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Abstract: Deep saliency models can effectively imitate the attention mechanism of human vision, and
they perform considerably better than classical models that rely on handcrafted features. However,
deep models also require higher-level information, such as context or emotional content, to further
approach human performance. Therefore, this study proposes a multilevel saliency prediction
network that aims to use a combination of spatial and channel information to find possible high-level
features, further improving the performance of a saliency model. Firstly, we use a VGG style network
with an identity block as the primary network architecture. With the help of re-parameterization, we
can obtain rich features similar to multiscale networks and effectively reduce computational cost.
Secondly, a subnetwork with a channel attention mechanism is designed to find potential saliency
regions and possible high-level semantic information in an image. Finally, image spatial features and
a channel enhancement vector are combined after quantization to improve the overall performance
of the model. Compared with classical models and other deep models, our model exhibits superior
overall performance.

Keywords: visual attention; visual saliency; saliency prediction; deep learning; re-parameterization

1. Introduction

The human visual system (HVS) receives hundreds of megabytes of visual data per
second, but processes only 40 bits per second [1]. The visual attention mechanism plays
an important role in this process [2]. When facing a complex scene, HVS will immediately
select a few regions of interest related to the current behavior or task for priority processing,
considerably decreasing the amount of input visual data and selectively processing each
scene in different orders and strengths to avoid waste of calculation and reduce the difficulty
of analysis.

The saliency detection task imitates the HVS mechanism to detect areas that can
attract people’s attention from the environment. This concept exhibits strong subjectivity,
including related knowledge in many fields, such as neurobiology, psychology, and com-
puter vision. Early saliency prediction models used this related knowledge, adopting
the method of handcrafted features or artificial design tasks. However, the performance
of saliency models gradually encountered a bottleneck. With the widespread application
of deep models, the field of visual saliency detection has achieved considerable progress
and played an important role in various studies. Multilayer deep models can automati-
cally capture more features and train in an end-to-end manner. They combine feature
extraction and saliency prediction, resulting in remarkable improvement in performance
compared with the classical model. As shown in Figure 1, a deep saliency model can
efficiently extract common features, such as human and contexture. However, the most
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interesting or significant parts of an image are not necessarily these objects. The human
visual model frequently has a reasoning process based on sensory stimulation. Although
deep models have made significant achievements in saliency prediction, saliency models
still require a higher-level concept to approach human-level performance. The important
problem is how to imitate a human analysis scene and understand the mechanism of
human gaze.
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Figure 1. In the picture, the animal attracts considerably more attention than the human.

The saliency detection tasks consist of two parts: saliency prediction and salient ob-
ject detection (SOD). In recent years, researchers have gradually changed to SOD tasks,
omnidirectional images, and dynamic models. As a pure computer vision application,
SOD can be easily applied to many different fields and has shown outstanding achieve-
ments [3]. Wang et al. [4] proposed a parameter- and weight-sharing model to obtain the
sharing information, and they proposed a PAGE-Net [5] to obtain the edge information.
Zhang et al. [6] proposed a dual refinement network (DRFNet) to process high-resolution
images. However, a saliency model is more related to neuroscience and psychology ba-
sics, which still play a crucial role in promoting a variety of interdisciplinary tasks, such
as human social interactions [7], end-to-end driving [8], medical diagnosis [9,10], and
health monitoring [11,12].

To improve the performance of saliency models further and explore the role and
importance of advanced features such as emotion or contexture in saliency prediction, a
multiscale, deep network model is proposed in this study. Our major contributions are
as follows:

• We propose a new, multilevel, deep neural network (DNN) model that adds an
identity block to the network through re-parameterization. By integrating the identity
block and improving the receptive field, we obtain more robust and accurate features.
Simultaneously, the proposed model effectively reduces computational cost compared
with the commonly used multiscale networks.

• We design a semantic perception subnetwork by adjusting channel features and
exploring the correlation between high-level semantic information. The priority and
importance of high-level information in visual saliency prediction are verified by
testing and comparing datasets with rich semantic targets.

