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Abstract: The financial markets have been influenced by the emerging spread of Coronavirus disease,
COVID-19. The oil, and gold as well have experienced a downward trend due to the increased rate in
the number of confirmed COVID-19 cases. Lately, the published COVID data comprised new variables
that may influence the accuracy of the oil/gold prices forecasting models including the Stringency
index, Reproduction rate, Positive Rate, and Vaccinations. In this study, Deep Autoencoders are
introduced and combined with the well-known approach: Pearson Correlation Coefficient, PCC,
analysis in selecting the key features that affect the accuracy of the forecasting models of gold and
oil prices with respect to COVID-19 pandemic. We have utilized a hybrid approach of PCC along
with a 2-Stage Stacked Autoencoder, SA, to extract the latent features which are then submitted to
Neural Network, NN, regression model. The NN regressor has been trained using the Bayesian
Regularization-backpropagation algorithm which provides a good generalization for small noisy
datasets. The hybrid approach has yielded the minimum MSE values of 8.97× 10−3 and 5.356 × 10−2

on the oil/gold validation set, respectively. Compared to the existing approaches, the proposed
approach has outperformed the ARIMA, ML based regression models in forecasting the oil/gold
prices. In addition, the introduced framework has yielded lower Mean Absolute Error, MAE, than
the Recurrent Neural Network, RNN, and the Principal Component Analysis, PCA, for dimension
reduction. The retrieved results showed that the hybrid method produced more robust features by
considering the relationship between the input features.

Keywords: stacked autoencoders; neural network; forecasting models

1. Introduction

Forecasting the prices of gold and oil has a great impact on the market participants,
and portfolio risk management. Oil and gold are two important commodities for the
global economy that are frequently included in equities portfolios of investors [1]. High
uncertainty about the oil and gold prices may reduce the investments and increase investor
worries, making portfolio risk management and asset allocation a big challenge for equity
investors, traders, hedgers, and portfolio managers [2]. Oil prices are highly volatile, and
the price fluctuations are a good predictor for forecasting commodities and financial asset
prices. On the other hand, gold is often seen as a safe-haven asset during times of crisis [3].
Stockholders frequently switch between or bring together, oil and gold to vary their equity
portfolios [4]. Lately, both commodities have been indicated by increasing instability and
this has confused the investment decision-making. Therefore, accurate forecasting of the oil
and gold prices may help the investors in taking their portfolio risk management decisions.
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Once the COVID-19 pandemic occurred in China, the virus has been spread all over
the world and it has significantly increased the uncertainty in the prices of the commodity
markets including gold and oil [5]. The growth in the rate of mortality has forced the
governments to enforce harsh restrictions including lockdowns and hold many business
operations which have had serious consequences for economies and financial sectors [6].
As most of the economic activities have been halted during the lockdowns in approximately
all industrialized economies, the price of the crude oil fell during 2020 and while the gold
prices have taken an upward trend [7,8].

The existing methods for the forecasting of the oil and gold prices can be divided into
two categories including spatial-based or historical-based prediction models [9]. From
a spatial point of view, the forecasting model is constructed based on the factors that
influence oil/gold prices. However, in the historical perspective, the construction is based
on the historical values of the prices. Basically, the oil/gold prices have direct interactions
among other market factors including the stock prices, and the US dollar [10]. As well
as during the COVID-19 pandemic, the indirect impact of commodity markets has also
affected the oil/gold prices. Therefore, spatial-based forecasting for oil/gold prices is the
proper method during the COVID-19 pandemic.

Although the forecasting of the oil and gold prices during the Covid-19 pandemic is
emerging, still few studies have been published in the literature in this regard. Mensi et al. [5]
have investigated the price-switching spillovers between the stock, gold, and crude oil,
futures prices before and during the global health crisis, COVID-19 pandemic. The para-
metric autoregressive technique has been employed to detect the connectedness between
the stock, oil, and gold prices during the COVID-19. Dimitrios Bakas et al. [7] have empiri-
cally estimated the three 5-factor Vector Auto-Regressive, VAR, model for the instability of
commodity markets including crude oil, broad commodity index, and gold.

