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Abstract: Satellite communications (SatComs) systems are facing a massive increase in traffic demand.
However, this increase is not uniform across the service area due to the uneven distribution of
users and changes in traffic demand diurnal. This problem is addressed by using flexible payload
architectures, which allow payload resources to be flexibly allocated to meet the traffic demand of
each beam. While optimization-based radio resource management (RRM) has shown significant
performance gains, its intense computational complexity limits its practical implementation in real
systems. In this paper, we discuss the architecture, implementation and applications of Machine
Learning (ML) for resource management in multibeam GEO satellite systems. We mainly focus on
two systems, one with power, bandwidth, and/or beamwidth flexibility, and the second with time
flexibility, i.e., beam hopping. We analyze and compare different ML techniques that have been
proposed for these architectures, emphasizing the use of Supervised Learning (SL) and Reinforcement
Learning (RL). To this end, we define whether training should be conducted online or offline based on
the characteristics and requirements of each proposed ML technique and discuss the most appropriate
system architecture and the advantages and disadvantages of each approach.

Keywords: satellite communications;radio resource management; flexible payload; beam hopping;

machine learning; supervised learning; reinforcement learning

1. Introduction

One of the main challenges in designing future satellite broadband systems is how to
increase satellite revenues while meeting uneven and dynamic traffic demands [1,2]. In
this regard, a flexible payload is a promising solution to meet changing traffic demand
patterns. As a consequence, recent research interests have focused on designing a new
generation of flexible satellite payloads that enable radio resource management (RRM)
based on non-uniform traffic demand [3-6]. In that sense, Cocco et al. [5] represent the
problem of RRM for multibeam satellite as an objective function that minimizes the error
between the capacity offered and the capacity required. Nevertheless, a thorough analysis
of both the design of the payload architecture and resource management is required.

Kawamoto et al. [7] suggest that optimization techniques are a valid and efficient
approach to address the resource allocation problem. However, at a larger scale, the number
of resources to be managed, the constraints arising from the system and the massive
number of traffic demand situations typically may result in a problem that conventional
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techniques cannot solve optimally or are too complex to be implemented. In fact, Kisseleff
et al. explained in [8] that the resource management problem in SatComs is, in most
cases, nonlinear and nonconvex due to the logarithmic function as well as the nonlinear
dependencies of the carrier/interference plus noise ratio (CINR) on problem formulation.
In addition, typical RRM involving scheduling and/or carrier allocation translate into the
use of binary or integer variables, which results in a combinatorial problem. For the latter,
an optimal solution cannot be obtained using well-established optimization methods. One
could attempt to solve the aforementioned problem by exhaustive search. Still, this strategy
has a very high computational complexity, which is often beyond the capabilities of satellite
ground segment processors in online operations.

Currently, for the reasons mentioned above, SatComs still relies heavily on human
expertise and manual operations. Satellite system control activity requires heavy human
involvement, which generates high operational expenditure (OPEX) and implicit latency
in human action that causes the degradation of the quality of service (QoS) [9-12]. Fur-
thermore, human-based decisions are typically far from the optimal ones, resulting in
non-efficient system performance.

In this context, Machine Learning (ML) has appeared as a promising alternative
for dealing with computationally expensive optimization procedure. Lately, with the
exponential increase in the amounts of data available, ML has become a fundamental
technology in different areas of wireless communications [13-15]. In this context, ML
has proven to be an interesting tool for accelerating complex optimization procedures for
general wireless communications [16]. On the other hand, by focusing on ML applicability
to SatComs, limited works such as [17-19] have resulted.

Focusing on ML solutions in SatComs, we next present the most relevant works
available in the literature. From a more general viewpoint, ESA opened the first Al-
related call for SatComs in 2019, intending to investigate the applicability of Al techniques
in the field of satellite communications. Two contracts were signed with a duration of
6 months each. During these six months, different potential use cases were shortlisted, and
a preliminary evaluation of a small number of them was carried out to provide guidelines
for future research. These two activities represent the most recent developments, and,
although complete documentation is not available, we base the following analysis on the
content included in both “Final Reports”:

¢  SATAI—Machine Learning and Artificial Intelligence for Satellite Communications [20].
Consortium: GMV, CTTC, Reply, Eutelsat;

e MLSAT—Machine Learning and Artificial Intelligence for Satellite Communication [21].
Consortium: Joanneum Research, Inmarsat, Gratz Technical University.

Table 1 summarizes the use cases examined in SATAI and MLSAT. As seen in both
projects, the resource management problem was identified as a potential use case.

Continuing from a general approach, Vazquez et al. introduced the application of Ma-
chine Learning (ML)-based procedures in real-world satellite communication operations [9].
The authors presented as a first approach some possible use cases of ML techniques for
SatComs operations; for example, they proposed the use of an autoencoder for interference
detection and the use of Recurrent Neural Networks (RNN) for traffic congestion prediction.
The work in [9] was conducted during the ESA project, SATAI [20], for which the goal was
more focused on investigating the applicability of ML concepts and techniques in the field
of satellite communications rather than an in-depth analysis and study of ML techniques
applicable to each selected use case. It is worth highlighting that a European funded project
has recently kicked-off, for which its contribution can be considered a continuation of the
SATAI project [22].

Along the same line, Kato et al. [23] proposed using Artificial Intelligence (Al) tech-
niques to optimize Space-to-Air-to-Ground Integrated Networks (SAGINSs). First, the
authors discuss several main challenges of SAGINs and explained how Al can solve these
problems. They consider satellite traffic balancing as an example and proposed a deep
learning (DL)-based method to improve traffic control performance. The simulation results



Electronics 2022, 11, 992

30f29

conclude that the DL technique can be an efficient tool for enhancing the performance of
SAGINs. However, the authors mention that implementing Al techniques in SAGINS is
still a new issue and it requires more effort in order to improve its performance.

Table 1. Review of use cases considered in the SATAI and MLSAT project.

Project Identified but Not Investigated Case Studies  Investigated Case Studies

- Anomaly detection
- Interference classification - Interference detection
- User allocation and network optimization - Syste.zm resources manage.ment
SATAI - Link adaptation (ﬂex1ble payload configura-
- User classification tion) . o
- Channel prediction for railway communi- ~ Congestion prediction
cations

- System resources management

. ; - Precoding matrix calculation
- Carrier interferer detection

Carrier interf ducti - Link adaptation

- arrier interferer reduction .

MLSAT ] Constellation mappin. - Ka-band frequency plan opti-
pping mization

- Multicarrier nonlinear distortion .
- Active antenna array

1.1. Related Works

Regarding resource management at SatComs, the authors in [24] proposed a combined
learning and optimization approach to address a mixed-integer convex programming
problem (MICP) in satellite RRM. The complex MICP problem is decomposed into two
classification-like tasks and a remaining power control problem. A dual-DNN approach
addresses the former, and the latter is solved by convex optimization. Deng et al. [25] pro-
posed an innovative resource management framework for next-generation heterogeneous
satellite networks (HSNs), which can encourage cooperation between independent satellite
systems and maximize resource utilization. The critical points of the proposed design lie in
the architecture that supports intercommunication between different satellite systems and
the management provided by the matching between resources and services. The authors
apply deep reinforcement learning (DRL) in the system due to its strong capability for
optimal pairing. The two problems of multi-target reinforcement learning and multi-agent
reinforcement learning are studied to adapt HSN development. The combination of DRL
and resource allocation achieves integrated resource management across different satellite
systems and performs resource allocation in HSN.

Continuing with the most recent research suggesting DRL algorithms to solve the RRM
problem, Ferreira et al. [11] stated that a feasible solution could be designed for real-time,
single-channel resource allocation problems. However, in their study, DRL architectures are
based on the discretization of resources before allocation, whereas satellite resources, such
as power, are inherently continuous. Therefore, Luis et al. [26] explored a DRL architecture
for energy allocation that uses continuous, stateful action spaces, avoiding the need for
discretization. Nonetheless, the policy is not optimal, as some of the demand is still lost. On
the other hand, Liu et al. [27] suggest a novel deep reinforcement learning-based dynamic
channel allocation algorithm (DRL-DCA) in multibeam satellite systems. The results
showed that this algorithm could achieve a lower blocking probability than traditional
algorithms; however, the joint channel and power allocation algorithm is not considered.

