
����������
�������

Citation: Yan, Z.; Jiang, A.; Lai, C.; Li,

H. Velocity-Free Formation Control

and Collision Avoidance for UUVs

via RBF: A High-Gain Approach.

Electronics 2022, 11, 1170.

https://doi.org/10.3390/

electronics11081170

Academic Editors: Katarzyna Antosz,

Jose Machado, Yi Ren, Rochdi

El Abdi, Dariusz Mazurkiewicz,

Marina Ranga, Pierluigi Rea, Vijaya

Kumar Manupati, Emilia Villani and

Erika Ottaviano

Received: 23 March 2022

Accepted: 5 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Velocity-Free Formation Control and Collision Avoidance for
UUVs via RBF: A High-Gain Approach
Zheping Yan, Anzuo Jiang * , Chonglang Lai and Heng Li

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
yanzheping@hrbeu.edu.cn (Z.Y.); lcl0131@hrbeu.edu.cn (C.L.); wsqess@foxmail.com (H.L.)
* Correspondence: jianganzuo2016@163.com

Abstract: This paper designs an adaptive formation control system for unmanned underwater
vehicles (UUVs) in the presence of unmeasurable states and environmental disturbance. To solve
the problem of unmeasurable UUV states, a filtered high-gain observer (FHGO) is employed to
estimate the states, despite measurement noise. Then, an adaptive control scheme is designed to
achieve UUV formation collision avoidance. The radial basis function (RBF) is used to estimate the
unknown disturbance. The stability of UUV formation with collision avoidance is proven by using
the Lyapunov theorem. Numerical simulation is carried out to demonstrate that the proposed filtered
high-gain observer is successful in estimating the states of UUVs. The control law can keep the UUV
formation from collision with good performance.

Keywords: multiple unmanned underwater vehicles; formation control; collision avoidance;
high-gain observer

1. Introduction

Due to its high efficiency and wide searching area, formation control for multiple
agents has become a hot topic. In the research process, there are a lot of challenges to
address, such as nonlinearity in parameters, communication constraints and dynamic
environmental disturbance. Various methods have been proposed for the formation control
of autonomous underwater vehicle (AUV) groups in a decentralized manner, which is also
known as high-level control, examples of which include artificial potential field or methods
based on agreement protocol such as leader–follower, virtual structure and behavioral
approaches [1–3]. In [4], an adaptive neural network formation controller was developed
for multiple AUVs with unknown model coupling terms and unknown disturbances. A
neuroadaptive sliding mode formation controller was proposed for multiple AUVs with
environmental disturbances [5]. Gao proposed a fixed-time sliding control scheme with
a disturbance observer to solve the compound disturbance, including both external en-
vironment disturbance and parameter uncertainties [6]. Based on the minimal learning
parameter algorithm, Lu proposed a robust adaptive formation controller to achieve the
formation control of multiple underactuated surface vessels (USVs) [7]. Due to the com-
plicated underwater situation, the research progress of UUV formation is relatively slow,
but research on unmanned aerial vehicle (UAV) formations, autonomous ground vehicles
and multiagents is advancing. In [8], an adaptive neural network control scheme was
investigated to address the formation control problem of multi-USVs with data dropout
and time delays [9].

Based on the approximation of a partial differential equation modeling the nonlinear
steady state, the characterization of the low-pass filtering to high-frequency measurement
noise of high-gain observers has been proved in [10]. High-gain observers are a good choice
for dealing with the influence of noise. It is fundamental to recall that the performance of a
high-gain observer in the presence of colored measurement noise is mainly characterized
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by its dominant linear behavior, if the frequency of the noise is large enough, as shown
in [10,11]. In [12], a fixed-time state observer was designed to estimate velocity state, and a
fuzzy adaptive sliding mode control law was proposed to achieve trajectory tracking. In
the absence of high-frequency measurement noise, high-gain observers can simultaneously
reject modeling uncertainty and quickly reconstruct the system states. In fact, to achieve
the objectives of fast state estimation, the chosen observer gain must be sufficiently high.
However, measurement noise introduces an upper limit for the gain when good perfor-
mance is considered. Prasov applied a nonlinear gain approach to overcome the trade-off
between fast state reconstruction and measurement noise attenuation [13]. The idea behind
the inclusion of dead-zone nonlinearity in a high-gain observer is to achieve a large gain
when the system is still in the transient phase. Hence, state estimations can approach
the true state values significantly fast. When the estimation error is sufficiently small, the
observer gain is small. Thus, the measurement noise can be attenuated. The second solution
is a modified high-gain observer, which applies a low-pass filter to standard high-gain
observers to reduce the effect of measurement noise [11].

In [14], an adaptive neural tracking control scheme was designed to solve a class of
uncertain switched stochastic nonlinear pure-feedback systems, and radial basis function
(RBF) neural networks were used to approximate the unknown nonlinear functions. The
RBFNN was also adopted in the uncertain switched nonlinear systems to estimate nonstrict-
feedback forms, and the error caused by the RBFNN was compensated [15]. The uncertain
switched nonstrict-feedback nonlinear systems used the RBFNN to cope with uncertain
nonlinear parts [16].

Research on the collision avoidance strategy of multiagents has been deepened.
In [17,18], types of potential functions were designed to achieve connectivity preservation
and collision avoidance, and the Lyapunov function was used for stability analysis. For
multiagent systems, the virtual potential force of the artificial potential field (APF) was
treated as an external disturbance, which proved to be robust based on H ∞ analysis
in [19]. Bong investigated a USV formation system that suffered from heterogeneous
limited communication ranges and designed a novel nonlinear transformed formation
error for achieving initial connectivity preservation and collision avoidance [20]. In [21], a
distributed control strategy was presented for a multiagent system to reach the target plane
with a predesigned orientation, circulate around the target with a prescribed radius, and
avoid collisions among multiagents. He and Wang proposed a formation control method
with collision avoidance for actuated multi-USVs to address parametric and nonparametric
uncertainties and external disturbances by imposing proper prescribed performance [22].
By integrating the gradient of a repulsive APF with a fast terminal sliding mode surface, a
novel sliding mode surface-like variable was improved for a position control scheme of
USV formation [23].