Originally, there are various ML algorithms have been utilized for the forecasting
of gold and crude oil prices. Such publications include classical ML regressors such
as the ANN, SVM, and GPR [9,11–15] and Deep Learning algorithms [16–21]. Lately,
ANNs have yielded outstanding performance in describing the nonlinear relationships
among variables [22]. Moshiri and Foroutan [12] have set up a nonlinear ANN model for
forecasting the crude oil prices from 1983 to 2003. The retrieved results using the ANN have
surpassed the results yielded from the ARIMA, and GARCH regressors. Wang et al. [20]
have utilized the filter and wrapper feature selection approaches to improve the retrieved
performance of the ANN, and the SVM. Kristjanpoller and Minutolo [14] have proposed
a hybrid frame including the ANN and GARCH in the prediction of crude oil and the
composite model has yielded a better performance compared to the stand-alone ones.
The overfitting of the ANN in forecasting the financial data has been resolved in [23]
by introducing the Bayesian Regularization approach as a training algorithm. The deep
learning-based forecasting models are based on time series analysis for the historical values
of the gold and crude oil prices. The recurrent neural network, RNN, and the Long-term
and Short-term Memory Model, LSTM, are deep learning approaches that consider the
joint relationship of the long-term and short-term factors of crude oil, and gold prices [9].

The accuracy of the forecasting data model is greatly impacted by the significance
of the input features [24]. Selecting the significant input features is accomplished using
filter or wrapper methods. The PCC analysis is the dominant filter-based feature selection
method for building forecasting models [25]. In the PCC analysis, the correlation coefficient
between the outcome and input features is computed. Significant input features are those
that are highly correlated with the response variable. Although the correlation-based
feature selection is an early approach in building a forecasting data model, it does not
ensure the dependency between the outcome and the selected input predictors. Instead, the
multi-layer deep learning models such as Autoencoder [23] lately have yielded outstanding
performance in extracting the latent deep features in the feature matrix [26].

In this study, we are introducing a hybrid approach including Deep Autoencoders,
and Pearson correlation analysis in selecting the key features that affect the accuracy of
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Crude oil and gold forecasting models during the COVID-19 pandemic. The retrieved
significant features are used in the training and validation of an NN regressor which has
lately yielded an outstanding performance in the forecasting of such commodities.

This research article paper is constructed as follows: a literature review is introduced
in Section 2. The methods including the data exploration and its preprocessing, and
the proposed PCC-Stacked Autoencoders model are explained in Section 3. Results are
displayed and examined in Section 4. Lastly, the conclusion of the presented study is
described in Section 5.

2. Literature Review

The data models for the prediction of gold and oil prices can be divided into two
categories: empirical, and regression-based methods [27]. The main principle in the
Econometrics models in estimating the prices based on the theories that estimate the in-
teraction of buyers and sellers. The Random Walk Hypothesis, RWH, and the Efficient
Market Hypothesis, EMH, are the leading theoretical models that describe such interac-
tions [28]. Although the empirical models for identifying gold, and crude oil prices are
efficient for accurate prediction, they are in some way complicated. Therefore, regression
methods are utilized to deal with ambiguous relationships between various factors. In
the regression-based methods, the parametric and non-parametric regression can be uti-
lized [29]. Lately, the Autoregressive Integrated Moving Average, ARIMA, and Generalized
Autoregressive Conditional Heteroskedasticity, GARCH, models have been utilized [11,12].
The parametric regression is efficient if there is Gaussian distribution for the values of
the outcomes [30]. Otherwise, the nonparametric ones are more efficient [31]. Usually,
the parametric methods are more powerful than nonparametric for datasets containing
a small number of samples [32]. The regression-based model includes autoregression,
and artificial intelligence-based methods. The Markov-switching vector is an example for
autoregression, while the Artificial intelligence forecasting models include the artificial
neural network (ANN) [33], Gaussian process regression (GPR) [34], and support vector
machine (SVM) [35].

