layers form an encoder. The MLP classifier comprises layer
normalization and fully connected layers. In the actual execution process, the ViT network
first divides the input image (224 × 224 pixels) into 16x16 pixels of non-overlapping
patches through patch embedding, reshapes each patch into a one-dimensional token, then
concatenates these tokens and a classification token (plus position embedding) is fed to the
encoder for encoding, and finally sent to the MLP Classifier for category prediction.

Benefiting from the self-attention mechanism, ViT possesses global modeling abil-
ity [36] and achieves satisfactory results on the ImageNet dataset. However, pure Trans-
former networks like ViT lack the inductive bias of CNNs and thus need to rely on large-
scale data to achieve comparable results to CNNs. The increasing abundance of data brings
personal privacy breach problems, and data protection is urgent [37]. The emergence of
massive data will bring certain risks. According to the priority theorem, relying solely on
large-scale data to improve performance is not the best approach; our new idea is to merge
CNN and Transformer [38,39].

3.3. Proposed Architecture

Through the above analysis, we found that CNN and Transformer are complementary.
CNN is good at capturing local features while Transformer is skilled at capturing global
features. To this end, we construct a hybrid architecture CNN-T that merges CNN and
Transformer. CNN-T consists of four parts, convolution module, patch embedding, encoder,
and MLP classifier, as shown in Figure 2. The convolution module is employed to extract
the image feature map. Patch embedding converts images into sequences of tokens. These
tokens concatenate class tokens, plus the positional encoding, and feed into the encoder to
extract the high-level semantic information. The MLP performs classification prediction.

The convolution module consists of four standard convolution layers, with a convo-
lution kernel size of 3 and a step size of 2. The convolution kernels number in each layer
is 16, 32, 64, and 256, respectively. Each convolution is followed by batch normalization
and a rectified linear unit (ReLu) activation operation. Batch Normalization can control the
distribution range of the data, effectively avoiding gradient dispersion and explosion.

The patch embedding comprises a convolutional layer (1 × 1, stride = 1) and a reshape
operation. The input requirement of the Transformer encoder is 2D (ignoring batch size), so
the 3D convolutional feature map (14 × 14 × 128) is reshaped into a 2D shape of 196 × 128.
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Figure 2. CNN-T architecture.

The encoder involves two vertically stacked Transformer layers. As shown in Figure 3a,
each Transformer layer consists of two sub-layers. The first sub-layer structure consists of
LayerNorm, residual structure, and multi-head self-attention (MHSA). The MHSA number
used in this paper is four, and the internal Scaled Dot-Product Attention scoring mechanism
has been adopted in MHSA. The second sub-layer structure consists of LayerNorm, Mul-
tilayer Perceptron (MLP), and residual structure. The MLP is shown in Figure 3b, which
consists of the fully connected layers, the dropout, and the Gaussian Error Linear Units
(GELU) activation function superimposed.
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Figure 3. Transformer layer and MLP module.
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Figure 4 shows the classification system workflow of the CNN-T-based strip steel
surface defect. First, the grayscale images in the NEU-CLS dataset are converted to pseudo-
color images by the Jet algorithm. Then they are sent to the CNN module for feature
extraction to obtain a 14 × 14 × 256 feature map; these feature maps are sent to the patch
embedding module for 1 × 1 convolution and reshape operations. Finally, the MLP outputs
the classification results.
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1×12814×14×128
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Input 

Image
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Image
EncoderPatch EmbeddingConvolution Module MLP Classifier

Figure 4. CNN-T workflow. The numbers on the label respectively indicate the height, width, and
channels of the feature map.

4. Data Processing
4.1. Experimental Dataset

This paper takes the NEU-CLS dataset collected by Northeastern University as the
subject of study. It has been extensively studied in machine vision and experimental results
show that datasets have a significant impact on experimental results [40]. The NEU-CLS
dataset contains 1800 grayscale images of hot rolled strips of steel surface defects, each
with a size of 200 × 200. There are six categories of defects in this dataset, which are cracks
(Cr), inclusions (In), patches (Pa), pitted surface (PS), rolled-in scale (RS), and scratches
(Sc) [41]. Sample images from the NEU-CLS dataset are shown in Figure 5.