The organization of this paper is as follows: Section 2 summarises the related work on
classical and deep saliency prediction models. Section 3 presents the network architecture
and optimization method proposed in this study. Section 4 describes the experimental
steps, including the evaluation measures and the results in two datasets on the basis of the
analysis and comparison of public standards. Section 5 presents the model visualization
and ablation analysis. Section 6 is the conclusion.
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2. Related Work
2.1. Visual Saliency and Attention Mechanism

The attention mechanism has always been an important topic in neuroscience and
psychology. Cognitive psychology emphasizes the initiative of human psychological activi-
ties and the importance of consciousness. It considers attention an important mechanism
of human brain information processing, promoting the research and development of the
attention mechanism. With the rapid development of cognitive psychology, many attention
theories have emerged and exerted an important effect on the field of computer vision.
These theories include the feature integration theory (FIT) proposed by Treisman [13] and
the return–inhibition mechanism, based on the FIT, proposed by Koch and Ullman [14].
Early human visual attention system simulation also uses important achievements in phys-
iology and psychology, such as center surround antagonism, maximization of information,
and global rarity. Psychologists have determined that among many advanced concepts, the
content that comprises human and facial expressions and human-related objects and words
can exert considerable effects on people. These studies have guided and standardized
subsequent saliency prediction models.

2.2. Visual Saliency Models

Early visual saliency prediction models can be divided into two categories: task
agnostic (bottom-up) and task specific (top-down). Bottom-up visual saliency models
are modeling by extracting low-level features, such as contrast, color, and texture. This
attention–prediction mechanism is an autonomous and fast information process. For
example, the earliest Itti et al. [15] model can simulate the process of human visual attention
transfer without giving any prior information. Since then, some scholars have made
improvements, such as local contrast analysis [16], global contrast analysis [17], conditional
random field [18], sparse coding analysis [19], and superpixel [20,21]. Considering the
diversity and complexity of top-down factors, top-down saliency modeling is a difficult
task. Top-down visual saliency models are mostly Bayesian models [22,23]. In addition,
Bayesian models can be regarded as the special case of decision theory models [24,25]. Both
models simulate the biological calculation process of human visual saliency. Although the
modeling methods of these classical models are diverse and creative, handcrafted features
or tasks still induce a bottleneck in model performance.

With the development of machine learning and big data computing, Vig et al. [26]
proposed the ensemble of deep networks (eDN) model in 2014. This model used a
self-driving method to search for optimal features on a large scale for the first time.
Since then, more researchers have adopted the deep learning method to study saliency
prediction. Combined with target recognition networks commonly used in deep learning,
such as AlexNet [27], VGG-16 [28], and GoogleNet [29], the deep learning method has
achieved good performance. Deepgaze I [30] first used AlexNet and softmax layers
to generate a saliency probability distribution map by using a classification method
and applied transfer learning in the field of saliency prediction. Then, the Deepfix [31]
model was changed to the VGG-16 network, and Deepgaze II [32] used the VGG-19 [28]
network as its primary feature extraction network. In addition, many models optimize
the network by adjusting different resolutions. Saliency in context (SALICON) [33]
used convolutional neural networks (CNNs) trained with double tributary multiscale
features. Pan et al. [34] proposed a shallow CNN (juntingnet) and a deep CNN (salnet)
for saliency prediction. The probability distribution prediction proposed by Jetley
et al. [35] defined saliency as a generalized Bernoulli distribution. The deep spatial
contextual long-term recurrent convolutional network (DSCLRCN) proposed by Liu and
Han [36] used the deep spatial long-term short-term (LSTM) model to capture global
features. Subsequently, the ML-Net model proposed by Cornia et al. [37] combined
the advantages of the aforementioned models. This model was composed of a feature
extraction CNN, a feature coding network, and a priori learning network. Cornia
et al. [38] subsequently proposed the SAM-ResNet and SAM-VGG models that combined



Electronics 2022, 11, 1180 4 of 14

the full convolutional network and the LSTM to obtain spatial information. The loss
function of this network was weighted by normalized scanning path saliency (NSS),
a correlation coefficient (CC), and a similarity metric (SIM). Thereafter, SalGAN [39]
conducted network training by using a countermeasure network. The saliency model
EML-Net proposed by Jia et al. [40] used extreme learning machines (ELMs) to learn
saliency prediction from each image in a set. The deep visual attention (DVA) model
proposed by Wang et al. [41] used a skip-layer network to train multiple scales by the
cooperation of the global and local predictions. The model proposed by Gorji and
Clark [42] used shared attention to generate saliency maps, and the performance of
these models was further improved. A fully convolutional network based on the deep
learning framework automatically received global information and trains in an end-to-
end manner to better identify the most significant region in an image. Such a network
has gradually become the mainstream direction of saliency prediction. In recent years,
saliency prediction has gradually developed in the field of dynamic and omnidirectional
images (ODIs). Wang et al. [43] proposed the Attentive CNN-LSTM Network (ACLNet)
that used the CNN-LSTM to encode static saliency information. Wang et al. [44] proposed
the spatiotemporal residual attentive network (STRA-Net) that used global attention
priors to capture information. Xu et al. [45] used adversarial networks to capture the
head trajectory and train deep models.