The oil/gold prices forecasting is challenging due to its nonlinear characteristics.
Therefore, the research in this field never ends. For example, Yu et al. [36] have built a
historical-based forecasting model for the oil prices during the period (1990–2008). They
have used the SVM regressor and compared the performance to the ARIMA regressors.
SVM has surpassed the ARIMA, but they cannot describe the nonlinear relationship of oil
prices and ignore the relations of short-term influences. Another historical-based prediction
is carried out in [37] using the classical ML regression techniques and the retrieved results
were compared with the well-known regressor, ARIMA. The nonlinear characteristics of
the oil/gold prices have been handled by utilizing the ANN regression models such as the
work carried out by [12]. They have also built a historical-based regression model using
the ANN approach and compared their performance with the linear methods including the
ARIMA and GARCH methods during the period (1983 to 2003). Indranil et al. [38] have
utilized the ANN, and LSTM [39] in enhancing an existing stochastic model for analyzing
the commodity market, Barndorff-Nielsen, and Shephard model. The utilization of ML
approaches in that stochastic model has handled its weak points such as the absence of
long-term dependence between influencing factors.

The impact of input features being used in the training of the oil/gold forecasting
models has been studied in few studies such as the work carried out in [20]. They have
introduced filter, wrapper, and hybrid feature selection methods to detect the significant
factors that may influence the accuracy of the prediction of the oil price. Linear regression,
ANN, and SVM have been utilized in the training of forecasting models. The utilization of
feature selection in that study facilitated the achievement of the outstanding performance
for the forecasting models. The dimension reduction of the feature space has been intro-
duced in [9] in forecasting the oil prices. The PCA along with locally linear embedding
and the multidimensional scale as dimensional reduction techniques have been used and
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compared. RNN, and LSTM as historical-based forecasting models have been employed in
building the forecasting models.

The common conclusion among the aforementioned studies is that the forecasting
of the crude oil and gold prices during the COVID-19 is demanding advanced forecast-
ing models to overcome the nonlinearity of its characteristics. The promising results
yielded using the ANN generally along with the increased accuracy observed using deep
learning methods encourage this study to accomplish better accuracy using the feature
extraction methodologies.

This study contributes the following:

• Analysis of recently published COVID-19 data sets along with the crude oil, and gold
prices during that global health crisis and studying the impact of high spread and
mortality rates, precautionary measures, and vaccinations on the prices of
such commodities.

• Deep Autoencoders are integrated with the correlation analysis approach in selecting
the key features that affect the accuracy of the forecasting models.

• The Bayesian regularization-backpropagation algorithm is utilized to avoid the over-
fitting of data which is a major drawback of training ANNs on the small-size datasets.

3. Methods

In this study, we have followed the framework depicted in Figure 1. The data set has
been integrated from four public data sets including the COVID-19 records published by
the Johns Hopkins University Center for Systems Science and Engineering web site [40],
the World Daily Spot Prices for Crude Oil WTI, and Brent [41] published by King Abdullah
Petroleum Studies and Research Center, the World Gold Council [42], and the indexes of
the stock market directions from Yahoo Finance [43]. Five stock markets indexes have
been utilized in this study including Vanguard Total Stock Market (VUN), Vanguard Total
Stock Market Index Fund ETF Shares (VTI), Vanguard Value Index Fund ETF Shares (VTV),
Emerging Markets Index (MME), and the Emerging Markets NTR Index (MMN). The
integrated dataset has been preprocessed to impute the missing values and normalization.
Then the data records have been divided randomly into training/testing samples with a
percentage of 70/30%, respectively. The training samples are utilized to build the prediction
models while the testing samples are employed to evaluate their prediction accuracy. The
training/testing samples are then fed to a feature selection stage to select the key factors
that may influence the prediction accuracy. We have conducted three different experiments
to decide the optimum approach. In the first experiments, the relevant features have
been extracted using the PCC are fed to neural networks regressor. The relevant features
extracted using the correlation analysis are the ones that have higher Pearson Correlation
Coefficient [44], with the outcomes. In the second experiment, the input variables are
passed to a 2-stages stacked autoencoder deep network to extract a set of distinguishing
latent features. The latent feature set is then fed to the regression model. Finally, in the third
experiment, we have combined the PCC analysis with deep autoencoders. The relevant
features extracted using the correlation analysis have been fed to the deep autoencoder to
extract the latent features which are then submitted to the regression model. The fitting NN
regressor that mapped the numeric input features to the numeric targets is two layers of
feedforward NN with 10 sigmoid hidden neurons and linear transfer function in its output
neurons. The NN has been trained using the Bayesian Regularization-backpropagation
algorithm which can result in yielding a good generalization for small noisy datasets.
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Figure 1. The framework of the proposed forecasting system for Gold, and Crude Oil prices.
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3.1. Data Exploration and Hypothesis Testing
3.1.1. Data Exploration and Preprocessing