Cracks (Cr) Inclusions (In) Patches (Pa)

Pitted Surface (PS) Rolled-in Scale (RS) Scratches (Sc)

Figure 5. Sample images in the NEU-CLS dataset.
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4.2. Pseudo-Color Enhancement

Pseudo-color enhancement is a technology that transforms different grades of grayscale
images into various color images according to a linear or nonlinear mapping function. The
JET color mapping algorithm is the most commonly used in computer vision, which maps
the gray image (0–255) into the pseudo-color image, as shown in Figure 6. The JET map-
ping algorithm produces pseudo-color images with a high contrast ratio and enhances
the information content of the image, which can improve the visual effect of the sample
images, effectively highlight the details of the image, and extract features from the sample
image [42].

(a) Original image (b) Pseudo-color image

Figure 6. Pseudo-color enhancement effect. (a) original image, (b) pseudo-color image.

4.3. Data Pre-Processing

We divide the NEU-CLS dataset into a training set and a test set. Data-driven deep
learning models require large samples of training samples [43]. Therefore, we utilize
several data augmentation strategies such as Gaussian noise and geometric transformation
to expand the training samples to prevent overfitting during model training. Finally, we
scale all images to a uniform size of 224 × 224 pixels using bilinear interpolation. Figure 7
introduces the details of the data augmentation.

Flip horizontally and 

vertically

Gaussian noise

Rotate 45°

Figure 7. Data preprocessing. Flip, flip the image horizontally and vertically. Rotation, rotate the
picture 45 degrees separately. Random crop, randomly crop different parts of the picture. Add noise,
add Gaussian noise to the picture.
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5. Experiments
5.1. Experimental Setup

We conduct five models in the experiment, GoogLeNet, MobileNet v2, ResNet18,
CNN-T, and ViT (ViT consists of six Transformer layers, each of which is the same as
the CNN-T’s Transformer layer). We use 70%, 75%, and 80% of the training ratios for
training, respectively. The experimental results are random if done only once, which
has a large margin of error. The experiment ten times is repeated to reduce the effect
of randomness and obtain reliable experimental results. The final result is the average
of 10 experiments. The experiment in this paper uses the Pytorch framework, Pycharm
development environment, and Python language to implement the proposed approach.
The experiments are performed on a server with an Intel(R) Xeon(R) Silver 4210R CPU
and a GeForce RTX 2080Ti GPU. The parameter settings have a significant impact on the
experimental results. In this paper, the most suitable training strategy and hyperparameters
were determined in numerous experiments [44]. The detailed settings of the training are as
follows, with Cosine Annealing as the learning rate adjustment strategy, the initial learning
rate is 0.002. The loss function uses a cross-entropy function with label smoothing, and
the label smoothing factor is set to 0.1. Adam is applied as an optimizer. The weight
decay coefficient is 0.001, the batch size is 32, and all models are trained until complete
convergence.

5.2. Evaluation Metrics

We evaluate the model’s classification performance through multiple metrics, in-
cluding accuracy, precision, recall, and F1 score, and use parameters and floating-point
operations (FLOPs) to analyze model complexity. The multiclassification problem is treated
as multiple dichotomous classification problems, calculate precision, recall, and F1 for all
categories, which are given by Equations (1)–(3).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2PR

P + R
(3)

where TP is True Positive, TF is a True Negative, FP is False Positive, FN is False Negative,
P is Precision, and R is Recall. We calculate the total precision, recall, and F1 of all categories,
and then average them to obtain the micro_P, micro_R, and micro_F1. The formula is given
in (4)–(6).

micro_P =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FPi
(4)

micro_R =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FNi
(5)

micro_F1 =
2 × micro_P × micro_R

micro_P + micro_R
(6)

where n is the category number, which considers various categories’ numbers and is
suitable for unbalanced data unbalanced distribution.

5.3. Experimental Results

The accuracy, precision, recall, and F1 of CNN-T and other methods at a training
rate of 70% are shown in Table 1. As shown in Table 1, all the models are above 95%
accuracy. Both CNN-T and MobileNet v2 achieved a classification accuracy of 98.33%, but
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the accuracy of CNN-T was 0.03% higher than that of MobileNet v2. The ViT based on a
pure Transformer encoder achieved the worst performance.

Table 1. Accuracy, precision, recall, and F1 of different models when the training ratio is 70%.