Liao et al. [28] constructed a game model to learn the optimal strategy in the satellite
communication scenario. In particular, the authors suggest a DRL-based bandwidth
allocation framework, which can dynamically allocate the bandwidth in each beam. The
effectiveness of the proposed method in time-varying traffic and large-scale communication
is verified in the bandwidth management problem with acceptable computational cost.
However, only one resource can be managed on the satellite with this method, which is a
critical limitation when full flexibility is sought in the multibeam satellite system.
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In this sense, Table 2 presents the main features of 10 different ML models for RRM in
multibeam satellites. The proposals are based on the work presented in [12,26,27,29-34].
In Table 2, the flexible resources of each model, the frequency reuse scheme density and
whether the optimization model is ML-based or ML-assisted are described, where the
symbol “0” indicates that this parameter has been evaluated in the referenced work. On
the other hand, we detail the type of ML technique that is implemented: either SL or
RL. An SL technique assumes that DNN (Deep Neural Network) or CNN (Convolutional
Neural Network) is implemented, while an RL technique assumed the use of Proximal
Policy Optimization (PPO), Q-Learning (QL), Deep Q-Learning (DQL) or Double Deep
Q-Learning (DDQL). Another important aspect indicated in Table 2 is related to the models
that implement RL techniques and whether the model is a Single Agent (SA) or Multi-
Agent (MA).

Among all the models mentioned in Table 2, we focus this paper on the evaluation of
sixe models ([30-33], QL-[34], DQL-[34] and DDQL-[34]), which were selected as follows:

*  The proposal based on [33] is the only model that uses a CNN for RRM and has
flexibility in three resources;

¢ In[34], the superiority of using MA concerning SA is demonstrated; thus, the proposals
that use an MA scheme were selected to evaluate three different algorithms (QL, DQL
and DDQL) and because it has flexibility in three resources.

*  The proposal based on [31,32] is the only model that implements DNN to manage
two resources.

e The work presented in [30] represents a beam hopping (BH) system with full frequency
reuse, and it is also the only one that uses an ML-assisted optimization model.

Table 2. ML model proposals features in SoA for multibeam satellite radio resources management.

Flexible Resources

Proposal Iluminati Frequency Optimization ML Evaluated in
P Power Bandwidth Beamwidth Ti::\r:matlon Reuse P Technique Qur Paper
RL-DQL
[29] o Full ML-based (SA)
[30] o) Full ML-assisted SL-DNN )
RL-DQL
[12] 4-colors ML-based (MA)
RL-PPO
[26] o) 4-colors ML-based (SA)
RL-DQL
[27] 4-colors ML-based (SA)
[31,32] o) 4-colors ML-based SL-DNN o)
[33] o) o) 4-colors ML-based SL-CNN )
RL-QL
QL-[34] o o 4-colors ML-based (MA) o
RL-DQL
DQL-[34] o) o) 4-colors ML-based (MA) o
RL-DDQL
DDQL-[34] o o) 4-colors ML-based (MA)

1.2. Motivation and Contribution

ML techniques have shown innovative results in resource management in SatComs
compared to conventional optimization techniques. However, previous works do not
provide a comprehensive overview of ML applications for RRM in SatComs. In other
words, previous works have two distinct weaknesses: (i) they focus on the management of
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a specific resource/problem and scenario, and (ii) they make use of independent numeri-
cal simulations.

In that regard, many open questions remain, such as how/where the ML block will
be implemented in the SatComs system, the hardware requirements or what the most
suitable technique is for its implementation. Based on these questions and the results
presented in previous publications [30-34], from a global view, we focus on the analysis
of the implementation of ML techniques for RRM in multibeam satellites in GEO orbit,
i.e.,, we study how ML techniques should be implemented depending on system features.
In particular, we consider a flexible SatCom system capable of managing more than one
satellite resource, highlighting two different systems studied. In addition, we analyze two
approaches to implement ML in RRM: supervised learning (SL), which is generally trained
offline, and reinforcement learning (RL), which is generally trained online, which leads to
whether the AI Chipset should be onboard the satellite or on the ground.

The discussion presented in this paper is expected to serve as a milestone for upcoming
projects to test the feasibility of implementing the AI Chipset in future SatCom systems
such as the SPAICE project [35] and the forthcoming launch of TechEdSat-13 [36]. In that
sense, the main contributions of this paper are listed below:

*  We define two different system architectures based on ML techniques for RRM de-
pending on whether the Al Chipset is at the ground station or onboard the satellite
depending on the training-learning characteristics.

*  We study and compare the proposed ML techniques to evaluate their performance
and feasibility for both systems.

¢  We evaluate the performance and processing time required depending on whether
training is online or offline.

*  We identify the main trade-offs for selecting the commercial AI Chipset that could be
used for ML implementation in SatCom systems with a flexible payload.

*  Weidentify different critical challenges for implementing ML techniques for the new
lines of research needed.

The remainder of the paper includes the dynamic radio resource management problem
and system model in multibeam satellite systems, which is presented in Section 2. Section 3
offers the ML approach for SatCom RRM, discussing the possible architectures and tech-
niques and restructuring the RRM problem to a supervised learning (SL) and reinforcement
learning (RL) approach. Section 4 reviews the performance of each system, presenting
a tradeoff in the performance of the different models. Section 5 presents discussions on
the advantages and disadvantages of the models and architectures presented, the main
trade-offs for selecting the commercial AI Chipset and includes open challenges. Finally
the conclusions are provided in Section 6.

2. Radio Resource Management

In this section, we describe the RRM problem by considering two different system
scenarios: one with flexibility in power, bandwidth and beamwidth and the other with
flexibility in illumination time assuming a system with Beam Hopping.

2.1. Power, Beamwidth and Bandwidth Flexibility

We assume a GEO high-throughput satellite system cp, comprising a single GEO
multi-beam satellite providing coverage to a wide region of Earth via B spot-beams. We
focus on the forward link and assume a total number of K single-antenna User Terminals
(UTs) distributed across the overall satellite coverage area. We assume that the consid-
ered payload can flexibly manage three resource settings, i.e., power, bandwidth and
beamwidth, similarly to [37,38]. From a practical perspective, the flexible power alloca-
tion can be obtained by using a TWTA (Traveling Wave Tube Amplifiers) by adapting
IBO (Input Back-off). At the same time, the flexible payload must be able to separate the
signals into frequency blocks and then reorder them to obtain a flexible bandwidth. This
process requires a channelizer onboard the satellite, as mentioned by the authors in [39], to
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identify the frequency plan (color assignment by frequency and polarization). Finally, to
achieve beamwidth flexibility, the OMUX (Output Multiplexer) of the traditional payload
should be replaced by reconfigurable BFNs (Beamforming Networks). The change of BFN
configuration is halfway between the possibility of synthesizing any beam and choosing
from a set of configurations for the same coverage [40].

The heterogeneous traffic demand distribution over the satellite beams and the varia-
tions of such traffic demand during the satellite lifetime are the main motivations behind
the recent emergence of dynamic radio resource management [8]. In order to adapt to actual
demands, the proposed system manages radio resources. The payload manager receives
input data from gateways and user beams and then generates optimal control by using the
ML model to reconfigure the satellite. The goal of RRM is to manage the available resources
to minimize the error between the offered capacity (C?) and the requested capacity (R?) in
bth beam at time slot ¢.

It may seem feasible to achieve a solution using optimization techniques at a larger
scale. However, the number of resources to be managed, the constraints coming from
the system and the huge number of traffic demand situations may result in a problem
that conventional techniques cannot solve. On the other hand, the resource management
problem in SatComs is, in most cases, nonlinear and nonconvex due to the logarithmic
function as well as the nonlinear dependencies of CINR in the optimization [8]. This is due
to the fact that C? can be calculated as C! = BW/°SE?, where SE! is the spectral eficiency
of the modulation and coding scheme of a commercial reference modem used in the bth
beam over f [41]. SE? depends on CINR in the bth beam and in turn CINR depends on the
power, bandwidth and beamwidth allocated to each beam (P?, BW! and 6?, respectively).
In this sense, a generic RRM cost function is defined as follows [33]:

OB o By B & be
min —Z|thRt|f§ZPtf—Z ) BW; 1)
=1 =1

PtbeWth'etb B B nc=1bc=1

such that the following is the case.