The COVID-19 data set records for Saudi Arabia have been downloaded starting from
1 April 2020 to the end of September 2021, along with the corresponding prices for crude
oil, and gold in the same period. The Gold and oil datasets have several missing values
because of market closures for weekends, and holidays. Therefore, the data values were
padded to interpolate the values of the missing entries. The padding is preferred over
other interpolation approaches as it is more insightful to refer to the final exchange rates
and values as the current one. Additionally, there were two missing entries for the oil
prices on 31 May 2021, and 30 August 2021, and they have been estimated by averaging
the adjacent values. The COVID data contains 36 variables including the number of new
confirmed cases, the total number of confirmed cases, new deaths, the total number of
deaths, the total number of tests, and other supplementary entries. Lately, the published
COVID data contained new variables that may influence the accuracy of the forecasting
models including the Stringency index, reproduction rate, Positive Rate, and vaccinations.
Stringency index is a composite measure of the precautionary measures based on various
response indicators such as workplace closures, school closures, and travel bans. The
values of the Stringency index range from 0 to 100, the value of 100 denotes the strictest
policies. The reproduction rate of coronavirus gives an estimate of the possible extent of
the virus transmission. The Positive Rate is an indicator of the Spread of the Virus. Based
on the criteria announced by WHO in 2020, if the positive rate is less than 5% then the
pandemic is under control in a country. The vaccination has been started in Saudi Arabia
on 7 January 2021, therefore all previous values before this date have been set to zero. There
were 43 missing values in the vaccinations field that have been imputed using the Growth
Interpolation as depicted in Figure 2. The overall records in the data set are 540. Table 1
depicts a statistical description of the integrated dataset. The entries of Table 1 provide a
summary of the distribution of the data values including the count represented by symbol
N, the mean, standard deviation, the minimum, the 1st quantile, the mean, the 2nd quantile,
and the maximum. The distribution of varying variables is illustrated by the aid of drawing
the corresponding histogram as shown in Figure 3. The correlation matrix between all
variables except those having zero variance is illustrated in Figure 4. The oils prices show
a higher correlation with the variables describing the COVID-19 spread and the market
prices than those for the gold prices.

Plots of the response variables versus the 540 days are shown in Figure 5. To prepare
the integrated data records for the analysis, the entries have been normalized using the
z-score approach. The normalized values are centralized around zero and have a standard
deviation of one. For a random variable X having a mean value of µ and a standard
deviation σ, the values of its z-scores are defined by Equation (1).

z-score =
X− µ

σ
(1)

There are several performance metrics to determine the loss in regression models
including the Mean Square Error, MSE, and the R squared. All these metrics try to calculate
the differences between the forecasted, and the actual values as depicted in Equation (2)
where N, yi, and ŷi are the number of observations, the actual, and the predicted values,
respectively.

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (2)
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Figure 2. Plots of the total number of vaccinations versus the day count (a) with the 43 missing data
points, (b) after imputing the missing values using the Growth Interpolation technique.

Table 1. Statistical summary of the integrated dataset.