Motivated by the above observations, this paper presents an adaptive neural network
control scheme for UUV formation with unmeasurable states. The specific contributions of
this paper can be summarized as follows:

1. An FHGO is designed to exactly estimate the states of UUVs to satisfy the so-called ob-
server matching condition. Differently from [10], the input-to-state stability property
of the estimation error is still preserved in the presence of measurement noise;

2. An adaptive neural network formation control scheme is designed for UUV formation
with collision avoidance under unknown disturbance. The RBF neural network is used
to estimate the unknown disturbance. Studies on collision avoidance for multi-UUV
formation are mostly on the 3-DOF model in the horizontal plane. The state feedback
linearization method is used to transfer the nonlinear and coupling mathematical
model of UUVs into a second-order system model in 5-DOF. The artificial potential
field theory is applied to cope with collision avoidance among the UUVs. The form of
the potential function is much simpler;

3. Based on the Lyapunov theory, the stability of the formation system is proven. The proposed
controller is valid and performs well, which can be found in the 3-D simulation figures.
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2. Preliminaries and Problem Formulation
2.1. Graph Theory

Considering a multi-UUV system consisting of n vehicles, we use graph theory to
model the information exchange among UUVs. Let the graph G = (N, E, A) be an undi-
rected graph, which consists of a node set N = {n1, n2, · · ·, nn}, an edge set E ⊆ N × N
and the adjacency matrix A =

[
aij
]
∈ Rn×n. The element aij = 1 denotes that the node i

can receive information from the node j; otherwise aij = 0, and for all, i, aii = 0. Moreover,
G is undirected if aij = aji = 1. The collection of connected neighbors of ni is denoted
as Ni =

{
nj ∈ N : (nj, ni) ∈ E

}
. The in-degree matrix B = diag{b1, b2, · · · bn} ∈ Rn×n is

a diagonal matrix, where bi =
n
∑

j=1
aij, i = 1, 2, . . . , n is the in-degree of node ni. Then,

the Laplacian matrix L =
[
lij
]
∈ Rn×n is defined as L = B − A ∈ Rn×n. Define

ϑ = diag{θ1, θ2, . . . , θn}, which is the communication weight matrix between UUVi and
the virtual leader, where θi = 1 means that UUVi can receive the information from the
virtual leader, and θi = 0 means otherwise. Then, we obtain the matrix L = L + ϑ, and the
eigenvalues of L are positive.

2.2. Feedback Linearization of UUV Model

The kinematic and dynamic model of a UUV are described in two coordinate frames,
which are the Earth-fixed frame {E} and the body-fixed frame {B}, as shown in Figure 1.
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According to the structure of the UUV studied in engineering applications, there is no
thruster to control the angular velocity in roll. Meanwhile, the rolling has little influence on
the translational motion, so the roll speed can be ignored. Then, the kinematic and dynamic
equations of UUVs can be described as [24]:

.
p0 = J(p0)v0

M0
.
v0 = τ0 + ω0 − D(v0)v0 −C(v0) + ∆(v0)

ys = p0 + ωn

(1)

where p0 = [px
0 , py

0, pz
0, pθ

0, pψ
0 ]

T
denotes the position and the attitude angle of the UUV in

the Earth-fixed frame. v0 = [vu
0 , vv

0, vw
0 , vq

0, vr
0]

T
is the velocity vector of the UUV in the body-

fixed frame. ω0 ∈ R5 is an unknown time-varying disturbance due to currents and waves.
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τ0 ∈ R5 is the control input acting on the UUV in the body-fixed frame. ∆(v) represents
the parameter uncertainty. ωn denotes the measurement noise. Additionally, J(p0) is the
transformation matrix. M0, D(v0) and C(v0) denote the inertia matrix, damping matrix
and the matrix of Coriolis and centrifugal terms, respectively.

The mathematical model of UUV is nonlinear and has strong coupling. To solve the
problem, the feedback linearization method is adopted to simplify the UUV model. The
standard double integrator dynamic model can be described as:

.
p = v,
.
v = τ,

p ∈ R5, v ∈ R5
(2)

The specific linearization process can be obtained from [25]. In (3), the external
disturbances are not considered. Since the disturbance is unknown and nonlinear, no
matter how the conversion is performed in the linearization process, the final form of
disturbance is still unknown and nonlinear. Then, a modified linearization model is
proposed in this paper as:

.
pi = vi.

vi = τi + ω
(3)

where pi = [px
i , py

i , pz
i , pθ

i , pψ
i ]

T
∈ R5 and vi = [vu

i , vv
i , vw

i , vq
i , vr

i ]
T ∈ R5 are the position and

velocity of the UUVi in UUV formation with i = 1, 2, . . . , n. τi ∈ R5 is the control input of
UUVi. ω ∈ R5 is an unknown time-varying disturbance.

Due to the complexity of the underwater environment, if faults occur to the leader in
the leader–follower method, the mission of UUV formation will not be able to be completed.
To enhance the fault tolerance ability of the formation control, a virtual leader is introduced
and defined as: .

pl = vl.
vl = gl(t)

(4)

where pl ∈ R5 is the position of the virtual leader, and vl ∈ R5 is the velocity of the virtual
leader. gl(t) is a given bounded and time-varied function, ð is a positive constant, and
‖gl(t)‖ < ð. Define the error variable of UUVi as:

pi = pi − pl − εi
vi = vi − vl

(5)

where εi ∈ R5 is the desired relative position between UUVi and the virtual leader. The

desired velocity of UUVi is the same as the velocity of the virtual leader. Design
.
Z =

[
.
p

T
1 , . . . ,

.
p

T
n ,

.
v

T
1 , . . . ,

.
v

T
n ]

T
. Then, we obtain the error variable of the system as:

epi = ∑
j∈Nc

i

aij((pi − pj)− (εi − ε j)) + θi(pi − pl − εi)

evi = ∑
j∈Nc

i

aij(vi − vj) + θi(vi − vl)
(6)

where θi = 1 means that UUVi can receive the information from the virtual leader, and
θi = 0 means otherwise.