Cl >RV PY < Puaxp 07 > Opinp  BWP < BWyar @)
Cth = Chax,p Ptb = Puaxp s 95‘7 = Ominp , Bwtbc = BWinax
Z b
Z Pt < Pmax,T (3)
b=1
Bc
Y. BW < BWinaxc )
be=1
00 € {61,6,,...,0n} )

The cost function aims to minimize three parameters for each time instant, t. The first
parameter is the error between the offered capacity (C!) and the required capacity (R?),
where B (in s/bit) is the weight of the error in the cost function. The second parameter
minimizes the total power allocated to all beams (2521 Ptb ,in W), where B; (in 1/W) is the
total power weight. The third parameter refers to the total bandwidth (ZnNc”Zl ZE B whe,
in Hz) allocated to the beams of each color within the frequency plan, where B, is the
number of beams with the same frequency and polarization defined by color ¢, N, is the
number of colors in the frequency plan and B3 (in 1/Hz or s) is the weight of the total
bandwidth allocated in each color of the frequency plan.

The cost function constraints are presented in (2)—(5). We show the minimum capacity
constraint in (2) where C? > R! for each beam, provided if the power and bandwidth
assigned to the b-th beam at time t are less than the maximum allowed for each beam
(Pyaxp and BW,,,. |, respectively) and the beamwidth is greater than the minimum allowed
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(@yinp)- In case the offered capacity cannot satisfy the beam requirement constraint, the
offered capacity in the b-th beam will be the maximum possible value.

In addition, the total power allocated to each beam should not be greater than the
maximum total power of the system (Py,x,7) (3), and the total bandwidth allocated in each
color of the frequency plan should not be greater than the bandwidth per color (Bjax,c) (4).
Moreover, the beamwidth of the b-th beam must belong to the set of possible configurations
previously established (5), where N represents the size of the set. The beamwidths must
also meet the requirement of completely covering the entire service area.

2.2. Beam Hopping

Time flexibility is an alternative scheme where the full available spectrum can be
allocated to a subset of the overall spot beams, which are activated only for a specific
portion of time. The set of illuminated beams can be changed over time slots according
to a periodically repeating spatio-temporal transmission pattern. Co-channel interference
is kept to a minimum, keeping the beams belonging to the same group with a minimum
geographical separation. The main design problem of a BH system is to identify the
optimal illumination pattern of the beams, i.e., which beams are activated when and for
how long [30].

The beam scheduling or beam illumination pattern formulation considers a specific
time window T, segmented into time slots of duration Ts. In this case, we use “snapshot”
to refer to a particular arrangement of illuminated and unilluminated beams. Within a
BH window Ty, a number of illuminated snapshots are are used. Denote G as the set of G
possible snapshots and G, C G as a set of snapshots with illuminated beam b. In that sense,
a beam illumination design can be formulated as a max min problem where the objective is
to maximize the minimum value of the ratio between offered capacity and traffic demand
in the entire set of illuminated beams, and max min is generally widely used for fairness
purposes, such as fairness in satisfying user demand [8]:

b Lgegy 13 Ts
. =8 Ty
max min{ bl } (6)

such that the following is the case:

g
Y ;T =Ty @)
g=1

{t1,t2,..Tg} €1, ®)

where Cg represents the offered capacity, Dg represents the traffic demand on the bth beam
and t, is the normalized illumination time for the gth snapshot.

Based on its features, (6) is a mixed integer linear programming (MILP) problem. To
simplify the proposed problem, a reformulation is usually carried out that relaxes the
integers to non-negative continuous numbers. Then, the objective function is transformed
from a max—min to maximization-only by introducing an auxiliary variable as explained
in [30]. However, the illumination time per beam must be provided as a function of traffic
demand, as well as taking into account the number of simultaneously active beams and user
latency as explained in [8]. Therefore, an ML-assisted model is expected to help improve
the optimization performance presented in Equation (6) without having to resort to the
aforementioned simplifications.

3. ML for SatCom RRM: Architecture and Techniques
3.1. Machine Learning Implementation in SatComs Systems
3.1.1. Online or Offline Learning

ML techniques for RRM undergo two phases, as shown in Figure 1: training and
inference. Initially, the ML model experiences the training stage. The objective is to find the
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optimal model parameters to predict the radio resource configuration at the satellite for
the system conditions. Then, the trained model is obtained and used to indicate the best
payload resource allocation.

l

Model Bulding & Training

Training
Data

Model Good
Testing results

|

[ee] ‘? ? 0
Radio Resource
Configuration

Training
A

Test
Data

Trained Model

Inference

New Data

Radio Resource
Configuration

FoeT

Figure 1. Difference between training and inference of the ML model for RRM.

In this regard, one of the first decisions to make when implementing ML for RRM is
whether learning should be online or offline. Online learning means learning as the data
comes in. Offline means that a static dataset is available. Thus, with online learning, more
data are (usually) available, but there are time constraints.

A system trade-off exists between the type of training selected. Depending on the
service requirements, one option can be chosen. Suppose the most important objective
is to maintain the quality of service and availability. In that case, online training can be
chosen as it has the ability to better adapt to sudden and abrupt changes in the system over
time because learning is constantly updated. However, it requires processing times to be
invested in the training, which can delay updating the resources in the payload.

On the other hand, if offline training is chosen, processing times are reduced since
inference on a trained ML model requires a low computational cost compared to the
training phase. The ML model acts as an intelligent switch that selects the payload resource
configuration based on the current system requirements. Nevertheless, a large database
may be required to obtain a successful training that considers multiple RRM parameters,
and the model may present large errors for unexpected situations in the system.

This presented trade-off has a strong impact on the implementation of the Al Chipset
in the system as explained in Section 3.1.2.

3.1.2. Ai Chipset On-Ground or On-Board

Selecting the most suitable system architecture to meet the minimum service require-
ments is one of the main challenges of implementing ML techniques in SatComs systems. In
this sense, in Figures 2 and 3, we propose two system architectures that use ML techniques
to automate the RRM process. The main difference resides in whether the AI Chipset is
onboard or on-ground.

The first proposed architecture (Figure 2) represents process automation implemen-
tation using an ML algorithm trained online. For this scenario, the AI Chipset is part of
the ground segment because the trained model must be updated every time. Information
on the system traffic demand, on the geographical distribution of users and on channel
information is obtained through the return link, which will reach the servers connected to
the system gateway network. The data are processed to train the ML model with which
the RRM policy is updated, and the AI Chipset is used for inference. The information
on how the radio resources should be distributed on the satellite is generated. By using
TT&C (Telemetry, Tracking and Command), this information is transmitted to the satellite,
allowing the satellite to manage the radio resources for the user link.
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Transparent GEO satellite,
N

Space Segment Payload
Operations (SOC) Telemetry
Tracking and

Command (TT&C
§ g Server Ground S}tition
i 4—
01
=

R

_Q;/

Router .
—p Return Link
Update RRM ]
Model

Ground Segment Network
Online Process Operations (NOC)

System traffic
demand
information

Figure 2. Al Chipset implementation in the ground segment for RRM in a multibeam satellite system.
ML algorithm training is performed online in the ground segment using the information received
on the return link updating the model for the RRM and sending the necessary configurations on the
satellite via TT&C.

Online Process

System traffic
demand
information

Trained RRM Radio Resources
model Information

- Space Segment Payload
Offline Process Operations (SOC)

Training database
1%01% aﬁ Server

Model training

and validation

Trained RRM
model

Intermediate = p Forward Link
Router

—p Return Link

Ground Segment Network
Operations (NOC)

Figure 3. Al Chipset implementation in the space segment for RRM in a multibeam satellite system.
ML algorithm training is performed offline in ground segment with a training database, thus saving
the model obtained and the Al chipset can go onboard the satellite using the model for inference.

The main advantage of this architecture (Figure 2) is that the system will have greater
flexibility to adapt to unforeseen changes, e.g., a drastic and unexpected change in traffic
demand. Thus, obtaining an outstanding performance in the automation of the RRM
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process since the updated RRM model is obtained with the instantaneous values of the
actual system. However, there are two main disadvantages: (i) the processing time due to
which could add a delay in updating the satellite radio resources and (ii) the signaling and
reallocation of resources may introduce performance degradation to the system.