2.3. Understanding Advanced Semantic Information

Deep models have made remarkable achievements in the field of saliency prediction;
however, existing saliency models still cannot clearly understand the high-level semantics
of a scene. How the significance of objects in an advanced semantic model is predicted has
yet to be understood. A “semantic gap” still exists. To approach human-level prediction,
many scholars have conducted useful exploration by reasoning the relative importance of
image regions, and then learning higher-level features, such as emotion and body posture.
With the deep learning framework gradually becoming mainstream, a variety of models
with automatic learning features have also been produced in emotion-prediction tasks, such
as multimodal learning models [46] and multitasking frameworks [47]. With the help of the
attention mechanism, the classified emotional state (CES) or dimensional emotional space
(DES) models can automatically learn the importance of different channels and improve
robustness and accuracy. The emotion analysis model and saliency prediction model based
on attention mechanisms can promote and integrate with each other.

3. Proposed Approach

To further explore the effect of high-level semantic information on saliency, we propose
an improved multilayer network as the primary feature prediction network and use a
subnetwork to determine the importance of different spaces and channels of an image,
strengthening the possible saliency channels that contain high-level semantic information.
The model uses a bottom-up method; that is, it adopts spatial and channel features and
then refines them from top to bottom. The network obtains multilevel information in an
end-to-end manner, effectively reducing computational cost while retaining important
spatial and channel information. The overall network can be divided into two parts: a
multilevel feature re-parameterization network and a semantic feature-aware network. The
whole network is illustrated in Figure 2.
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3.1. Multilevel Feature Re-Parameterization Network

Inspired by the RepVGG [48] network, we added non-cross layers to the classical VGG
basic block as our backbone network. Simultaneously, we optimized and adjusted it to
adapt better to the saliency prediction task. On the basis of neurobiological research on
memory and forgetting dependence, RepVGG uses a new lossless channel pruning network
to simplify a CNN by reducing the number of output channels of the convolution layer.
This procedure can equivalently convert the re-parameterized model into the original archi-
tecture with narrower layers, realizing structural sparsity and parameter reorganization.
RepVGG is a lossless pruning model under an extremely high compression ratio.

Although ResNet, Inception, and other networks use a multi-branch structure to
improve the performance of a network, such complex structures will affect inference
speed because the branch results should be saved and resource consumption is large.
DepthwiseConv, ShuffleNet, and other networks have increased memory consumption,
but floating-point operations (FLOPs) are not directly proportional to speed. In addition, a
multi-branch structure affects the flexibility of a network. For example, the shape of the
input and output of the residual part of a residual structure must be the same to ensure
the feasibility of the residual. The use of VGG-like networks has many advantages. Firstly,
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a VGG network structure only includes 3 × 3 CNNs, a batch normalization (BN) layer,
and a rectified linear unit (ReLU) activation function. Existing computing libraries and
hardware are deeply optimized for 3 × 3 CNNs, while VGG is composed of a series of
3 × 3 CNNs, which exhibits evident speed advantages. However, VGG networks typically
suffer from model degradation with the deepening of network depth. The deepening of a
network makes training it difficult, and training errors will be initially reduced and then
increased. The addition of an identity block to VGG-like networks has been proven to
compensate for the shortcomings of a network, achieving better network performance [35].
Simultaneously, we optimized the whole network architecture to better play the role of the
backbone network in the saliency prediction task.