2.3. Artificial Potential Field and Virtual Repulsive

The APF method regards each UUV as a high-potential field. If any UUV is close to
its neighbor, the repulsive force will repel the UUV away from the other UUV’s potential
field. There are two advantages to collision avoidance by using the APF method. The first
is that the individuals of multi-UUV systems can be separated from each other to avoid
collisions. The second is that fewer parameters need to be debugged, and the controller
design is much simpler than other collision avoidance methods. In practical engineering,
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the UUV is a rigid body with volume instead of a particle. Then, we assume that each UUV
has the same structure and define the collision sphere and the collision avoidance sphere of
a UUV, as shown in Figure 2. The collision avoidance sphere is defined by the black sphere
with safe radius rs. The collision sphere is shown by the red sphere with collision radius

rc. We define ‖dij‖ =
√
‖xi − xj‖2 + ‖yi − yj‖2 + ‖zi − zj‖2 is the distance between UUV i

and UUV j . Shi [26] concludes that UUV j is a collision avoidance neighbor Nc
i of UUV i,

while ‖dij‖ ≤ rs. When ‖dij‖ ≤ 2rc, collision occurs between UUV i and UUV j.
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To ensure that no collision occurs among the UUVs, an artificial potential function
δij(d) and an action function ς(d) are defined as:

δij(d) =
∫ d

rs
ς(s)ds (7)

ς(d) =

{
− β

c
i

d2 d ∈ (2rc, rs)

0 d ∈ [rs, ∝)

}
(8)

where β
c
i > 0 is a design parameter. When β

c
i is large enough and d→ 2rc or d→ 0 ,

the potential function δij(d) will tend to infinity. Thus, the repulsive force for collision
avoidance is:

τca
i = βc

i ∑
j∈Nc

i

−∇pi δij(d) = −βc
i ∑

j∈Nc
i

ς(‖dij‖)
dij

‖dij‖
(9)

where −∇pi denotes a negative gradient along pi, and βc
i

is a positive gain parameter.

2.4. RBF Neural Network

The radial basis function neural network (RBFNN) is usually applied to approximate
the unknown nonlinear functions because of its advantage of approximation property [14].
Then, the RBFNN is used to address the unknown disturbance in this article. The RBFNN
W∗T H(z) can approximate the continuous function of disturbance Wω

i as:

ωi = Wi
∗T Hi(zi) + ϕi (10)
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where ϕ(z) ∈ R5 is the estimation error, and W∗ = [W∗1 , W∗2 , . . . , W∗m] ∈ Rm×5 is the ideal
constant weight. H(z) represents the basis function vector described as:

Hk(zi) = exp

[
− (zi − `k)

T(zi − `k)

κ2
k

]
, k = 1, 2, . . . , m (11)

where `i is the center of the Gaussian kernel, and κi denotes the width of the Gaussian kernel.
Define the error between the ideal weight and the estimated weight as:

W̃i = Ŵi −W∗i (12)

where Ŵi indicates the estimation of the ideal constant weight vector. Design the adaptive
weight update law of the neural network as:

.
Ŵi =

1
ci
[Hi(zi)(epi + evi)

T − αiŴi] (13)

where αi is the designed positive parameter, and ci is a positive constants.

2.5. Control Objective

The goal of this paper is to design an adaptive controller for a multi-UUV system with
collision avoidance. The control problems can be formally stated by the following objectives:

lim
t→∞
‖pi − pl‖ = εi

lim
t→∞
‖vi − vl‖ = 0

lim
t→∞
‖dij(t)‖ ≥ 2rc

(14)

where dij(t) denotes the relative position variable between the UUV i and its collision
avoidance neighbor UUV j, and ‖·‖ is a Euclidean norm.

Assumption 1. The disturbance is time-varying and bounded. Then, there exists a positive constant
σω, such that ‖ω‖ < σω.

Assumption 2. The velocity of UUVs and the virtual leader are not zero, e.g., vi 6= 0 and vl 6= 0.
According to the characteristics of UUV, the velocity of UUVs is bounded, e.g., ‖vi‖ < σv

i and
‖vl‖ < σv

l , where σv
i and σv

l are positive constants.

Assumption 3. At least one UUV can receive the information from the virtual leader, e.g., ϑ 6= 0,
where ϑ is the communication matrix between the virtual leader and followers. The communication
between the UUVs is connected, e.g., A 6= 0 and L 6= 0.

Assumption 4. The initial error in relative position and relative velocity of any two UUVs are
bounded. e.g., ‖epi − epj‖ < αp, ‖evi − evj‖ < αv. αp and αv are positive finite values.

Lemma 1 [26]. ϑ = diag{θ1, θ2, . . . , θn} and θi ≥ 0. If the Laplacian matrix L of the undi-
rected graph is irreducible, then the eigenvalues of the matrix L + ϑ are positive definite, e.g.,
L = L + ϑ > 0.

Lemma 2 [26]. V(t) > 0 is a continuous function for any time, and the initial state of V(0)
is bounded. If the inequality

.
V(t) > −γV(t) + Γ holds with γ > 0, Γ > 0, then we have the

following inequality:

V(t) ≤ V(0)e−γt +
Γ
γ
(1− e−γt) (15)
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Lemma 3 [27]. S(t) > 0 is a continuous function for any times, and the initial state of
S(0) is bounded. If the inequality holds

.
S(t) > λS(t) for t > 0, λ > 0, then we have the

following inequality:
S(t) > eq(t−t0)S(t0) (16)

3. Main Results
3.1. Filtered High-Gain Observer Design

There are some conditions, such as guidance failure or the fault of facilities, where
the states of the UUV cannot be obtained. To achieve the state estimation of the UUV
formation, a filtered high-gain observer (FHGO) is designed for multi-UUV systems with
measurement noise in the subsection. The main feature of the FHGO lies in its filtering
capabilities, which allow obtaining relatively smooth estimates in the presence of noisy
output measurements.