On the other hand, the second proposed architecture (Figure 3) is based on training
the offline ML model with a training database that describes the system behavior. A model
that manages satellite resources according to user link conditions could be obtained. Once
the model has been trained, the Al Chipset could be located onboard the satellite [35]
for inference. The main advantage of this architecture (Figure 3) is that processing times
are reduced, firstly because the model has been previously trained. However, a return
channel demodulator would be required to analyze the traffic demand in real-time or an
additional ML block for onboard traffic prediction is also feasible; thus, this architecture has
a strong dependency on the training data and the models used. This will imply additional
complexity and power needs onboard. In addition, the dependence of the traffic model
could affect the performance of the RRM in case of drastic changes in the actual system
and the training has to be redone; furthermore, the cost and mass of the payload would
be increased.

A third scenario would be a hybrid architecture where model training is initially
performed online. However, it is possible to update the trained model by collecting new
data obtained during the forward link.

3.2. Supervised Learning for RRM

SL is a technique for deducing a function from training data. The training data
consist of pairs of objects: One component of the couple is the input data, and the other
is the desired results. The function’s output can be a numerical value (as in regression
problems) or a class label (as in classification problems). Supervised Learning aims to create
a function capable of predicting the value corresponding to any valid input object after
having observed a set of examples: the training data. To perform this, one must generalize
from the presented data to previously unknown situations [42].

On the other hand, neural networks (NN) are a model inspired by the behavior of
the human brain. It consists of a set of nodes known as artificial neurons that transmit
signals to each other. These signals are transmitted from input to output. The NN consists
of three different layers: (i) the input layer, where the input variables that can represent the
characteristics of the system are located; (ii) the output layer, where the output variables
are located and represent the information acquired from the input variables; (iii) and the
hidden layers, where information is propagated and analyzed to obtain an expected output.
NN training is performed through backpropagation, which consists of propagating the
error between the desired and expected output from the last layer to the first, modifying
the weights of the neural connections until the error is minimized [43].

In that sense, NNs represent a viable option to optimize and automate the RRM in a
multibeam SatComs system. We will focus specifically on approaching the problem using
Deep Neural Networks (DNN) [30,31] and Convolutional Neural Networks (CNN) [33].

When the system is offline, training data are generated first, and labels are assigned to
training data to minimize the RRM cost function. NN training is performed offline, and
resource management responds to the traffic demand using supervised learning.

In other words, NN represents only an intelligent switch for the payload that changes
from one configuration to another whenever the system requirements change; the change
is made instantaneously, i.e., the impact of a delay in updating resources on capacity is
negligible. NN performance during training is crucial, and it is also important to avoid
overfitting, as this will depend on resource management.

3.2.1. Dnn-Based RRM: Power, Beamwidth and Bandwidth Flexibility

In this section, we study the DNN architecture for payload resource management
onboard a multibeam satellite with B user beams. The system will respond to changes
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in traffic demand by modifying two radio resources: bandwidth and power for a limited
number of beams. A training database is generated with different possible traffic demand
values for the beams based in the traffic model explained in [32]. For each of these pos-
sible combinations of the required capacity in each beam, there is a label indicating the
configuration of the resource allocation set that minimizes the cost function (1) and meets
constraints (2)—(5) [31]. The cost function (i.e., the regularized logistic regression) for DNN
training can be written as follows:

000 == 0 g ()« (1005 ¢ 1 0

where 1 represents the number of training samples, X)) indicates the ith training example
with possible required capacities in each beam, X)) = [Xgl), Xél), s Xg)], Y () denotes the
ith configuration corresponding to X(!), ¥(X()) is the configuration predicted for X, k is
the order of logistic regression and A is the regularization parameter to avoid overfitting.
Logistic regression optimizes the log loss for all observations in which it is trained, which
is equivalent to optimizing the average cross entropy.

In this sense, Figure 4 serves as a reference for understanding how the problem is
addressed. The vector X = [X3, Xy, ..., Xg] represents the B (number of beams) inputs of
the Neural Network. Vector Y represents the L outputs of the Neural Network, and the L
outputs correspond to the set of possible resources allocated to the each of the B beams.

Classification Neuronal Network
Required Traffic per beam

A A Resource Allocation
B @ « T 1 Conﬁgura:tlons
1 Y
®: } W/ Q\ K A ' Q
X Q ."x.' .-\..v - 7,
y 'Y AN XY Y \ .
X, B! : A i
w/ v 3\ \'/ I/ v \U L
'Q/ \Q’
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Hidden Layers

Figure 4. Deep neural network (DNN) to manage power and bandwidth allocation.

3.2.2. DNN-Assisted RRM: Beam Hopping

On the learning point of view, traditional end-to-end learning approaches can help
to provide a suboptimal solution to the cost function proposed in (6). However, it is
generally only applicable to limited cases, e.g., a problem with few variables, non-strict or
no constraints. It imposes difficulties for training and, therefore, can significantly increase
the difficulty in achieving prediction accuracy. In that sense, the author in [30] explored a
combined method for BH design to obtain the benefits of optimization and learning.

A classifier is trained using a DNN to identify a small subset of promising snapshots.
Promising snapshots means that they are with high probability to appear in the optimal
illumination pattern. The feature vector consists of B binary elements corresponding to the
number of beams, Y = [Y7, ..., Y}, ..., Y|, where Y}, represents whether any snapshot with
bth active beams is scheduled at the optimum (Y}, = 1) or none of the snapshots of bth is
used (Y, = 0).

The training dataset contains two parts: the input parameters and the optimal or
suboptimal labels. The data generation procedure is illustrated in Figure 5. The ith training
set is denoted as (X, Y(?)). The input X (1) is obtained by the ith realization in emulators,
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Satellite System
Parameters

which consists of the channel matrix H, the traffic demand per beam [Dé, .y Dg] and the
power per beam [Pgl, s PgB | in gth snapshot, where an adopted satellite emulator generates
the beam coverage area and H. The DNN accepts only real-valued inputs; thus, the original
complex value in H is converted to real values. The labels are organized as feature vector
Y for the ith realization. The DNN is trained to learn the mapping of the input to the
optimal label. After being trained, the model can provide an efficiently predicted feature
vector that can be used in conjunction with a conventional optimization algorithm.
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System and traffic Svstem Informat 0.
stem Information
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Figure 5. Data generation to DNN training for Beam Hopping (BH) Systems.
3.2.3. Cnn-Based RRM: Power and Bandwidth Flexible

A CNN architecture, generally considered in image classification problems [44], is
proposed to adapt it to solve the RRM problem, in this case for power, bandwidth and
beamwidth management [33]. The adaptation of the traditional CNN architecture is
performed at the input layer and the output layer. At the input layer of the CNN, there is a
matrix tensor, and each matrix represents the traffic demand at each geographic location
in the service area. The service area does not have a regular geometric shape; thus, the
geographic coordinates contained in each matrix outside the service area are zero-filled.
In this proposed work, the matrix tensor does not represent the channels of an image but
the time instants (states) at which the system is evaluated. That is, the depth of the matrix
tensor is given by vector {t,t —1,t —1,t —2,...,t — T}, where t is the current time instant,
and T is the size of the time window and represents the size of the observed states for RRM.

Depending on features extracted by the convolutional layers, the constraints and the
payload flexibility, there is a set of possible configurations for the resource allocation in
beams. These possible configurations are encoded in a vector of size L, representing the
number of possible configurations of the payload resources. Taking advantage of this, the
CNN has at the output layer the configuration that minimizes the cost function in (1) for
the input layer conditions.

A schematic of the different layers of the CNN is shown in Figure 6. A matrix tensor
starting with the traffic demand at each geographic coordinate is the input layer. Then,
the convolution layers are used to obtain the main features of the traffic demand at the
geographic coordinates. Full connection layers are used to map the resource configuration
with the features obtained in the convolution layers. The output layer results in a resource
allocation that minimizes RRM cost function (1). In the convolutional layers, the features
are extracted from the kernels obtained at the output Y, as represented in the following:

Y = filpj + 1_Kij@Y)) (10)

where Y] represents the output of the jth neuron and is a matrix computed as the linear com-
bination of the outputs Y; of the neurons in the previous layer. Each operated on with the
convolutional kernel K;; corresponding to that connection; this quantity is added to a con-
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nection p; and then passed through a nonlinear activation function fi(-). The convolution
operator has the effect of filtering the input matrix with a previously trained kernel.
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Figure 6. Convolutional Neural Network (CNN) to manage power, bandwidth and beamwidth
allocation.