We adopted a network similar to RepVGG-A0 to build the backbone network, which
used a non-cross layer as a multi-branch identity block to replace the original CNN. The
identity block consists of the CNN, the 1 × 1 branch, and the identity branch. We also
replaced the convolutions of the head to better adapt to our saliency prediction task. As
shown in Figure 2, the network is largely a five-block structure. The first layer uses a VGG
style structure, including 1 identity block with 64 channels in Block I and 64 channels in
Block II. The number of channels in Block III is changed to 128, including 4 layers of the
identity block. Block IV uses 14 layers of the identity block, and the number of channels is
changed to 256. The last layer uses a 3-layer atrous convolution with 512 channels. Our
model adds multiple gradient flow paths to the network, which is equivalent to integrating
multiple networks into one network and will be simpler and more efficient than other
multiscale methods. The identity block is adopted during training, and this procedure is
equivalent to the calculation made in a block as follows:

Out = F1(X) + F3(X) + X (1)

where F1(X) represents 1 × 1 convolution layers and F3(X) indicates 3 × 3 convolution
layers. The values before and after the identity block remain unchanged. The branch is
equivalent to the special weight convolution layer, which is equivalent to using a convolu-
tion kernel with a weight of one to separate channels for convolution.

The convolution and BN layer structures are as follows:

Conv(x) = w(x) + b (2)

BN(x) = α∗ (x− E(x))√
S

+ β (3)

The whole fusion result can be expressed as

BN(Conv(x)) = wf(x) + bf (4)

where wf(x) =
α∗w(x)√

S
, bf =

α∗(b−E(x))√
S

+ β, and α and β are learnable parameters intro-
duced by the BN layer. S is the variance and E(x) is the mean value. The identity block can
be integrated well into the main network. The integrated structure is same as the original
CNN layer. It can efficiently capture more robust features and deal with the gradient disap-
pearance problem in the deep layer of the network. In model inference, the three-branch
convolution layer and the subsequent BN layer can be equivalently transformed into a
convolution layer with bias. After the obtained 1 × 1 convolution kernel padded into 3 × 3,
the convolution kernel and bias obtained by the three branches are added, respectively.
In this way, the trained model can be equivalently transformed into a one-way model
with only 3 × 3 convolution layers and finally realize “re-parameterization”, which can
take advantage of the high performance of the multi-branch model in training and the
advantages of fast speed and memory saving of the one-way model in inference.

Given the particularity of the saliency prediction task, the input image is considerably
scaled during the downsampling of layers. If the pre-trained RepVGG-A0 network is used,
then the input is 224 × 224. After five layers of maximum pooling, it will be reduced
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to 7 × 7. For the saliency prediction task, excessively small feature maps may reduce
prediction accuracy. Therefore, we adjusted the last block, removed the maximum pool
layer, and increased the output resolution. A three-layer stacked atrous convolution
with two holes and 512 channels was used. Atrous convolutions can efficiently offset
the loss of spatial information caused by the pooling layer. Combined with 512 channel
convolution layers, the network can obtain a better receptive field without losing the size
of the characteristic image to better capture image spatial information. The module uses a
dense structure to approximate a sparse CNN, allowing the network to use a larger number
of channels without increasing the amount of computation. Through the preceding method,
our saliency mapping is adjusted to 14 × 14 instead of 7 × 7. Simultaneously, our model
obtains a better receptive field and avoids accuracy loss. The features extracted from the
primary network are sent to the semantic feature-aware and merging networks.

3.2. Semantic Feature-Aware Network

In emotion recognition models, information weights of different levels are obtained
through squeeze, excitation, or attention modes [49] to form the emotion feature vector
for emotion classification or intensity discrimination. Referring to a variety of emotion
classification models, we also use a subnetwork to evaluate and extract high-level semantic
information. In contrast with the emotion classification model, our model’s task is to
generate a saliency map rather than emotion discrimination.

The features obtained from the last layer of the primary network are sent to the sub-
network. After the features are sent to the max-pooling layer to reduce feature dimension
and spatial variance, we use the global average pooling layer to compress the extracted
spatial information into a vector, generating a semantic representation vector (SRV) for
extracting high-level semantic information on the basis of channel enhancement. The
global average pooling layer can regularize the structure of the whole network, prevent
overfitting, eliminate the characteristics of black boxes in the full connection layer, and
provide practical saliency to each channel. Simultaneously, our parameters are reduced by
80% compared with some full connection layer models [50,51].