Let the UUV model be transformed into regular form:
.
pi = vi.
vi = τi + ωi = f (pi, vi, τi, ωi)
yi = pi + ωn

(17)

The high-gain observer design will be performed according to the following assumption.

Assumption 5. The states pi and vi are bounded. In addition, the noise ωn is essentially a
bounded function.

For comparison purposes, one recalls the equations of the standard high-gain observer
(SHGO) proposed in [28]: { .

h1 = h2 +
∂1
ε (y− h1).

h2 = f̂ (h1, h2, τf ) +
∂2
ε (y− h1)

(18)

where h1 and h2 denote the states of HGO, ε is a sufficiently small positive constant,
∂1 and ∂2 are chosen such that he roots of s2 + ∂1s + ∂2 have negative real parts, and
f̂ (h1, h2, τi) = f (h1, h2, τi, 0).

Inspired by Khalil [11], to improve the sensitivity properties of the observer with
respect to measurement noise, an FHGO for UUV formation can be designed as follows

.
h1 = h2 +

∂1
ε (y f − h1).

h2 = f̂ (h1, h2, τf ) +
∂2
ε (y f − h1)

Tf
.
z = A f z + B f y

y f = C f z

(19)

where Tf is the time constant, and A f , B f and C f are gain matrices such that C f A−1
f B f = −I.

Theorem 1. For the FHGO (21), there exists a positive constant β, arbitrarily small positive
number µ and a finite time T(µ) such that ‖η̃‖ = ‖η − h‖ ≤ µβ for t ≥ t0 + T(µ), where
h = [h1, h2]

T , η = [p, v]T .

Proof of Theorem 1. The following auxiliary variables are defined{
Tf

.
q f = A f q f + B f ωn

Tf
.
p f = A f p f + B f p

(20)
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Obviously, according to the above definition, C f q f is the filtered signal of measurement
noise ωn, which is denoted by ωn f . Thus, we have z f = p f + q f . Define the estimation
errors p̃ = p− h1, ṽ = v− h2. Then, we have{ .

p̃ = ṽ− α1 (C f z f − h1).
ṽ = f (p, v, τi, ω)− f̂ (h1, h2, τf )− α2

2 (C f z f − h1)
(21)

According to the definition of z f , we can obtain the detailed expansion of C f z f − h1:

C f z f − h1 = C f σ1 + C f q f + p̃ (22)

where σ1 = p f + A−1
f B f p. Substitute the above Equation (24) into the error dynamics (23),

we obtain: { .
p̃ = ṽ− ∂1 (C f σ1 + C f q f + p̃)
.
ṽ = f (p, v, τ, ω)− f̂ (h1, h2, τf )− ∂2

2 (C f σ1 + C f q f + p̃)
(23)

Now, consider the following change of coordinate{
φ1 = ( p̃ + C f σ1)/
φ2 = ṽ + C f σ2

(24)

where σ2 =
.
σ1. Taking derivative to the (24){ .

φ1 = (
.
p̃ + C f σ2) = φ2 − ∂1φ1 − ∂1wn/

.
φ2 =

.
ṽ + C f

.
σ2 = −∂2φ1 − ∂2wn/ + (C f p f

(2) − f̂ (h1, h2, τf ))
(25)

Then, it can be written in the compact form as:

.
φ = A f φ + B f (p f

(2), f̂ (h1, h2, τf ), wn) (26)

where φ = [φ1, φ2]
T , A f =

[
−∂1 I3 I3
−∂2 I3 03

]
,

B f (p f
(2), f̂ (h1, h2, τf ), wn) =

[
−∂1wn/

−∂2wn/ + (C f p f
(2) − f̂ (h1, h2, τf ))

]
.

Consider the Lyapunov function V as

VO = φT Pf φ (27)

where A f
T Pf + Pf A f = −I. Taking the derivative of the Lyapunov function and inserting

(26) leads to:

.
VO = φT(Pf A f + AT

f Pf )φ + 2φT Pf B f (p f
(2), f̂ (h1, h2, τf ), wn)

≤ −φTφ + 2‖φ‖‖Pf ‖(
[

03,1
‖C f p f

(2) − f̂ (h1, h2, τf )‖

]
+

[
‖∂1wn/‖
‖∂2wn/‖

]
)

(28)

By the definition of p f in (20), we have

Tf
.
p f

(2) = A f p f
(2) + B f f (p, v, τ, ω) (29)

Then, by the negative definiteness of A f and Assumption 1, it can be shown that p f
(2)

is ultimately bounded by O(Tf ). Furthermore, we can deduce that ‖C f Pf
(2)− f̂ (h1, h2, τf )‖

is bounded by some constant bn, and

.
VO ≤ −φTφ + c f

1
bn‖φ‖+ c f

2
w−1

f ‖φ‖ (30)
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where c f
1 = 2‖Pf ‖, c f

2 = 2‖Pf ‖∂3, ∂3 = max{2∂1, 2∂2}.
Using the fact that λmin(Pf )φ

Tφ ≤ V ≤ λmax(Pf )φ
Tφ and

.
VO = 2

√
VOd
√

VO/dt, after
some expansions and simplifications, we arrive at

2
√

VOd
√

VO/dt ≤ −l0VO + l1bn
√

VO + l−1
2 wn

√
VO (31)

where l0 = λmax(Pf )
−1, l1 = c f

1 λmin(Pf )
−1/2, l2 = c f

2 λmin(Pf )
−1/2. After computations,

we obtain
d
√

VO
dt

≤ − l0
2

√
V +

l1
2

bn +
l2
22 wn (32)

It can be verified that

√
VO ≤

l1bn

l0
+

l2wn

εl0
+ e−l0t/2

√
VO(0) (33)

In the light of VO = φT Pφ, some positive constants r1, r2, r3 must exist such that:

‖φ‖ ≤ r1bn + r−1
2 wn + e−l0t/2r3‖φ(0)‖ (34)

Recall that {
p̃ = φ1 − C f σ1
ṽ = φ2 − C f σ2

(35)