The CNN that manages resource allocation is the core of the RRM. The CNN deter-
mines how to match resources to a demand pattern while minimizing payload resource
consumption. Network training is performed offline; thus, the CNN represents an intelli-
gent switch that functions as DRM for the satellite communication system.

3.3. Reinforcement Learning for RRM

Reinforcement learning is an area of ML focused on identifying actions that must be
performed to maximize the reward signal; in other words, it is concerned with mapping
situations to actions focused on seeking that reward. The agent in RL represents the
hardware or software that must learn to perform a specific action; in that sense, the agent
interacts with an “environment”, which may be an actual decision process or a simulation.
The agent works by observing the environment and making a decision and checking what
effects it produces. Suppose that the result of that decision is beneficial. In that case,
the agent automatically learns to repeat that decision in the future, while if the effect is
detrimental, it will avoid making the same decision again [45].

The Markov Decision Process (MDP), on the other hand, provides a mathematical
framework on how to model the interaction between the agent and the environment. A
stochastic discrete-time model for which its evolution can be controlled over time is the
key objective of MDP. The control policy is associated with a stochastic process and a value
function. Our goal is to find the “best” policy that solves the described problem. MDP
contains a set of states s € S, a set of actions a € A, a reward function r € R, and a set of
transition probabilities p(s;.11|st, a;) to move from the current state s; to the next state s;;1
given an action a;. The objective of an MDP is to find a policy that maximizes the expected
cumulative rewards R = } 2 ’yirtH , Where ;. ; is the immediate reward at time ¢ 4 7, and
v € [0,1] is the discount factor.

According to the current state-of-the-art, reinforcement learning algorithms have been
proposed to manage the resources of a multibeam satellite, even though it is still at an
infancy stage. However, these algorithms can only manage a single resource in a multibeam
system [27]. Regardless, a fully flexible payload must manage at least three resources (i.e.,
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power, bandwidth and beamwidth). In that sense, we assume that as the available resources
to operate across all satellite beams increase, it becomes a very challenging problem for a
single agent (SA). Therefore, we proposed a Cooperative Multi-Agent (CMA) approach
with better performance than SA [34].

The proposed system manages communication resources in response to changes in
traffic demand. Resource management training is assumed to be performed online, i.e.,
whenever traffic requirements change, and the values are updated to retrain the RRM
agents given the new conditions. For this reason, the processing time will play a critical
role in the performance of RRM that must manage the available resources to minimize the
error between the capacity offered at each beam and the required traffic demand and, at
the same time, optimize the resources used over time.

The RRM cost function can be reformulated as a multi-agent MDP that works co-
operatively to achieve the maximum reward, as seen in Figure 7. All agents share the
same reward, but each agent must meet some minimum conditions, which guarantees that,
despite working cooperatively, each agent will seek its benefit. In the proposed cooperative
environment, there is a global reward function, and each agent will know the states and
actions of all agents. Each agent must meet the minimum requirements to achieve equi-
librium in the system. The illustration of the CMA is shown in Figure 7a. Considering a
multi-agent environment involving B agents, the bth agent observes the state of the globally
shared environment and independently selects an action to perform. Then, the current state
is transformed into a new state. All agents are in the same environment and have a common
goal; thus, they work in cooperation to maximize the reward where S; = {s},s?,...,sf}
represents the current states of the agents, and Zt = {a}, a%, ey, utB } represents the actions.

In MDP, Cé’t is the capacity offered in the bth beam in the current state, Dé’t is the
traffic demand, Psht represents the allocated power, BWsht means the allocated bandwidth,
and Gé’t represents the allocated beamwidth in the bth beam in the current state. In this
sense, Cft € {C1,Cy, ..., Ciygx b } is calculated assuming that Psbt €{P1, Py, ..., Pyaxp}, BWSbt S
{BW1, BWy, BW, ..., BW4y  } and Gsbt € {601,02, ..., 0max }. The space of all capacity values
that can be assigned to the bth beam depends on the resources assigned to the bth beam
(Figure 7b). In this sense, by maintaining a given beamwidth, the bth agent can move north,
south, east or west as long as it is within the limits of the resource allocation space. The
movement of the agent corresponds to a new power or bandwidth allocation. Each surface
represents a beamwidth value. The bth agent can jump from one surface to another (jump
up or jump down) as long as it is within the boundaries of the resource allocation space.
This jump corresponds to a new beamwidth allocation.

Agentbt-h

Environment max,b )
BW? [MHz] P, [dBW]

(@) (b)

Figure 7. Multi-gent approach (B Agents). (a) The RRM problem for multibeam systems is defined
as a MDP with a multiagent environment that works cooperatively to achieve maximum reward.
(b) There are B agents sharing the same space of possible resource allocation, each agent manages the
power, beamwidth, and bandwidth in each beam.
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Information about the convergence time of the algorithm is essential for the RRM
system since training is online. Based on this, three different RL algorithms were proposed
(Figure 8), i.e., Q-Learning (QL), Deep Q-Learning (DQL) and Double Deep Q-Learning
(DDQL). The RRM first observes the current environment, represented by the traffic demand
and the offered capacity based on the resource allocation. The agents are trained from
the acquired observation data using an RL algorithm to obtain the agents’ policies and tp
update the resources. This is repeated each time the traffic demand changes. The goal of RL
is to extract which actions should be chosen in different states to maximize the reward. In a
sense, B agents are sought to learn a policy, which we can formally view as an application
that tells each agent what action to take based on its current state. The agents’ policy is
divided into two components: on the one hand, how each agent believes that an action
refers to a given state and, on the other hand, how the agent uses what it knows to choose
one of the possible actions.

Q Table (b-th Agent)

state-action Value
b-th agent

- - m (—) ) Q5 -value of action 1
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Figure 8. The agents are trained from the acquired observation data using an RL algorithm to obtain
the agents’ policies and update the resources. (a) Q-Learning (QL): Table Q is generated for each
agent and will represent the Q;, value for each state—action pair. (b) Deep Q-Learning (DQL): DQL
uses a neural network to approximate the function of the Q, value. (c¢) Double Deep Q-Learning
(DDQL: Each agent in DDQL uses two neural networks with the same architecture to learn and
predict what action to perform at each step.

3.3.1. Q Learning
b b

In the QL algorithm, the Q; value of a pair (s{,a;) contains the sum of all possible
rewards for each state-action of the bth agent at instant . Provided that the bth agent
knows a priori the Q, values of all possible pairs (s?,a?), it could use this information to
select the appropriate action for each state. Table Q is generated for each agent (Figure 8a),
representing a matrix of size | x K where | is the number of possible states of the bth agent
and K the number of possible actions, and in each position of the matrix, the Q, value for
each state-action pair is represented. The first objective of the agent is to approximate as
much as possible the assignment of Q; values, which depends on both future and current
rewards, as shown in the following:

Qus},a) = ra(s}, af) + y[max Qy (s}, 1, )] an)
a

t
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where si’ 1 represents the following state, and 1 is the discount factor controlling future
rewards’ contribution. Since this is a recursive equation, it starts by making arbitrary
assumptions for all Qj values and is implemented as an update:

Qu(st,ay) < Qu(st,a}) + afre(st, af) + ymax Qp (st + 1)°,a}) — Qp(st,al)] (12)

ai

where « is the learning rate or step size; this determines the extent to which newly acquired
information overrides old information.

3.3.2. Deep Q Learning

DQL uses a neural network to approximate the function of the Qy, value, thus avoiding
the use of a table to represent it (Figure 8b). At the input of the neural network, there will
be the state of the bth agent, and at the output, there will be the Q;, for each of the possible
actions; the bth memory, Mj, stores all the experiences. The loss function of the neural
network is the mean square error of the predicted Q, value and the target QZ value:

Ly(sY,al, wr) = (Q}, — Qb (s, af, wr))? (13)

b b b b
QZ = rt(s¢,af,wi-1) + 7y max QZ(StH/ ag, wi-1) (14)
ag
where Q) is the temporal difference target, and Qj — Qj, is the temporal difference error; w;
is the current neural network parameters and w;_; includes the previous parameters.