Model Accuracy Micro_P Micro_R Micro_F1

GoogLeNet 96.11% 96.63% 96.11% 96.04%
ResNet18 97.22% 97.46% 97.22% 97.21%

MobileNet v2 98.33% 98.41% 98.33% 98.34%
ViT 95.00% 95.90% 95.00% 94.87%

CNN-T 98.33% 98.44% 98.33% 98.33%

Table 2 gives the accuracy, precision, recall, and F1 of different models at a training rate
of 75%. As can be seen from Table 2, all models achieved a better than training ratio of 70%.
This suggests that the performance of supervised learning models is mainly dependent
on the number of training samples. When the training ratio was 75%, all models except
ViT achieved F1 above 98%. Our method achieved the best performance, followed by
MobileNet v2.

Table 2. Accuracy, precision, recall, and F1 of different models when the training ratio is 75%.

Model Accuracy Micro_P Micro_R Micro_F1

GoogLeNet 97.22% 97.45% 97.22% 97.24%
ResNet18 98.06% 98.26% 98.06% 98.06%

MobileNet v2 98.61% 98.62% 98.61% 98.60%
ViT 96.11% 96.11% 96.11% 96.10%

CNN-T 98.89% 98.96% 98.89% 98.89%

The accuracy, precision, recall, and F1 of different models at a training rate of 80%
are shown in Table 3. As can be seen from Table 3, CNN-T achieved the top results for
all metrics, accuracy, precision, recall, and F1 of 99.17%, 99.21%, 99.17%, and 99.17%,
respectively. MobileNet v2 achieved the second-place result, and the accuracy was 0.83%,
0.56%, and 1.95% higher than GoogLeNet, ResNet, and ViT, respectively. At 70%, 75%, and
80% training ratios, our method achieved optimal performance compared to GoogLeNet,
ResNet18, MobileNet v2, and ViT. This demonstrates the effectiveness and superiority of
CNN-T for strip steel’s surface defect classification.

Table 3. Accuracy, precision, recall, and F1 of different models when the training ratio is 80%.

Model Accuracy Micro_P Micro_R Micro_F1

GoogLeNet 98.06% 98.18% 98.06% 98.03%
ResNet18 98.33% 98.35% 98.33% 98.34%

MobileNet v2 98.89% 98.93% 98.89% 98.89%
ViT 96.94% 97.18% 96.94% 96.91%

CNN-T 99.17% 99.21% 99.17% 99.17%

To further illustrate the effectiveness of the proposed method, we present the confusion
matrices of all models with a training ratio of 80%, as shown in Figure 8. To more intuitively
see the classification results of the above model (training ratio of 80%), we display them as
bar graphs, as shown in Figure 9. We also give the ROC curve of the proposed method on
the test set with a training ratio of 80%, as shown in Figure 10.
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(a) GoogLeNet (b)  ResNet18

(c)  MobileNet v2 (d) ViT

(e)  CNN-T

Figure 8. Confusion matrix of models. (a) GoogLeNet, (b) ResNet18, (c) MobileNet v2, (d) ViT,
(e) CNN-T.

 

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

Accuracy Micro_P Micro_R Micro_F1

GoogLeNet ResNet18 MobileNet v2 ViT CNN-T

Figure 9. Accuracy, precision, recall, and F1 of CNN-T and reference models when the training ratio
is 80%.
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Figure 10. ROC curve of the proposed method on the test set with a training ratio is 80%.

The performance of a classification model depends not only on accuracy but also
on the complexity of the model. We analyzed all model complexity in our experiments
through two measures of model parameters and FLOPs. As shown in Table 4, CNN-T has
the lowest parameters compared to other models, only 0.48 M. The FLOPs of the proposed
architecture is only about 8% of that of GoogLeNet, and also much lower than MibileNet
v2, ResNet, and ViT.

Table 4. Comparison of models parameters and FLOPs.

Model Params(M) FLOPs(G)

GoogLeNet 11.99 1.51
ResNet18 11.18 1.82

MobileNet v2 2.23 0.32
ViT 0.89 0.17

CNN-T 0.48 0.12

6. Discussions

In this paper, we demonstrate the importance of global discriminative features for
accurately classifying strip surface defects. We utilize an attention-based Transformer
encoder to globally model local features extracted from CNN, which can obtain contextual
semantic information from images. Experimental results show that our proposed method
is feasible and effective. Specifically, it outperforms pure Transformer networks and CNNs
(e.g., GoogLeNet, MobileNet v2, ResNet18) on the NEU-CLS dataset (training ratio is 80%)
with a 0.28–2.23% improvement in classification accuracy, with fewer parameters (0.45 M)
and FLOPs (0.12 G).