Obviously, if σ1 and σ2 are bounded, then the uniform ultimate boundedness of
tracking error can be obtained. The derivative of σ1 and σ2 can be derived as{

Tf
.
σ1 = A f σ1 + TA−1

f B f v
Tf

.
σ2 = A f σ2 + TA−1

f B f f
(36)

Then, by Assumption 1, it can be shown that σ1 and σ2 are ultimately bounded by
O(Tf ). After some computations, we obtain

‖ p̃‖ ≤ r2
1bn + r2wn + (1 + r3e−l0t/2)r4O(Tf )

+e−l0t/2r3‖η̃(0)‖
‖ṽ‖ ≤ r1bn + r−1

2 wn + (1 + r−1
3 e−l0t/2)r4

O(Tf ) + e−l0t/2r−1
3 ‖η̃(0)‖

(37)

where r4 = ‖C f ‖. Then, by choosing a constant β = max{2β1, 2β2} and µ = max
{

, O(Tf )
}

,

where β1 = max
{

r1bn, r2, 2r4

}
, β2 = max

{
r1bn, r2, 2r4

}
, time T(µ) must exists such that

‖η̃‖ ≤ µβ for t ≥ t0 + T(µ). This completes the proof. �

Remark 1. It should be noted that when the measurement noise bound ωn is small enough, µ can
always be arbitrarily small by selecting the appropriate time constant Tf and observer parameter .
Therefore, the estimation errors of the observer are guaranteed to be bounded. Moreover, according
to Theorem 1, the accurate estimations of the position vector p and velocity vector v of the ship can
be obtained through the appropriate coordinate transformation of the state of the FHGO:

} := γh→ [η, ν]T (38)

where γ = diag(I3, I3). The FHGO designed in this subsection will be used to accurately estimate
the states of multi-UUV systems in the following sections.
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Define error of the whole system with state observer as:

êpi = ∑
j∈Nc

i

aij((h1i − h1j)− (εi − ε j)) + θi(h1i − pl − εi)

= epi − ( ∑
j∈Nc

i

aij( p̃i − p̃j) + θi p̃i)

êvi = ∑
j∈Nc

i

aij(vi − vj) + θi(vi − vl)

= evi − ( ∑
j∈Nc

i

aij(ṽi − ṽj) + θi ṽi)

(39)

3.2. Adaptive Neural Network Formation Control with Collision Avoidance under Unknown Disturbances

The formation control law of the multi-UUVs is defined as:

τ
f

i = −ŴT
i Hi(zi)− ki(êvi + êpi) (40)

Combining (9) with (40), we can obtain the formation controller based on a high-gain
observer with collision avoidance under unknown disturbances is designed as

τi = τ
f

i + τca
i (41)

Proof of the Stability of the System. Define the Lyapunov function as follows:

VC =
1
2

ZT
(Q⊗ I5)Z +

1
2

n

∑
i=1

ciW̃T
i W̃i (42)

where ⊗ represents the Kronecker product. Define the derivatives of the error variable
as follows:

.
Z = −[U ⊗ I5]Z + [

O5n
Tτ

i
] + [

O5n
Wω

i
]− [

O5n
Gg

l
] (43)

where U =

[
On −In
On On

]
, Tτ

i = [τT
1 , . . . , τT

n ]
T , Wω

i = [ωT
1 , . . . , ωT

n ]
T , Gg

l = [gT
l , . . . , gT

l ]
T .

Taking the time derivative of the Lyapunov function, we obtain

.
VC = ZT

(Q⊗ I5)
.
Z +

n
∑

i=1
ciW̃T

i

.
Ŵ i

= − 1
2 ZT

((UT Q + QU)⊗ I5)Z + ZT
(Q⊗ I5)([

O5n
Tτ

i
] + [

O5n
Wω

i
]− [

O5n
Gg

l
]) +

n
∑

i=1
ciW̃T

i

.
Ŵ i

(44)

where Q =

[
2L L
L L

]
. Substituting (9), (13) and (40) becomes

.
VC = −ZT

(

[
On −L
−L −L

]
⊗ I5)Z +

n
∑

i=1
W̃T

i (Hi(zi)(êpi + êvi)
T − αiŴi)−

n
∑

i=1
(epi + evi)

T gl(t)

+
n
∑

i=1
(epi + evi)

Tωi+
n
∑

i=1
(epi + evi)

T(− ŴT
i Hi(zi)− ki(êvi + êpi)− βc

i ∑
j∈Nc

i

ς(‖dij‖)
dij
‖dij‖

)

= −ZT
(

[
On −L
−L −L

]
⊗ I5)Z +

n
∑

i=1
W̃T

i (Hi(zi)(êpi + êvi)
T − αiŴi)−

n
∑

i=1
(epi + evi)

T gl(t)

+
n
∑

i=1
(epi + evi)

T(Wi
∗T Hi(zi) + ϕi)+

n
∑

i=1
(epi + evi)

T(− ŴT
i Hi(zi)− ki(êvi + êpi))

−
n
∑

i=1
(epi + evi)

T(βc
i ∑

j∈Nc
i

−∇pi δij(d))

(45)
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For an undirected graph, the repulsive forces between UUVs are equal and opposite

in direction [29]. Therefore, βc
i

n
∑

i=1
(epi + evi)

T ∑
j∈Nc

i

−∇pi δij(d) = 0. Then, substituting (38),

we obtain
.