3.3.3. Double Deep Q Learning

Each agent in DDQL uses two neural networks with the same architecture to learn
and predict what action to perform at each step (Figure 8c). A DDQL model includes two
deep learning networks, called generated Q-network (Q(s?,a?, w;)) and target Q-network
(Qp(s¥,a,w; 7)), where w; includes the parameters of the current target neural network.

DDOQON can produce more accurate value estimates and leads to better overall deep
neural network performance. The generated Q-network is used to generate actions, and
the target Q-network is used to train from randomly selected observations from the replay
memory. The replica memory of the DDON stores the state transitions received from the
environment, allowing the reuse of these data. By randomly sampling it, the changes
forming a batch are related to the decorrelation, stabilizing DDQN. The generated Q-
network is used to calculate the bth value Q, for the bth agent. At the same time, the target
Q-network aims to produce the target Q; value to train the parameters of the generated
Q-network. According to the basic idea of DDQL, the target value Q; can be defined
as follows.

Qp = re(st, a7, wi—1) +7Qy (5741, argmax Qp (s, a7, 71-1), wy ) (15)
a

4. Performance Evaluation

In this section, we present the performance evaluation of different approaches of ML
techniques for RRM on GEO multibeam satellites. The satellite environment and traffic
demand were simulated using MATLAB R2020a based on the traffic model presented
in [33]. The software toolchain used to implement the ML models consists of a Python
development environment called Jupyter involving Keras 2.0. It is essential to mention that
the running time obtained directly depends on the computer features used for the training,
which for this paper was an Intel (R) Core (TM) i7-7700HQ 2.8 GHz CPU and 16 GB RAM.
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4.1. Simulation Parameters

A GEO multibeam satellite with flexibility in frequency, bandwidth and beamwidth
and with a four-color frequency plan scheme to avoid co-channel interference is assumed for
the analysis. We evaluate the performance of different ML models by numerical simulations.

In that sense, the Table 3 shows the main features of different ML models that have
been evaluated for RRM on GEO multibeam satellite. It is noted that the models based
on supervised learning are assumed to be trained offline; therefore, the Al Chipset could
be onboard the satellite operating only as an intelligent switch that adapts the resources
according to the traffic demand. On the other hand, for the reinforcement learning based
models it is assumed that the training will be online, i.e., the model will be trained every
time the traffic requirements change drastically so the AI Chipset will be on ground
and, by using TT&C, it will send the information to the satellite to update the resources
(see Section 3.1). The architecture used for each ML model can be found in the Appendix A.

Table 3. Features of the ML models evaluated.

ML Technique Model Training Implementation
DNN
Supervised Learning CNN offline On-board
QL
Reinforcement Learning DQL online On-ground
DDQL

In addition, Table 4 provides a summary of the main simulation parameters. The
traffic model used is based on the model presented in [34], which represents a service area
similar to that of the KaSat satellite [46] with 82 beams. The flexible parameters per beam
are power with 8 to 17 dBW with 0.1 dB steps, bandwidth with 100, 150, 200, 250, 250, 300,
350, 350, 400, 450 or 500 MHz and beamwidth with 0.55, 0.60 or 0.65 degrees.

Table 4. System parameters.

Parameter Value

Satellite Orbit 9°E

Number of Beams 82

Noise power density —204 dBW/MHz
Max. beam gai 51.8 dBi

User antenna gai 39.8 dBi
Maximum bandwidth per beam 500 MHz
Maximum power per beam 100 W

Total available transmit power 1000 W

4.2. Performance Comparison

Cost function adopted for the optimization is Equation (1), which aims to minimize
the difference between the traffic demand and the offered capacity and at the same time
to minimize the resources used in the satellite while complying with all the constraints
of the system presented in Equations (2)—(5). Therefore, to evaluate the performance of
different ML models, two KPI (Key Performance Indicator) are proposed with which an
important trade-off can be observed [33]. In this sense, the first KP1 is defined as the average

capacity gap.

1 B
KPI; = - Y |C} — RY| (16)
B b=1
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The second KP1 is the power saving operation, which is defined as follows:

Protar,upa

KPIL, =
PTotul,model

(17)
where P, 11p4 is the total payload power when using uniform power allocation (UPA),
and Proysa1 moder is the total payload power when using power allocation and the proposed
ML model.

The ML model will try to minimize KPI; in (16) and maximize KPI, in (17). In this
sense, the performance of the model used for RRM is evaluated by exploiting a joint KPI
and is defined as follows:

Ap
KPI,

KPIz = IL:)lKPll + (18)
where p is the normalization parameter, and the normalization parameter allows comparing
the performance of the different ML models when used in different traffic demand scenarios.
A1 and A; are weighting parameters that provide additional importance to the two KPlIs.
If one algorithm performs better, KPI5 is lower.

Taking KPI; and KPI, to be of equal importance, we set both A; and A, to 0.5. We
evaluated the five ML models presented in Table 3 and used a normalization parameter
0 = Ryax, where Ry, represents the maximum required capacity per beam for each
scenario in which the model was evaluated. For this evaluation, it is not taken into account
whether the model is trained online or offline. The results obtained are presented in
Figure 9.
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Figure 9. Performance comparison of different ML models for RRM.

The normalized KPI; is represented on the left axis and KP1I, is on the right axis, while
the gray bars represent the value obtained from the computation represented by KPI.
In the case of the DNN-based model (KPI3 = 0.48), it is shown that it is not a suitable
approach. As the availability of possible resources to be optimized increases, DNN loses
efficiency, which is explained in [33]. The models that obtain the smallest normalized
average capacity gap, i.e., %KPIl, are the DQL and DDQL models, while they also obtain
the highest KPI,. Therefore, they are the most efficient models, reaching a KPI3 of 0.33.
However, it is observed that CNN obtains quite competitive results, reaching a KPI5 of 0.35.
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4.3. Delay Added to the System

Based only on the performance of the models presented in Section 4.2, one would
think that the most suitable models are the RL-based models. However, a decisive factor
in selecting the implementation model is the added delay due to the processing time.
While offline training models act only as an intelligent switch when onboard, models with
online training require an added delay due to the time needed for training. In this sense,
Figures 10 and 11 present a performance evaluation obtained as a function of the training
time performed online.

Figure 10 shows that despite DDQL being the most complex algorithm, it requires
only 4.94 min of training to obtain an Average Capacity Gap (see Equation (16)) that is
fewer than 18 Mbps. On the other hand, it is observed that QL requires at least 48 min to
start obtaining an Average Capacity Gap that is close to 18 Mbps. However, even after
50 min of QL training, QL performance continues to have significant oscillations in which
an Average Capacity Gap of up to 134.78 Mbps is obtained.
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Figure 10. Average capacity gap for online-trained algorithms depending on training time. Note:
The times obtained depend on the computer features used. If computer performance is increased, the
time required will be considerably reduced.

Moreover, we can compare the performance obtained by using an RL algorithm
concerning an SL algorithm that was trained offline and defined the Offline Training Gap
(OTG), which will allow us to measure performance improvement. This is obtained as the
difference between the Average Capacity Gap of an model trained offline (KPIy o ff1ine) and
another model trained online (KPIj ;0 4e1)-

OTG = KPI1 ot f1ine — KPIy moger (19)

In that sense, Figure 11 shows the performance improvement between the RL algo-
rithms and an SL algorithm (CNN that was trained offline, see Table 3). DDQL needs only
3.8 min of online training to achieve a performance similar to CNN, and after 4.9 min, a
performance of 27.89 Mbps or higher than that of the CNN is obtained. In contrast, QL
requires at least 21 min of training to obtain a performance similar to CNN, and due to the
high oscillations of QL after 21 min, a performance that is lower than CNN can be obtained.
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Figure 11. Performance gap of the online-trained algorithms concerning the performance of an
algorithm trained offline (CNN). Note: The times obtained depend on the computer features used. If
computer performance is increased, the time required will be considerably reduced.