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max

Days 540 270.5 156.029 1 135.75 405.25 540
TC 540 337,834.8 146,380.1 1720 295,556.3 427,619.8 546,735
NC 540 1009.578 1020.568 0 314.75 1287.5 5439
NC-smoothed 540 407.053 412.462 0 129.429 672.286 1403.857
TD 540 5189.746 2653.295 16 3329.25 7088.25 8679
ND 540 16.054 13.059 0 6 24 77
ND-smoothed 540 9.581 2.993 0 8.964 9.857 18.857
TC-per-million 540 14,022.01 1969.446 10,260.16 12201.24 15,470.42 15,470.42
NC-per-million 540 10.427 16.008 0 1.528 13.78 153.902
NC-smoothed-per-million 540 11.518 11.671 0 3.662 19.023 39.724
TD-per-million 540 226.089 25.436 175.831 201.779 245.581 245.581
ND-per-million 540 0.23 0.182 0 0.198 0.198 2.179
ND-smoothed-per-million 540 0.271 0.085 0 0.254 0.279 0.534
reproduction-rate 540 0.995 0.234 0.42 0.86 1.1 1.85
NT 540 52,740.05 24,304.74 6384 39,533.25 63,680.75 117620
TT 540 11,691511 8,474,141 123,706 4,308,481 17,687,639 28,595,954
TT-per-thousand 540 672.854 176.113 311.55 506.628 809.151 809.151
NT-per-thousand 540 1.662 0.486 0.769 1.461 1.665 3.328
NT-smoothed 540 57,632.22 17,104.68 31499 49661 58934 108916
NT-smoothed-per-thousand 540 1.631 0.484 0.891 1.405 1.668 3.082
positive-rate 540 0.029 0.042 0 0.007 0.021 0.194
tests-per-case 540 266.325 148.619 55.9 108.475 383.7 1029.2
total-vaccinations 540 6,862,518 11,437,967 0 0 10,809,238 41,290,665
stringency-index 540 60.142 12.783 50 52.78 60.19 94.44
VUN 540 66.722 7.722 47.36 60.58 72.465 80.3
VTI 540 199.288 27.629 122.38 175.482 221.49 234.31
VTV 540 124.528 15.734 84.78 107.958 138.33 142.41
MME 540 1236.719 149.344 807.4 1119.5 1341.4 1457.5
MMN 540 600.966 75.567 386.1 540.325 653.8 704.7
gold-price 540 6814.958 309.29 5919.95 6556.3 7053.407 7752.23
oil-prices 540 52.933 16.372 9.12 41.34 68.73 78.34
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Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. Histograms of varying variables in the integrated dataset.
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Figure 4. The correlation matrix of the integrated dataset (TC, NC, TD, ND, NT, and TT denotes Total
Cases, New Cases, Total Deaths, New Deaths, New Tests, and Total Tests).

Figure 5. Plots of the Gold/Oil prices versus 540 Days under the COVID-19 Pandemic; (a) Gold
prices; (b) Oil prices.

3.1.2. Hypothesis Testing

To assess the validity of the proposed models in making good predictions for the prices
of the oil, and gold prices during the COVID-19 pandemic, we have utilized the hypothesis
testing for the whole population. In multiple linear regression, the null hypothesis in
a population p can be formulated as H0 : β1 = 0, β2 = 0, β3 = 0, . . . βp = 0 which
reveals that there is no relationship between the outcome and the p input predictors.
The model is effective if there any β 6= 0 which is called the alternative hypothesis Ha
where Ha : at least one β j 6= 0 (j = 1, . . . p). In this study, we have used the ANOVA
F-statistics test as a way of hypothesis testing. We have excluded the variable that has zero
variance from the test. In regression-based problems, the test is performed by measuring
the significance level of the estimated coefficients yielded from linear regression models.
The significance of each estimated coefficient is measured by calculating four metrics
including the sum of squares (SS), the mean sum of squares (MS), the F-statistic, and the
p-value. Table 2 displays the retrieved results of the test for the oil/gold prices. Based
on the retrieved values of both the F-value, and the p-value, the null hypothesis must be
rejected and it is revealed that there is a linear association between the outcomes (oil, and
gold prices) and more than one of the input predictors in the integrated dataset.
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Table 2. ANOVA test for the oil/gold prices and the input predictors.

Variable Symbol
Oil Prices Gold Prices

SS MSE F Value p-Value SS MSE F Value p-Value
TC 97.27 97.27 19.27 1.45 × 10−5 27,824,836 27,824,836 1511 1.91 × 10−138

NC 2879.85 2879.85 570.56 3.37 × 10−79 211,353.5 211,353.5 11.48 0.0007
NC_smoothed 996.57 996.57 197.44 8.81 × 10−37 129,593.1 129,593.1 7.039 0.008

TD 90.75 90.75 17.98 2.77 × 10−5 6075.404 6075.404 0.33 0.565
ND 22.07 22.07 4.37 0.037 93.30752 93.30752 0.005 0.943

ND_smoothed 1229.91 1229.91 243.67 2.66 × 10−43 230,428.2 230,428.2 12.51 0.0004
TC_per_million 1370.09 1370.09 271.44 5.38 × 10−47 4677.894 4677.894 0.25 0.614
NC_per_million 0.54 0.54 0.11 0.743 542.2688 542.2688 0.029 0.863