The CNN is known to be effective in capturing local patterns, while the Transformer
encoder is good at understanding context, but it is heavy (e.g., it has a lot of parameters).
Thus, the purpose of the combination of CNN and Transformer encoder is that CNN
converts the input image to a compact representation (which prevents the entire model
from being too large), and the Transformer encoder finds global, higher-level patterns
from the compact representation. Although the proposed method is effective, it is trained
based on supervised learning, which requires a certain scale of labeled data. Therefore,
semi-supervised or unsupervised training would greatly alleviate the reliance on labeled
data by pre-training or further improving the proposed method on large-scale datasets.
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7. Conclusions

CNNs have dominated the classification task for surface defects in strip steel. However,
CNNs with local receptive fields cannot extract global semantic information from images,
which hinders the accurate classification of surface defects of strip steel. This paper proposes
a hybrid architecture based on CNN and Transformer to overcome this problem, which
inherits the excellent properties of both CNN and Transformer, such as inductive bias and
global representation ability. Specifically, the CNN converts the input image to a compact
representation (which prevents the entire model from being too large), and the Transformer
encoder finds global, higher-level patterns from the compact representation. In addition,
we use data augmentation strategies such as geometric transformation, color change, and
Gaussian Gaussian to enrich the number and diversity of training samples. Extensive
experiments show that CNN-T outperforms pure Transformers and some CNNs (e.g.,
GoogLeNet, MobileNet v2, and ResNet18) on the NEU-CLS dataset, with fewer parameters
and FLOPs.

Author Contributions: Conceptualization, S.L., C.W. and N.X.; methodology, S.L.; validation, S.L.;
formal analysis, S.L. and C.W.; investigation, S.L. and C.W.; resources, C.W. and N.X.; data curation,
S.L.; writing—original draft preparation, S.L.; writing—review and editing, S.L.; supervision, N.X.;
project administration, S.L.; funding acquisition, C.W. and N.X. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (Nos. 2018YFB1702601 and 2018YFC0810204), Shanghai Science and Technology Innovation
Action Plan Project (Nos.17511107203 and 16111107502).

Data Availability Statement: The data presented in this study are available at http://faculty.neu.
edu.cn/songkechen/zh_CN/zhym/263269/list/index.htm (accessed on 13 March 2022).

Acknowledgments: The authors would like to appreciate all the anonymous reviewers for their
insightful comments and constructive suggestions to polish this paper to high quality.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aldunin, A. Development of method for calculation of structure parameters of hot-rolled steel strip for sheet stamping. J. Chem.

Technol. Metall. 2017, 52, 737–740.
2. Xu, Z.W.; Liu, X.M.; Zhang, K. Mechanical properties prediction for hot rolled alloy steel using convolutional neural network.

IEEE Access 2019, 7, 47068–47078. [CrossRef]
3. Ren, Q.; Geng, J.; Li, J. Slighter Faster R-CNN for real-time detection of steel strip surface defects. In Proceedings of the IEEE 2018

Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2173–2178.
4. He, D.; Xu, K.; Zhou, P. Defect detection of hot rolled steels with a new object detection framework called classification priority

network. Comput. Ind. Eng. 2019, 128, 290–297. [CrossRef]
5. Jeon, M.; Jeong, Y.S. Compact and accurate scene text detector. Appl. Sci. 2020, 10, 2096. [CrossRef]
6. Vu, T.; Van Nguyen, C.; Pham, T.X.; Luu, T.M.; Yoo, C.D. Fast and efficient image quality enhancement via desubpixel

convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich,
Germany, 8–14 September 2018.

7. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

8. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

9. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

10. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

11. Wang, Z.; Lu, W.; He, Y.; Xiong, N.; Wei, J. Re-CNN: A robust convolutional neural networks for image recognition. In Proceedings
of the International Conference on Neural Information Processing, Siem Reap, Cambodia, 13–16 December 2018; Springer: Cham,
Switzerland, 2018; pp. 385–393.

http://faculty.neu.edu.cn/songkechen/zh_CN/zhym/263269/list/index.htm
http://faculty.neu.edu.cn/songkechen/zh_CN/zhym/263269/list/index.htm
http://doi.org/10.1109/ACCESS.2019.2909586
http://dx.doi.org/10.1016/j.cie.2018.12.043
http://dx.doi.org/10.3390/app10062096


Electronics 2022, 11, 1200 13 of 14

12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30.

13. Liu, Y.; Zhang, Y.; Wang, Y.; Hou, F.; Yuan, J.; Tian, J.; Zhang, Y.; Shi, Z.; Fan, J.; He, Z. A Survey of Visual Transformers. arXiv
2021, arXiv:2111.06091.

14. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

15. Vannocci, M.; Ritacco, A.; Castellano, A.; Galli, F.; Vannucci, M.; Iannino, V.; Colla, V. Flatness defect detection and classification
in hot rolled steel strips using convolutional neural networks. In Proceedings of the International Work-Conference on Artificial
Neural Networks, Gran Canaria, Spain, 12–14 June 2019; Springer: Cham, Switzerland, 2019; pp. 220–234.

16. Gao, Y.; Xiang, X.; Xiong, N.; Huang, B.; Lee, H.J.; Alrifai, R.; Jiang, X.; Fang, Z. Human action monitoring for healthcare based on
deep learning. IEEE Access 2018, 6, 52277–52285. [CrossRef]

17. Wu, C.; Ju, B.; Wu, Y.; Lin, X.; Xiong, N.; Xu, G.; Li, H.; Liang, X. UAV autonomous target search based on deep reinforcement
learning in complex disaster scene. IEEE Access 2019, 7, 117227–117245. [CrossRef]

18. Luo, Q.; He, Y. A cost-effective and automatic surface defect inspection system for hot-rolled flat steel. Robot. Comput.-Integr.
Manuf. 2016, 38, 16–30. [CrossRef]

19. Ashour, M.W.; Khalid, F.; Abdul Halin, A.; Abdullah, L.N.; Darwish, S.H. Surface defects classification of hot-rolled steel strips
using multi-directional shearlet features. Arab. J. Sci. Eng. 2019, 44, 2925–2932. [CrossRef]

20. Gong, R.; Wu, C.; Chu, M. Steel surface defect classification using multiple hyper-spheres support vector machine with additional
information. Chemom. Intell. Lab. Syst. 2018, 172, 109–117. [CrossRef]

21. Liu, K.; Li, A.; Wen, X.; Chen, H.; Yang, P. Steel surface defect detection using GAN and one-class classifier. In Proceedings of the
IEEE 2019 25th International Conference on Automation and Computing (ICAC), Lancaster, UK, 5–7 September 2019; pp. 1–6.

22. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27.

23. Liu, Y.; Geng, J.; Su, Z.; Zhang, W.; Li, J. Real-time classification of steel strip surface defects based on deep CNNs. In Proceedings
of 2018 Chinese Intelligent Systems Conference; Springer: Singapore, 2019; pp. 257–266.

24. Fu, G.; Sun, P.; Zhu, W.; Yang, J.; Cao, Y.; Yang, M.Y.; Cao, Y. A deep-learning-based approach for fast and robust steel surface
defects classification. Opt. Lasers Eng. 2019, 121, 397–405. [CrossRef]

25. Boudiaf, A.; Benlahmidi, S.; Harrar, K.; Zaghdoudi, R. Classification of Surface Defects on Steel Strip Images using Convolution
Neural Network and Support Vector Machine. J. Fail. Anal. Prev. 2022, 22, 531–541. [CrossRef]

26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

28. He, C.; Chen, S.; Huang, S.; Zhang, J.; Song, X. Using convolutional neural network with BERT for intent determination. In
Proceedings of the IEEE 2019 International Conference on Asian Language Processing (IALP), Shanghai, China, 5–17 November
2019; pp. 65–70.

29. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

30. Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 22–31.