Therefore, the selection between implementing SL or RL will depend on the features
and requirements of the service. If low processing latency is required, it is recommended to
implement an SL algorithm that can be trained offline and deployed onboard the satellite
(Figure 3). However, it will require knowledge of the onboard traffic demand, which will
add complexity to the payload’s design. On the other hand, if the priority is to meet all
traffic demands while avoiding wasting resources,the implementation of an RL algorithm
that could be trained online every time the system’s requirements change drastically is
recommended (Figure 2).

5. Discussion
5.1. ML Technique Selection

In this paper, we discuss different ML technologies that have been considered for RRM
in multibeam SatComs, focusing mainly on SL and RL. It is discussed how /where the Al
Chipset should be located as a function of online or offline training of the algorithm.

Table 5 shows a summary of the comparison and performance analysis of the different
ML techniques proposed, and we can state that a supervised learning technique for resource
allocation management in a flexible payload has the main advantage that resource allocation
is managed on its own. That is to say that the ML algorithm training is offline and can
be implemented onboard, as explained in Section 3.1.2. Therefore, training will play a
significant role in the success of resource management. Once the neural network has
performed well in training, it can generalize the acquired knowledge and allocate resources
when traffic demand changes.

In this sense, using a DNN to manage the resources in a flexible payload requires
a low computational cost onboard the satellite. However, this methodology has several
challenges. One of them is that the number of classes is exponential depending on the
number of beams and the possible variations of power, bandwidth and/or beamwidth.
Therefore, more powerful ML techniques are required to solve this problem [31].

For this reason, the use of a CNN to solve the RRM problem in satellite communications
is analyzed. Compared to a DNN, the proposed CNN achieves better compensation
performance to reduce capacity error and power consumption. However, one of the
limitations of CNN in RRM is the dependence on the traffic model and channel used during
training in order to perform well when online. In a real system with changes in traffic
behavior that do not fit the model, CNN will have to be retrained [33].
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The RL algorithms (QL, DQL or DDQL) are evaluated with online training using a
CMA distribution to avoid the model and training data dependency of SL techniques. We
compare them according to their performance and complexity and added latency to choose
the appropriate one. The required training time would be expected to be traded off to
obtain better performances than the SL algorithms.

Agent training is performed online; thus, the time required for each algorithm to
converge is critical, as it represents an added delay to the system. QL is the least complex
algorithm; thus, the average time for each training episode is lower than DQL and DDQL.
However, QL requires more episodes to cover, which is an important trade-off since
convergence time depends on both parameters [34].

Table 5. Main advantages and disadvantages of different machine learning techniques for radio
resource management in multibeam SatCom systems.

Machine Learning

Technique Algorithm Training Advantages Disadvantages
Deep Neural When the number of beams or
Ne t\}zlork Off-line Very low computational cost resources increases it can have a bad
performance
. It solves the challenges of It will require knowledge
Supery1sed using NN. of the onboard traffic demand,
Learning Convolutional Oft-li For the DRM system, which will add complexity to the
Neural Network -ine it works only as an payload design.
intelligent switch that modifies In order to train, it is necessary to
the resources according know previously how the traffic
to the traffic demand demand changes in the service area
. . Adapts to traffic demand. Requires many episodes to
Q-Learning Online converge and can add a large
Low computer cost
delay to the system
Adapts to traffic demand.
Dee Good performance for
Reinforcement Q-Lgarnin Online resource management High computational cost
Learning J and requires few episodes
to converge
Adapts to traffic demand.
Very good performance ) )
S?E:;fn]if;p Online for resource management Very high computational cost

and requires very
few episodes to converge

The results presented in Section 4 show that RL-based algorithms can perform more
superior to those with SL techniques. However, this superiority is obtained at the expense
of a longer training time. This has an additional importance in the RL-based techniques
because training is conducted online, i.e., the RL model will be updated every time the
traffic demand is modified in the service area, thus generating a delay added to the resource
update response. This presents a tradeoff between the performance obtained and the
efficiency of the implementation.

On the other hand, SL-based algorithms are usually trained offline. They are presented
as an exciting alternative for implementing Al chipsets onboard the satellite, as explained
in Section 3.1.2.

5.2. Al Chipset Selection

One of the essential aspects of Al implementation in SatCom systems is the selection of
the AI Chipset. In that sense, we have identified several Al accelerators currently available
on the market. However, some initial considerations must be made as to which device is
best for the chosen architecture [47]:
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®  Scalar processing elements (e.g., CPUs) are very efficient at complex algorithms with
diverse decision trees and a broad set of libraries, but they are limited in perfor-
mance scaling.

*  Vector processing elements (e.g., DSPs, GPUs and VPUs) are more efficient at a
narrower set of parallelizable compute functions. Still, they experience latency and
efficiency penalties because of an inflexible memory hierarchy.

*  Programmable logic (e.g., FPGAs) can be customized to a particular compute func-
tion, making them the best at latency-critical real-time applications and irregular
data structures. Still, algorithmic changes have traditionally taken hours to compile
versus minutes.

The following available options containing multiple vector processing units suitable
for Al or integrated neural network accelerators can be considered for a first evaluation.
Some chipsets may also come coupled with other elements such as CPUs or FPGAs. An
extensive list can be found in [48].

e Intel Movidius Myriad X VPU: The Intel® Movidius™ Myriad™ X VPU is Intel’s first
VPU to feature a Neural Compute Engine—a dedicated hardware accelerator for deep
neural network inference. The Neural Compute Engine in conjunction with the 16
powerful SHAVE cores and high throughput intelligent memory fabric makes Intel®
Movidius™ Myriad™ X ideal for on-device deep neural networks and computer vision
applications [49]. This chipset has been already tested and flown in ESA missions
Phi-Sat 1 and Phi-Sat 2 (in preparation) integrated into the UB0100 CubeSat Board [50].

*  Nvidia Jetson TX2:The Jetson family of modules all use the same NVIDIA CUDA-X™
software. Support for cloud-native technologies such as containerization and orchestra-
tion makes it easier to build, deploy and manage Al at the edge. Given the specifications
of the TX2 version [51], it promises suitability for in-orbit demonstrations.

¢  Qualcomm Cloud AI 100: The Qualcomm Cloud AI 100 is a GPU-based Al chipset
designed for Al inference acceleration, addressing the main power efficiency, scale,
process node advancements and signal processing challenges. The computational
capacity of the AI 100 family ranges from 70 to 400 TOPS, with a power consumption
ranging from 15 to 75 W [52].

e AMD Instinct™ MI25: The AMD Instinct family is equipped with the Vega GPU
architecture to handle large data sets and diverse compute workloads. The MI25
model contains 4096 processors with a maximum computational capacity of 12.29
TFlops [53].

e Lattice sensAl: The Lattice sensAl is an FPGA-based ML/ Al solution targeting low
power applications in the range of 1 mW-1 W [13]. In this case, the programmable
architecture of the FPGA can be defined using custom NN cores tailored for Al
applications and implemented directly using the major ML frameworks [54].

e  Xilinx Versal Al Core: This chipset from Xilinx combines all the three architectures in
a single device, providing complete flexibility. In terms of performance, it is on the
top of the food chain; however, power consumption may be too elevated [55].

5.2.1. Compatibility Matrix and Trade-Off and Selection

Table 6 shows the compatibility matrix between available Al accelerators and available
machine learning frameworks, where the color green stands for compatibility. TensorFlow
appears to be compatible with all Al chipsets considered. Moreover, it is open source with
the Apache 2.0 license.

Table 7 compares the different Al chipsets (or their families) considered. The KPIs
for the analysis include computational capacity (low red/medium orange/high green),
available memory (small red/medium orange/large green) and power consumption (large
red/medium orange/small green).
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Table 6. ML framework and Al chipset compatibility matrix.

ML Framework/AI Chipset Intel Movidius  Nyidia Jetson Qualcomm AMD Lattice Xilinx Versal
Myriad Cloud AI Instinct Sens Al Al Core
TensorFlow

Keras -

CNTK
Caffe/Caffe2
Torch/PyTorch
MXNet

Kaldi

ONNX

Table 7. Trade-off of the Al chipsets under consideration.