NC_smoothed_per_million 32.67 32.67 6.47 0.011 7617.666 7617.666 0.41 0.520
TD_per_million 474.52 474.52 94.01 4.045 × 10−20 150,517.9 150,517.9 8.17 0.004
ND_per_million 23.41 23.41 4.64 0.031 5520.553 5520.553 0.29 0.584

ND_smoothed_per_million 0.03 0.03 0.01 0.940 33,612.67 33,612.67 1.82 0.177
reproduction_rate 440.53 440.53 87.28 6.51 × 10−19 149,960.9 149,960.9 8.146 0.004

NT 110.80 110.80 21.95 3.82 × 10−6 686,444.9 686,444.9 37.29 2.397
TT 664.40 664.40 131.63 1.46 × 10−26 6409.206 6409.206 0.34 0.555

TT_per_thousand 15.63 15.63 3.10 0.079 266,227.8 266,227.8 14.46 0.0001
NT_per_thousand 0.48 0.48 0.09 0.758 50,317.62 50,317.62 2.73 0.099

NT_smoothed 26.45 26.45 5.24 0.022 68,690.21 68,690.21 3.73 0.054
NT_smoothed_per_thousand 1.19 1.19 0.24 0.627 38,354.85 38,354.85 2.08 0.149

positive_rate 85.52 85.52 16.94 4.671 × 10−5 10,960.87 10,960.87 0.59 0.44
tests_per_case 6.72 6.72 1.33 0.249 130,501 130,501 7.089 0.008

total_vaccinations 556.24 556.24 110.20 5.95 × 10−23 1,404,073 1,404,073 76.27 6.66 × 10−17

stringency_index 3.56 3.56 0.71 0.40 631,517.1 631,517.1 34.3 9.78 × 10−9

VUN 4.68 4.68 0.93 0.33 4290.694 4290.694 0.23 0.629
VTI 9.56 9.56 1.89 0.169 1,256,655 1,256,655 68.26 2.08 × 10−15

VTV 36.61 36.61 7.25 0.007 51,795.74 51,795.74 2.81 0.094
MME 31.10 31.10 6.16 0.013 1038.809 1038.809 0.05 0.81
MMN 19.89 19.89 3.94 0.0477 53,050.65 53,050.65 2.88 0.09

Gold_price 65.14 65.14 12.90 0.0003 237,554.9 237,554.9 12.9 0.0003
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3.2. Pearson Correlation Coefficient Analysis

The Pearson Correlation Coefficient is an early method that finds the linear correlation
between two random variables. PCC is a measure of similarity or dependency between
two vectors. The PCC can be calculated for a pair of vectors X, and Y using Equation (3).
Equation (4) represents the estimation for the PCC. If the input variables, X, and Y are
correlated, the value of the PCC is between −1, and +1, linearly dependent. Otherwise, it is
zero if they are uncorrelated.

PCC =
cov(X, Y)

2
√

σ(X)σ(Y)
(3)

PCC =
E(XY)− E(X)E(Y)

2
√

σ(X)σ(Y)
(4)

where, E() is the expectation operator, σ(X), and σ(Y) are the variances of the variable X,
and Y correspondingly, and cov(X, Y) is the covariance matrix between them.

3.3. Stacked Deep Autoencoder

Autoencoder is a deep neural network used to learn a compressed representation of
input data [22]. The autoencoder is trained to ignore insignificant data, noise, and its output
is an encoding version for a set of data. This is the main idea in using the autoencoder
for dimensional reduction of the feature space. The autoencoder comprises two modules
including an encoder followed by a decoder [22]. The encoder module maps the input
variables to a compressed form while the decoder tries to reverse the mapping to regenerate
the input [22]. In this study, sparse autoencoders have been trained in an unsupervised
manner using the Scaled Conjugate Gradient Algorithm, SCGA, [24] with 1000 training
epochs. The autoencoder is used to extract the latent features and ignore the irrelevant
ones. The input variables have been fed to the autoencoder and the number of neurons
in the hidden layer has been adjusted to be less than the size of the input. We combined
sparsity in the autoencoders by adding up a regularizer for the neurons’ activations to
the cost function [23]. As depicted in Equation (5), the cost function is the mean squared
error function adjusted to contain two terms: the weight regularization, Ω_weights, and
the sparsity regularization, Ω_sparsity [45]. The sparsity regularizer restricts the output
from a neuron to be low allowing the autoencoder to discover a representation from a
small portion of the training samples [23]. The weight regularization term avoids the
values of the neuron weights from increasing which subsequently could reduce the sparsity
regularizer. Equations (6) and (7) illustrate the mathematical representations of Ω_weights,
and Ω_sparsity, respectively.