31. Huang, S.; Liu, A.; Zhang, S.; Wang, T.; Xiong, N.N. BD-VTE: A novel baseline data based verifiable trust evaluation scheme for
smart network systems. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2087–2105. [CrossRef]

32. Gao, K.; Han, F.; Dong, P.; Xiong, N.; Du, R. Connected vehicle as a mobile sensor for real time queue length at signalized
intersections. Sensors 2019, 19, 2059. [CrossRef] [PubMed]

33. Tang, H.; Wang, Y.; Yang, X. Evaluation of Visualization Methods’ Effect on Convolutional Neural Networks Research. In
Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 21–23
December 2018; pp. 1–5.

34. Cheng, H.; Xie, Z.; Shi, Y.; Xiong, N. Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and
bidirectional LSTM. IEEE Access 2019, 7, 117883–117896. [CrossRef]

35. Xiong, N.; He, J.S.; Park, J.H.; Cooley, D. A Neutral Network Based Vehicle Classification System for Pervasive Smart Road
Security. J. Univers. Comput. Sci. 2009, 15, 1119.

36. Cordonnier, J.B.; Loukas, A.; Jaggi, M. On the relationship between self-attention and convolutional layers. arXiv 2019,
arXiv:1911.03584.

37. Yang, P.; Xiong, N.; Ren, J. Data security and privacy protection for cloud storage: A survey. IEEE Access 2020, 8, 131723–131740.
[CrossRef]

38. Zhang, X.; Jin, Y.; Kwak, K.S. Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor
Networks. KSII Trans. Internet Inf. Syst. (TIIS) 2015, 9, 1733–1751.

http://dx.doi.org/10.1109/ACCESS.2018.2869790
http://dx.doi.org/10.1109/ACCESS.2019.2933002
http://dx.doi.org/10.1016/j.rcim.2015.09.008
http://dx.doi.org/10.1007/s13369-018-3329-5
http://dx.doi.org/10.1016/j.chemolab.2017.11.018
http://dx.doi.org/10.1016/j.optlaseng.2019.05.005
http://dx.doi.org/10.1007/s11668-022-01344-6
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TNSE.2020.3014455
http://dx.doi.org/10.3390/s19092059
http://www.ncbi.nlm.nih.gov/pubmed/31052585
http://dx.doi.org/10.1109/ACCESS.2019.2937098
http://dx.doi.org/10.1109/ACCESS.2020.3009876


Electronics 2022, 11, 1200 14 of 14

39. Wang, Y.; Li, X.; Gao, Y.; Wang, L.; Gao, L. A new Feature-Fusion method based on training dataset prototype for surface defect
recognition. Adv. Eng. Inform. 2021, 50, 101392. [CrossRef]

40. Wu, M.; Tan, L.; Xiong, N. A structure fidelity approach for big data collection in wireless sensor networks. Sensors 2014,
15, 248–273. [CrossRef]

41. Li, K.; Wang, X.; Ji, L. Application of multi-scale feature fusion and deep learning in detection of steel strip surface defect. In
Proceedings of the IEEE 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin,
Ireland, 17–19 October 2019; pp. 656–661.

42. Potashnikov, A.; Vlasuyk, I.; Ivanchev, V.; Balobanov, A. The method of representing grayscale images in pseudo color using
equal-contrast color space. In Proceedings of the IEEE 2020 Systems of Signals Generating and Processing in the Field of on
Board Communications, Moscow, Russia, 19–20 March 2020; pp. 1–6.

43. Wu, P.; Wu, G.; Wu, X.; Yi, X.; Xiong, N. Birds Classification Based on Deep Transfer Learning. In Proceedings of the International
Conference on Smart Computing and Communication, Paris, France, 29–31 December 2020; Springer: Cham, Switzerland, 2020;
pp. 173–183.

44. Li, H.; Liu, J.; Wu, K.; Yang, Z.; Liu, R.W.; Xiong, N. Spatio-temporal vessel trajectory clustering based on data mapping and
density. IEEE Access 2018, 6, 58939–58954. [CrossRef]

http://dx.doi.org/10.1016/j.aei.2021.101392
http://dx.doi.org/10.3390/s150100248
http://dx.doi.org/10.1109/ACCESS.2018.2866364

	Introduction
	Related Works
	Methods
	CNN
	Vision Transformer
	Proposed Architecture

	Data Processing
	Experimental Dataset
	Pseudo-Color Enhancement
	Data Pre-Processing

	Experiments
	Experimental Setup
	Evaluation Metrics
	Experimental Results

	Discussions
	Conclusions
	References