VC = −ZT
(

[
On −L
−L −L

]
⊗ In)Z +

n
∑

i=1
(epi + evi)

T(ŴT
i Hi(zi)− W̃T

i Hi(zi) + ϕi)

+
n
∑

i=1
W̃T

i (Hi(zi)(epi + evi)
T − αiŴi) +

n
∑

i=1
(epi + evi)

T(− ŴT
i Hi(zi)− ki(evi + epi))

+
n
∑

i=1
W̃T

i (− ∑
j∈Nc

i

aij( p̃i − p̃j) + θi p̃i)− ( ∑
j∈Nc

i

aij(ṽi − ṽj) + θi ṽi)))−
n
∑

i=1
(epi + evi)

T gl(t)

+
n
∑

i=1
(epi + evi)

T(−( ∑
j∈Nc

i

aij(ṽi − ṽj) + θi ṽi)− ( ∑
j∈Nc

i

aij( p̃i − p̃j) + θi p̃i))

= −ZT
(

[
On −L
−L −L

]
⊗ In)Z−

n
∑

i=1
(epi + evi)

T gl(t)−
n
∑

i=1
ki‖epi + evi‖2

+
n
∑

i=1
W̃T

i (− ∑
j∈Nc

i

aij( p̃i − p̃j)− ∑
j∈Nc

i

aij(ṽi − ṽj)− θi( p̃i + ṽi))−
n
∑

i=1
αiW̃T

i Ŵi

+
n
∑

i=1
(epi + evi)

T(− ∑
j∈Nc

i

aij( p̃i − p̃j)− ∑
j∈Nc

i

aij(ṽi − ṽj)− θi( p̃i + ṽi)) +
n
∑

i=1
(epi + evi)

T ϕi

(46)

Based on the Young’s inequality

−
n

∑
i=1

αiW̃T
i Ŵi ≤−

1
2

αiW̃2 +−1
2

αiW∗2

−
n

∑
i=1

(epi + evi)
T gl(t) ≤

1
2
[i,8‖epi + evi‖2 +

ð2

2[i,8

−
n

∑
i=1

(epi + evi)
T ∑

j∈Nc
i

aij(ṽi − ṽj) ≤
1
2
([i,1‖epi + evi‖2 +

1
[i,1

(ṽi − ṽj)
T A−1 A(ṽi − ṽj))

−
n

∑
i=1

(epi + evi)
T ∑

j∈Nc
i

aij( p̃i − p̃j) ≤
1
2
([i,2‖epi + evi‖2 +

1
[i,2

( p̃i − p̃j)
T A−1 A( p̃i − p̃j))

−
n

∑
i=1

(epi + evi)
T ∑

j∈Nc
i

θi( p̃i + ṽi) ≤
1
2
([i,4‖epi + evi‖2 +

1
[i,4

( p̃i + ṽi)
Tϑ−1ϑ( p̃i + ṽi))

−
n

∑
i=1

(epi + evi)
T ∑

j∈Nc
i

ϕi ≤
1
2
([i,7‖epi + evi‖2 +

1
[i,7

ϕi
T ϕi)

(47)

−
n

∑
i=1

W̃T
i ∑

j∈Nc
i

aij(ṽi − ṽj) ≤
1
2
([i,4W̃T

i W̃i +
1
[i,4

(ṽi − ṽj)
T A−1 A(ṽi − ṽj))

−
n

∑
i=1

W̃T
i ∑

j∈Nc
i

aij( p̃i − p̃j) ≤
1
2
([i,5W̃T

i W̃i +
1
[i,5

( p̃i − p̃j)
T A−1 A( p̃i − p̃j))

−
n

∑
i=1

W̃T
i ∑

j∈Nc
i

θi( p̃i + ṽi) ≤
1
2
([i,6W̃T

i W̃i +
1
[i,6

( p̃i + ṽi)
Tϑ−1ϑ( p̃i + ṽi))

(48)



Electronics 2022, 11, 1170 12 of 19

where [i,j is a positive constant, and j = 1, 2, . . . , 7. Then, we can obtain

.
VC ≤ −ZT

(

[
On −L
−L −L

]
⊗ In)Z + 1

2 ([i,1‖epi + evi‖2 + 1
[i,1

(ṽi − ṽj)
T A−1 A(ṽi − ṽj))

+ 1
2 ([i,2‖epi + evi‖2 + 1

[i,2
( p̃i − p̃j)

T A−1 A( p̃i − p̃j))−
n
∑

i=1
ki‖epi + evi‖2

+ 1
2 ([i,3‖epi + evi‖2 + 1

[i,3
( p̃i + ṽi)

Tϑ−1ϑ( p̃i + ṽi)) +
[i,8
2 ‖epi + evi‖2 +

n
∑

i=1

ð2

2[i,8

+ 1
2 ([i,4W̃T

i W̃i +
1
[i,4

(ṽi − ṽj)
T A−1 A(ṽi − ṽj))− 1

2 ([i,7‖epi + evi‖2 + 1
[i,7

ϕi
T ϕi)

+ 1
2 ([i,5W̃T

i W̃i +
1
[i,5

( p̃i − p̃j)
T A−1 A( p̃i − p̃j))− 1

2 αiW̃2 + 1
2 αiW∗2

+ 1
2 ([i,6W̃T

i W̃i +
1
[i,6

( p̃i + ṽi)
Tϑ−1ϑ( p̃i + ṽi))

= −ZT
(

[
On −L
−L −L

]
⊗ In)Z−

n
∑

i=1
(ki −

[i,1+[i,2+[i,3−[i,7+[i,8
2 )‖epi + evi‖2

− 1
2

n
∑

i=1
(αi − [i,4 − [i,5 − [i,6)W̃

2 + 1
2

n
∑

i=1
αiW∗2 +

n
∑

i=1

ð2

2[i,8
+ 1

2 (
1
[i,1

+ 1
[i,4

)‖ṽi − ṽj‖2

+ 1
2 (

1
[i,2

+ 1
[i,5

)‖ p̃i − p̃j‖2 + 1
2 (

1
[i,3

+ 1
[i,6

)‖ p̃i + ṽi‖2 − 1
2[i,7
‖ϕi‖2

(49)

Choose ρ
i,1
≤ ki −

[i,1+[i,2+[i,3−[i,7+[i,8
2 > 0 and ρ

i,2
≤ αi − [i,4 − [i,5 − [i,6 > 0. ϕi,

ṽi, p̃i are the error terms that are bounded. ð2

2[i,8
and αiW∗2 are constants. Thus, let

Γ = 1
2 [(

1
[i,1

+ 1
[i,4

)‖ṽi − ṽj‖2 + ( 1
[i,2

+ 1
[i,5

)‖ p̃i − p̃j‖2 + ( 1
[i,3

+ 1
[i,6

)‖ p̃i + ṽi‖2 + 1
[i,7
‖ϕi‖2]

+ 1
2

n
∑

i=1
αiW∗2 +

n
∑

i=1

ð2

2[i,8

.