An SRV can learn its relative weights in accordance with the spatial position or
semantic features of different objects or regions in a scene, change the feature intensity
of different channels in a saliency map, and find the region of interest. Assuming that
the spatial information saliency map extracted by the primary network is F as a whole,
the N-dimensional information is compressed into a vector V by using the global average
pooling layer, which can be expressed as:

VC = 1
N∗N ∑N

i=1 ∑N
j=1 FC(i, j) (5)

where V represents the generated 1 × 1 × C vector. We use the channel enhancement
vector as a weighting module to multiply the saliency map of the primary network to
obtain the final saliency map. We use the sigmoid activation function to weigh each channel
and perform weighted merging through the 1 × 1 convolution layer of the last layer. The
diagram of the combined features is illustrated as follows:

M = 1
C ∑C

i=1 sigmoid(FC ×VC × Relu(WC)) (6)

We use the binary cross-entropy (BCE) loss function for network training. The pixel-
level prediction of a saliency map can be understood as a classification problem with a gray
value of 255. The sigmoid layer quantifies 255 to be between 0 and 1. In this chapter, we
use BCE as the loss function. In contrast with the mean squared error, which focuses on the
difference between prediction probability and real probability in all categories, BCE focuses
on the prediction probability of the correct category, and thus, it exhibits the advantage of
fast convergence. The BCE formula is as follows:

C = − 1
N ∑N

i y log a + (1− y) log(1− a) (7)
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where a is the predicted value given by the CNN and y is the label that corresponds to
the true image pixel value in saliency prediction.

Finally, we obtain the saliency map with a size of 14× 14 and restore it to the size of the
input image through bilinear upsampling. The whole network uses the bottom-up method
to segment features and then refines them from top to bottom to combine information from
shallow to deep. Compared with the original structure, our model retains important space
and channel information.

4. Experiments and Analysis

We used the SALICON [33] training dataset to train our saliency model and two
image datasets (Emod [51] and Cat2000 [52]) with rich semantic information to evaluate
our saliency model. The SALICON dataset is a large database that contains context saliency
in images selected from Microsoft common objects in context, including 10,000 images
for training and 5000 images for testing. The Cat2000 dataset contains 2000 images under
20 different categories, ranging from natural images to indoor and outdoor scenes, cartoons,
and emotions. Different categories of images are suitable for a variety of attention behav-
ior research. The Emod dataset contains 1019 positive and negative emotional images,
including 4302 targets with fine contour, emotional tags, and semantic tags.

Our model uses the first four blocks of pre-trained parameters initialized as RepVGG-
A0, which trained 40 epochs on the SALICON training set, with a momentum of 0.9, a
weight decay of 0.0002, and an initial learning rate of 10−4. Binary cross entropy is used
as the loss function, the random gradient descent training image is used in end-to-end
parameter learning, and Pytorch is adopted as the primary framework to train on NVIDIA
Titan X 3090Ti GPU.

4.1. Evaluation Measures

Measures for visual saliency prediction are mostly used to evaluate the similarity and
difference between saliency maps and ground truth (GT), and then output an evaluation
score to evaluate the degree of similarity or difference between them. Given a set of true
values to define the scoring function, the saliency prediction chart can be used as input and
then returned to evaluate prediction accuracy. Considering different GTs, many metrics are
used to evaluate the saliency prediction model. Firstly, the most widely used location-based
measure is the area under the curve (AUC), which can be used as a binary classifier. We
used its variant, called AUC-Judd, which uses uniform random sampling of non-concerns
to calculate the false positive rate, reducing the effect of center deviation. Although AUC
is widely used as an important criterion, it cannot distinguish the relative importance of
different regions. Therefore, we also adopt three of the most commonly used similarity
evaluation measures based on distribution, namely, NSS, CC, and earth mover distance
(EMD). Their descriptions are as follows:

1. NSS can represent consistency between mappings, taking the average value of P at
point Q of human eye attention, where n represents the total number of human eye
fixation, P represents the unit normalized saliency map P, i represents the ith pixel,
and N is the total number of pixels at the fixation point. NSS value is negatively
correlated with model performance.

NSS = 1
N ∑N

i=1 P(i)×Q(i) (8)

2. Linear CC is a statistical metric for measuring the linear correlation between two
random variables. For the prediction and evaluation of saliency, a prediction saliency
map (P) and a ground truth density map (G) are regarded as two random variables.
Then, the calculation formula of CC is:
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CC =
cov(P, G)

σ(P)× σ(G)
(9)

where cov is the covariance and σ is the standard deviation. CC can equally punish
false positive and false negative, with a value range of (−1, 1). When the value is
close to both ends, the model performs better.