AI Chipset/Trade-Off KPIs = Computational Capacity Memory Power Consumption

Intel Movidius Myriad 2

Intel Movidius Myriad X

Nvidia Jetson TX2
Nvidia Jetson TX2i

Qualcomm Cloud AI 100
family

AMD Instinct MI25

Lattice sensAl

Xilinx Versal AI Core family

5.2.2. Future Proof of Concept

Currently, as mentioned above, the interest of industry and academia is focused on
the implementation of Al for satellite systems, especially for implementation onboard the
satellite (see architecture in Figure 3). In that sense, proof-of-concept tests evaluate the
performance of Al chipsets in space conditions, where factors such as tolerance to high
radiation levels play an essential role [36].

Several tests are planned to evaluate the feasibility of implementing Al chipsets
in space, such as the SPAICE project. The SPAICE project aims to study [35], develop
and validate Artificial Intelligence (Al)-based signal processing techniques for satellite
communications in scenarios and use cases where specific Al processors can significantly
improve performance over the current state-of-the-art. The SPAICE project has the Al-
enabled satellite telecommunications testbed as its main deliverable, which will be the
platform for testing and demonstrating Al-accelerated scenarios.

NASA also plans to launch the TechEdSat-13 CubeSat to low Earth orbit in 2022 and
deploy from Virgin Orbit’s LauncherOne [36]. This three-unit CubeSat, which weighs
2.5 kg, is packed with technologies to test new capabilities in flight. This includes an
AI/ML subsystem with the Intel Loihi neuromorphic processor. Loihi is an advanced
silicon chip that mimics the function of the human brain. TechEdSat-13 will perform this
chip’s first orbital flight test and the AI/ML subsystem. This will lay the groundwork for
many AI/ML science and engineering applications for space platforms in the future.
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5.3. Open Challenges

We discuss the main challenges the SatComs industry will face to implement ML
techniques in RRM.

5.3.1. Time-Varying Environment

Based on current research, it appears that policy-based algorithms such as RL have
better performance for RRM than algorithms that rely on training data such as SL because
multibeam systems are dynamic (weather impairment based) and demand variations that
require huge training datasets. However, this performance gain is obtained at the cost of
online processing time. For this reason, different techniques should be studied to help
decrease processing times and improve performance, for example, the implementation of
Spiking neural networks (SNNs), which are artificial neural networks that more closely
mimic natural neural networks [56].

On the other hand, hybrid methods could be included where ML techniques are
combined with convex optimization techniques or different ML blocks where some blocks
are trained offline [30], and others are trained online with system updates and extend the
study to NGSO (Non-Geostationary Satellite Orbit) system.

5.3.2. Flexible Irregular Beams

Multibeam satellite systems are most commonly designed based on a regular beam
pattern with the same beamwidth for all beams. This regular pattern is very convenient
as it reduces the complexity of optimization. Moreover, while some of the beams cover
very congested areas with extremely high demand aggregate, other beams only cover
low demand. As a result, narrow beams with higher antenna gain can be preferable
in high-demand areas, while a broad beam can cover large areas with low population
density [57,58]. However, such joint architectures with a reconfigurable beam pattern
and multiple active antennas are challenging, especially from a hardware point of view.
Uncertainties resulting from this can reduce overall system performance. A reconfigurable
beam introduces new optimization parameters into the RRM problem, such as beamwidth,
beam shape and beam orientation [8]. These parameters render RRM problems more
complex and less tractable. Therefore, we can anticipate that ML techniques will be of
great utility.

5.3.3. Hardware Implementations

The new generation of multibeam satellites could be designed with complete flexibility.
However, design hardware implementation deficiencies may result in the addition of
nonlinearities, which could be detrimental to downlink. Methods of predistortion or
adjusting the frequency plan to take this effect into account are used to solve this problem.
Substantial hardware complexity increases substantially with the first option [59]. On the
other hand, additional constraints are introduced to the optimization problem, making it
even more challenging to deal online, and this should be studied carefully.

Additionally, Al is expected to play an essential role in the future automation of
SatCom systems, building on the significant advances in ML techniques in recent years.
However, computer processors that have not been developed simultaneously as Al algo-
rithms may limit or delay the expected benefits. In that sense, neuromorphic processors are
ideally suited for Al tasks that require large parallel operations. Currently, neuromorphic
computing systems are still under investigation. So far, there is still little development and
a limited amount of prototyping. However, this technology is rapidly gaining momentum,
and large companies, such as Intel and IBM, are involved in research projects related to
this promising technology. Therefore, we consider that neuromorphic processors may
represent the best approach to unlock the potential benefits of Al and ML solutions for
SatCom systems [60].
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5.3.4. Cost Optimization

Cost optimization studies of multibeam systems are currently available [61,62]. How-
ever, they are based on fixed systems that provide uniform capacity throughout the service
area. On the other hand, it is expected that the implementation of ML techniques can
decrease OPEX costs and increase QoS. However, the requirement of reliable data that
are usually available from satellite operators needs to be processed in order to extract
important features related to the studied problems that can generate high costs. Al Chipset
implementation can also significantly increase the system’s costs; thus, optimization should
be studied to find the compromise and to maintain a low cost of Gbps in orbit while
obtaining the benefits of ML-based RRM implementation.

6. Conclusions

The space industry has shown an increasing interest in implementing Al in SatCom
systems, which presents itself as a promising alternative to time-consuming and highly
complex optimization techniques encountered in radio resource management.

In this sense, this paper evaluates and discusses two ML technologies for radio resource
management in multibeam satellites. The study mainly focused on RL and SL-based
analysis, especially regarding the intrinsic features of the models used, the performance
and the added delay due to whether training is online or offline. In addition, two different
architectures are discussed to implement the Al Chipset on the ground or onboard the
satellite. This is defined based on whether training is conducted online or offline.

According to the results presented in this paper, RL-based algorithms can perform
better than those using SL techniques. However, this superiority comes at the cost of
increased training time, which, in the case of RL, is divided into exploration and exploitation
time. An additional relevance of RL-based techniques is that the training is online, i.e., the
RL model will be updated every time the traffic demand in the service area is modified,
thus generating an added delay to the resource update response. This represents a trade-off
between the performance obtained and the efficiency of the implementation.

On the other hand, SL-based algorithms are usually trained offline. Hence, SL-based
algorithms are presented as an exciting alternative for implementing onboard satellite
Al Chipset.

In addition, we have identified different Al accelerators currently available in the
market that may be candidates for future implementation projects, establishing which are
the main features to be considered for their selection. The discussion presented in this
paper is expected to serve as a milestone for upcoming projects in which the feasibility of
Al Chipset implementation in future SatCom systems, such as the SPAICE project [35] and
TechEdSat-13 [36], will be tested.
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Appendix A

In this section, we present the different architectures used for ML models. Table A1
contains DNN architecture, while the architecture for CNN is presented in Table A2.
Regarding RL-based models, only the use of DNNss is required for DQL and DDQL. In that
sense, the architectures used for these models are presented in Table A3.

Table A1. DNN architecture.

Conflicts of Interest: The authors declare no conflicts of interest.

Layer Size Activation Function
Input Number of beams -
Hidden Layer 1 256 Sigmoid
Hidden Layer 2 128 Sigmoid
Hidden Layer 3 128 Sigmoid
Hidden Layer 4 32 Sigmoid
Hidden Layer 5 32 Sigmoid
Output Total number of possible configurations Softmax
Table A2. CNN architecture.
Layer Input Kernel ?:::tit)l;m Output
Convl 256 x 256 x T 10 x 10,16 ReLu 247 x 247 x 6
Pooll 247 x 247 x 6 NA NA 123 x 123 x 16
Conv2 123 x 123 x 16 8 x 8,16 ReLu 116 x 116 x 16
Pool2 116 x 116 x 16 NA NA 58 x 58 x 16
Conv3 58 x 58 x 16 5x5,32 ReLu 54 x 54 x 32
Pool3 54 x 54 x 32 NA NA 27 x 27 x 32
Conv4 27 x 27 x 32 3x3,32 ReLu 25 x 25 x 32
Pool4 25 x 2532 NA NA 12 x 12 x 32
Flatten 12 x 12 x 32 NA NA 4608
FC1 4608 NA tanh 512
FC2 512 NA tanh 512
Clss 512 NA Softmax Number of confgurations
Table A3. DQL and DDQL architectures.
DOQL DDQL
Layer Size Size Activation Function
Input shape of the state shape of the state -
Hidden Layer 1 132 132 ReLu
Hidden Layer 2 132 132 ReLu
Output number of actions ~ number of actions Softmax
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