Then, (47) can be written as:

.
VC ≤ −ZT

(

[
On −L
−L −L

]
⊗ In)Z−

n
∑

i=1
ρ

i,1
‖epi + evi‖2 − 1

2

n
∑

i=1
ρ

i,2
W̃2 + Γ

= −ZT
((ρ

i,1

[
L2 L2

L2 L2

]
+

[
On −L
−L −L

]
)⊗ In)Z− 1

2

n
∑

i=1
ρ

i,2
W̃2 + Γ

= ZT
(

[
ρ

i,1
L2

ρ
i,1

L2 − L

ρ
i,1

L2 − L ρ
i,1

L− L2

]
)⊗ In)Z− 1

2

n
∑

i=1
ρ

i,2
W̃2 + Γ

(50)

According to [24], ρ
i,1

L2 − (ρ
i,1

L2 − L) = L2
> 0, ρ

i,1
L2 − L > 0, so the matrix[

ρ
i,1

L2
ρ

i,1
L2 − L

ρ
i,1

L2 − L ρ
i,1

L− L2

]
> 0 such that

.
VC ≤ −ZT

((ρ
i,1

[
L2 L2

L2 L2

]
+

[
On −L
−L −L

]
)⊗ In)Z− 1

2

n
∑

i=1
ρ

i,2
W̃2 + Γ

= −ZT
((ρ

i,1
£ + Θ)⊗ In)Z− 1

2

n
∑

i=1
ρ

i,2
W̃2 + Γ

(51)

By choosing ρ
i,1
> λ£

min(λ
Θ
min + γ

2 λQ
max), λ£

min and λΘ
min are the smallest eigenvalue of

the matrix £ and Θ, respectively, and λQ
max denotes the largest eigenvalue of the matrix Q.

γ = min{α1c1, . . . , αncn}.
Then, we can obtain

.
VC ≤ − γ

2 ZT
(Q⊗ In)Z− γ

2

n
∑

i=1
W̃2 + Γ

= −γVC + Γ
(52)
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According to Lemma 2, the inequality can be obtained as

VC(t) ≤ VC(0)e−γt +
Γ
γ
(1− e−γt) (53)

Then, the adaptive UUV formation system with disturbance achieves performance. �

Proof of Collision Avoidance. Define an energy function:

S(t) =
1
2

dT
ij(t)dij(t) +

1
2

vT
i (t)vi(t) (54)

Because all the UUVs in the formation have the same structure and characteristic of
kinematic and dynamic, each UUV’s collision avoidance performance is analyzed in the
same way. The specific proof can be obtained from [28]. Taking the time derivative of
(56) yields:

.
S(t) = dT

ij(t)
.
dij(t) + vT

i (t)
.
vi(t)

= dT
ij(t)(

.
pi(t)−

.
pj(t)) + vT

i (t)(τi(t) + ωi)

= dT
ij(t)(vi(t)− vj(t)) + vT

i (t)((−ŴT
i Hi(zi)− ki(êvi + êpi)

−βc
i ∑

j∈Nc
i

−∇pi δij(d)) + Wi
∗T Hi(zi) + ϕi)

= dT
ij(t)(vi(t)− vj(t)) + vT

i (t)(−W̃T
i Hi(zi)− ki(êvi + êpi)

−βc
i ∑

j∈Nc
i

−∇pi δij(d)) + ϕi)

(55)

From (55), it is easy to obtain the error terms evi, epi, Ŵ and ϕi are bounded. vi(t) 6= 0,
vj(t) 6= 0 and dij(t)→ 2rc are also bounded. However, the potential function δij ap-
proaches infinity if dij(t)→ 2rc . Then, we can obtain the inequality by choosing the
appropriate parameter as follows:

vT
i (t)∇pi δij(dij(t)) >

1
2 dT

ij(t)dij(t) + 1
2 vT

i (t)vi(t)− 1
βc

i
dT

ij(t)(vi(t)− vj(t))

+ 1
βc

i
vT

i (t)(W̃
T
i Hi(zi) + ki(êvi + êpi)− ϕi)

(56)

Then, .
S(t) > βc

i
S(t) (57)

According to Lemma 3, we can obtain the following inequality

dT
ij(t)dij(t) > 2eβc

i
(t−t0)S(t)− vT

i (t)vi(t) (58)

By designing the parameter βc
i
, we have 2eβc

i
(t−t0)S(t)− vT

i (t)vi(t) > rc
2. Substituting

it into (58), we obtain ‖dij(t)‖ > 2rc. Therefore, the UUV formation can avoid collision
among them by the proposed control law. �

Remark 2. It should be noted that when the collision avoidance part is zero in the UUV formation
system, because the repulsive forces between UUVs are equal and opposite in direction. Then, a
Lyapunov function is designed to prove the stability of the collision avoidance system.

4. Simulation

To illustrate the effectiveness of the proposed algorithms, simulation was achieved
by the Simulink block in MATLAB with a step time of 150 s. The verification was mainly
divided into two parts. The first analyzes the effect of the state observer. The other is about
the effectiveness of collision avoidance. The UUV formation consists of four UUVs in the
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simulation experiment, and UUV0 is the virtual leader. Before showing the simulation
results, some parameters used in the system are listed in Table 1.

Table 1. Parameters.