3. EMD represents the distance between the two 2D maps, G and S. It is the minimum
cost of transforming the probability distribution of the estimated saliency map S
into the probability distribution of the GT. Therefore, a lower EMD corresponds to
a high-quality saliency map. In the field of saliency prediction, EMD represents the
minimum cost of converting the probability distribution of a saliency map into one of
a human eye attention map.

4.2. Experimental Results and Analysis

To evaluate the performance of our model comprehensively, we use several classical
and deep models for comparison. Three of the models are typical bottom-up methods,
including two classical models: graph-based visual saliency (GBVS) [53], IttiKoch 2 [15],
and the boolean graph-based saliency model (BMS) [54]. Three DNN models with superior
performance are SALICON [33], SAM-ResNet [38], and EML-Net [40]. All networks have
no additional center bias mechanism. The experimental results are shown in Figure 3 and
discussed below.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

where cov is the covariance and σ is the standard deviation. CC can equally punish 
false positive and false negative, with a value range of (−1, 1). When the value is close 
to both ends, the model performs better. 

3. EMD represents the distance between the two 2D maps, G and S. It is the minimum 
cost of transforming the probability distribution of the estimated saliency map S into 
the probability distribution of the GT. Therefore, a lower EMD corresponds to a high-
quality saliency map. In the field of saliency prediction, EMD represents the mini-
mum cost of converting the probability distribution of a saliency map into one of a 
human eye attention map. 

4.2. Experimental Results and Analysis  
To evaluate the performance of our model comprehensively, we use several classical 

and deep models for comparison. Three of the models are typical bottom-up methods, 
including two classical models: graph-based visual saliency (GBVS) [53], IttiKoch 2 [15], 
and the boolean graph-based saliency model (BMS) [54]. Three DNN models with supe-
rior performance are SALICON [33], SAM-ResNet [38], and EML-Net [40]. All networks 
have no additional center bias mechanism. The experimental results are shown in Figure 
3 and discussed below. 

 
Figure 3. Saliency maps of various models on the SALICION validation dataset. 

  

Figure 3. Saliency maps of various models on the SALICION validation dataset.



Electronics 2022, 11, 1180 10 of 14

Tables 1 and 2 list the quantitative evaluation results of the model on the Cat2000
and Emod datasets, respectively. The best scores are marked in bold. The model we used
achieved the best overall performance across datasets without additional center bias
mechanism, that probably because these datasets have more semantic and emotional
content than the other datasets. Our model can capture more relatively important
features and exhibits an advantage in datasets that are rich in these features. The
performance based on all the metrics is better than those of the other deep learning
models, considerably exceeding the performance of classical models. Among them, the
score of metrics is similar to SAM-ResNet and EML-Net on the basis of the Cat2000
dataset, while those of NSS, CC, and EMD are higher than SAM-ResNet by about 1.14%,
2.23%, and 1.75% and higher than EML-Net by about 0.56%, 2.23%, and 0.89% on the
basis of the Emod dataset. This may be due to the richer contexture and emotional
information in Emod. These scores are considerably higher than those of the classical
models. Although the improvement of our model is limited compared with EML-Net,
our model is simpler and the number of parameters is greatly reduced (from 23.5 M
to 14.8 M).

Table 1. Quantitative results of evaluation measures on the Cat2000 validation dataset.

Metric AUC-Judd NSS CC EMD

SALICON 0.86 2.18 0.79 1.13
SAM-ResNet 0.88 2.38 0.89 1.04

EML-Net 0.87 2.38 0.88 1.05
IttiKoch2 0.77 1.06 0.42 3.44

GBVS 0.80 1.23 0.50 2.99
BMS 0.78 1.16 0.39 1.95

Our Model 0.88 2.39 0.89 1.05

Table 2. Quantitative results of evaluation measures on the Emod validation dataset.

Metric AUC-Judd NSS CC EMD

SALICON 0.87 1.59 0.84 1.32
SAM-ResNet 0.87 1.74 0.86 1.14

EML-Net 0.87 1.75 0.86 1.13
IttiKoch2 0.73 0.98 0.39 3.2

GBVS 0.79 1.18 0.47 2.92
BMS 0.77 1.12 0.49 2.06

Our Model 0.87 1.76 0.88 1.12

NSS, CC, and EMD consider the relative importance of saliency regions. They are
important metrics for evaluating the roles of context and semantic information in saliency
prediction. These metrics for our model are better than the other methods in the two
datasets, demonstrating the advantage of the subnetwork in distinguishing the relative
importance of saliency regions. As discussed in Section 1, people tend to focus on human
and human-related actions or objects and regard them as saliency goals. Simultaneously,
these goals are frequently high-level factors rich in semantic information and often have
high saliency values. During the training process, the advanced feature detector as a
subnetwork can correct the feature detector one by one and activate the feature channels of
these advanced areas.

5. Model Visualization and Ablation Analysis

To better verify the role of each part of our network, we analyzed our model on the
Cat2000 validation dataset. We separately removed the identity block and subnetwork to
compare with the overall network and conducted joint training with the same loss and
input to verify the effect of the identity block and subnetwork on the performance of the
model. We divided the model structure into three parts: basic VGG-like model without
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branch (B), identity block (I), and subnetwork (S). The visualization results of the model
are presented in Figure 4.

1. Influence of identity block: Our backbone network uses a non-cross layer to capture
spatial features that are equal to multiscale networks. Multiscale models have
been widely used in recent years. Multiscale features and residual blocks are
considered the key elements of the saliency prediction task that can further improve
the performance of a saliency model. To verify the similar effect of the backbone
network in our model, we compared the whole network (B + I + S) with the basic
network (B) and basic network with subnetwork (B + S). For each image, we
calculated the score of the metrics. As shown in Table 3, the non-cross layer can
significantly improve the performance of the model. Also, it can greatly reduce the
over-fitting phenomenon that may occur, and the network is too sensitive to detect
error saliency areas (e.g., fourth line). Our model also exhibits some advantages in
parameters and reasoning time because we used the re-parameterization network
instead of directly using the multiscale network. Compared with other models
(EML-Net: 23.5 M and SAM-ResNet50: 70.1 M), the parameters of our model
(14.8 M) decreased significantly.

2. Influence of subnetwork: Similar architectures that use emotion or semantic features
can act well on emotion or semantic priority and predict the relative importance of an
image area by enhancing the ability of channel weighted subnetworks. To illustrate
this phenomenon, we calculated the same difference score between our model (B + I +
S) and the basic network without subnetwork (B + I) predictions. By correlating the
difference of each model with the authenticity of background in the image, the degree
of relative saliency of the human-related object predicted by the model was evaluated
(e.g., the computer in the first line). As indicated in Table 3, a large correlation shows
that the model performed better in predicting relative saliency. The best scores are
marked in bold.

Table 3. Quantitative results of model ablation on the Cat2000 validation dataset.

Metric AUC-Judd NSS CC EMD

B + I + S 0.88 2.39 0.89 1.05
B + S 0.80 2.11 0.81 1.33
B + I 0.79 2.03 0.85 1.43

B 0.75 1.85 0.71 2.03

These observations demonstrate that the subnetwork can obtain important information
in different regions, and this condition is more evident in the overall model. A multi-branch
network is more successful in improving the gradient disappearance problem of the primary
network and realizing a certain multiscale function to achieve better network characteristics.
Although the channel-increasing vector obtained from the subnetwork is used for emotion
classification in the emotion model, the ability of the channel weighted subnetwork is not
limited to emotion priority, but it can predict the relative importance of the object to avoid
missing some important areas. The main network and sub-network can cooperate to find
the saliency area while avoiding overfitting. Although we have achieved some success,
our prediction results still have some problems. When the image is more complex and
has many objects, model metrics decrease and some parts are not detected, or a certain
deviation exists in detection. These phenomena may be due to judging only from the
relative importance of channels but cannot really start from the semantic perspective of
high level.
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6. Conclusions

With the continuously improving performance of saliency prediction models and the
gradual saturation of evaluation measures, researchers have begun to look for higher-level
concepts to make saliency prediction closer to human-level performance. In this work,
we discuss the role of these features in saliency prediction, design a new DNN model to
simulate human attention effectively in complex scenes, and quantify the relationship
between high-level semantic information and visual attention. To detect the relative
importance of prominent areas, we use two image datasets with rich semantic features to
quantitatively investigate. Through experiments, we prove that high-level semantic features
exhibit a strong correlation with saliency prediction and given priority in saliency maps.
Our model combines the lightweight main network and semantic feature-aware network,
which reduces the consumption of computing resources and achieves good results.
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