Entry Value Entry Value Entry Value

θ1 0 θ2 0 ci 10
θ3 1 θ4 0 ki 3
rc 0.4 κ 2 βc

i 10
rs 1.5 αi 0.0001 β

c
i 5

The adjacency matrix and Laplacian matrix are

A =


0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

, L =


2 0 −1 −1
0 1 0 −1
−1 0 2 −1
−1 −1 −1 3


The initial velocities of the UUVs are designed as zero, and the initial position of the

UUVs is given as

pi =


p1
p2
p3
p4

 =


−10 10 0 0 0

0 −10 0 0 0
0 0 −10 0 0
5 5 0 0 0


The position of the virtual leader is given as

pl =


r cos(0.1t)
r sin(0.1t)

0.1t
0
0

, r = t2

The desired relative position ε between UUVi and the virtual leader is

ε =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 −2 0


Since the disturbance we considered is nonlinear and bounded, ωi is given as:

ωi =


(sin(0.2t))2 × (cos(1 + 0.2t))
(sin(0.2t))2 × (cos(2 + 0.2t))
(sin(0.2t))2 × (sin(1 + 0.2t))
(sin(1 + 0.2t))2 × (cos(0.2t))
(sin(2 + 0.2t))2 × (cos(0.2t))


4.1. State Observer Simulation Result

To illustrate the noise resistance ability of the proposed FHGO, a simulation compari-
son is presented by applying the SHGO (20) in [29]. The design parameters are taken as
= 0.05, ∂1 = 4, ∂2 = 4. The low-pass filter is taken as

1
T2

f s2 + 2Tf s + 1
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A f =

[
0 1
− 1

Tf
2 − 2

Tf

]
, B f =

[
0
1

Tf
2

]
where Tf = 0.2. The measurement noise ωn is generated using the Simulink Band-Limited
White Noise block with a noise power of 0.001 and sample time of 0.01 s. The following
simulations in Figures 3–5 illustrate the effectiveness of the filter in reducing the steady-state
error and peak value in the beginning. We can find in Figures 4 and 5 that the estimation of
the SHGO observer is badly jittery, and the estimation of the FHGO is more stable.
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Figure 5. Angle velocity state estimation of state observer.

4.2. Collision Avoidance Simulation Result

To show the performance of the controller of collision avoidance, we used the RBF
neural network to estimate the unknown disturbance. Figure 6 shows that the UUVs follow
the desired trajectory well and keep a good formation form. The distance between any two
UUVs is more clear to show the collision. The 2rc line is set at the bottom of Figure 7. If the
distance ‖dij‖ < 2rc, collision occurs. Figure 7 shows the distance between any two UUVs
of the formation considering collision avoidance. There is no line under the 2rc line. The
distance between UUVs is below to 2rc. With the collision avoidance control, the formation
performance can be guaranteed.
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Figure 7. Distance between any two UUVs of the formation with collision avoidance.

The position error and velocity error performance are validated as shown in Figure 8.
All the errors converge to zero in finite time, which means that the controller works
satisfactorily and the system is stable. Simulation results show the four UUVs can track the
virtual leader well without collision and maintain a good formation.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 20 
 

 

 

Figure 8. Position errors and velocity errors of UUVs. 

5. Conclusions 

The adaptive neural network formation control for multi-UUVs with collision avoidance 

under unknown disturbance is discussed. Graph theory is utilized to model the communica-

tions between UUVs. Feedback linearization is used to simplify the 5-DOF mathematical 

model. The overall structure of the control law is composed of the formation controller and 

the collision avoidance controller. In the condition of unmeasurable states, FHGO is designed 

to exactly estimate the states of UUVs. The RBF neural network is adopted to approximate the 

nonlinear dynamic disturbance term. By integrating the artificial potential field method into 

the virtual leader-following formation strategy, the collision among UUVs problem is solved. 

The system stability is proven using the Lyapunov theory. The result shows the observer pro-

posed in this paper performs better. Simulation results on formation control with collision 

avoidance demonstrated the controller designed in this paper is valid and performs well. 

Author Contributions: Conceptualization, A.J. and Z.Y.; methodology, A.J.; software, C.L. and A.J.; 

validation, A.J. and C.L.; formal analysis, Z.Y. and H.L.; investigation, A.J.; resources, Z.Y.; data 

curation, A.J.; writing original draft preparation, A.J. and H.L.; writing review and editing, Z.Y.; 

supervision, Z.Y. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Zhou, K.-B.; Wu, X.-K.; Ge, M.-F.; Liang, C.-D.; Hu, B.-L. Neural-Adaptive Finite-Time Formation Tracking Control of Multiple 

Nonholonomic Agents with a Time-Varying Target. IEEE Access 2020, 8, 62943–62953. https://doi.org/10.1109/ac-

cess.2020.2980894. 

2. Li, X.; Wen, C.; Chen, C. Adaptive Formation Control of Networked Robotic Systems with Bearing-Only Measurements. IEEE 

Trans. Cybern. 2020, 51, 199–209. https://doi.org/10.1109/tcyb.2020.2978981. 

3. Brinon-Arranz, L.; Renzaglia, A.; Schenato, L. Multirobot Symmetric Formations for Gradient and Hessian Estimation with 

Application to Source Seeking. IEEE Trans. Robot. 2019, 35, 782–789. https://doi.org/10.1109/tro.2019.2895509. 

4. Park, B.S. Adaptive formation control of underactuated autonomous underwater vehicles. Ocean Eng. 2015, 96, 1–7. 

https://doi.org/10.1016/j.oceaneng.2014.12.016. 

Figure 8. Position errors and velocity errors of UUVs.

5. Conclusions

The adaptive neural network formation control for multi-UUVs with collision avoid-
ance under unknown disturbance is discussed. Graph theory is utilized to model the
communications between UUVs. Feedback linearization is used to simplify the 5-DOF
mathematical model. The overall structure of the control law is composed of the formation
controller and the collision avoidance controller. In the condition of unmeasurable states,
FHGO is designed to exactly estimate the states of UUVs. The RBF neural network is
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adopted to approximate the nonlinear dynamic disturbance term. By integrating the artifi-
cial potential field method into the virtual leader-following formation strategy, the collision
among UUVs problem is solved. The system stability is proven using the Lyapunov theory.
The result shows the observer proposed in this paper performs better. Simulation results
on formation control with collision avoidance demonstrated the controller designed in this
paper is valid and performs well.
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