E =
1
M

M

∑
n=1

N

∑
k=1

(xkn − x̂kn)
2

︸ ︷︷ ︸
mean squared error

+λ×Ωweights
+β×Ωsparsity

(5)

In Equation (3), M is a number of samples in the training subset, N is the number of
input variables in the training data, x is a training sample, x̂ is the estimate of the training
sample, β, and λ are the coefficients of the sparsity, and weight regularizer, respectively [41].

Ωweights =
1
M

L

∑
l

M

∑
j

K

∑
i

(
w(l)

ji

)2
(6)
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In Equation (4), L represents the size of hidden layers, w is the weight matrix [41].

Ωsparsity =
D(1)

∑
i=1

KL (ρ‖ρ̂i)

=
D(1)

∑
i=1

ρ log
(

ρ
ρ̂i

)
+(1− ρ) log

(
1−ρ
1−ρ̂i

) (7)

f (z) =


0, i f z ≤ 0
z, i f 0 < z < 1
1, i f z ≥ 1

(8)

In Equation (5), ρ̂i denotes the average activation of neuron i, while ρ represent the
desired activation and, KL denotes the Kullback-Leibler divergence value between ρ̂i and
ρ [41].

As depicted in Figure 6, we have utilized a stacked autoencoders, 2 stages, beginning
by training the first autoencoder, Autoencoder 1, on the input variables and using the
extracted features from Autoencoder 1 as input to the second stage, Autoencoder 2. The
transfer function used for the first encoder (Encoder 1) is the positive saturating linear
transfer while the ordinary linear transfer function is used for the first decoder (Decoder
1). Positive saturating linear has been utilized in the encoder, and the decoder modules
as depicted in Equation (8). We have set the learning parameters as shown in Table 3. In
our experiment, all input variables: M = 36, N = 540 have been fed to Autoencoder 1.
The number of extracted features from stage 1 was 10 features so the number of inputs to
Autoencoder 2 have been as follows M = 10, N = 540. We have extracted 5 significant fea-
tures from Autoencoder 2 and used them in the prediction phase. However, in experiment
c, we have used the relevant features extracted by the correlation analysis, 22 features, as
inputs to autoencoder 1. We have conducted many trials to set the values of all the learning
parameters and the recorded values here are the ones that have yielded the minimum root
mean squared error for the predicted values of the response variables.

Figure 6. Two- Stages stacked deep autoencoder for Selecting Key features for Forecasting the oil,
and gold prices.
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Table 3. The values for the learning parameters used in the training of Autoencoder 1, and Autoen-
coder 2 in the stacked deep autoencoder.

Learning Parameters Values

ρ (Sparsity Proportion) 0.05

β (Sparsity Regularization) 4

λ (coefficient of the weight regularizer) 0.002

No. of Epochs 1000

3.4. Bayesian Optimization for Regularization of NN Regressor

A common concern in estimating the weights of the NN is the overfitting in which the
NN cannot generalize well and consequently, the performance on new data is inadequate.
When overfitting happens, the weights are updated in a way that maximizes the accuracy
of the training samples, but the NN fails on the testing data. The most common approach to
resolving the overfitting is applying regularization in the estimation of network weights [46].
Regularization is employed to penalize the cost function, MSE, with the squared sum of
the weights as illustrated by Equation (9).

Ereg = γ ∑l
k=1 ∑m

i,j=1

(
wk

ij

)2
+ (1− γ)E = γEW + (1− γ)E (9)

where γ is the regularization constant, E is the cost function (MSE), k = 1, . . . , l represents
the network layers, and wk

ij is the weights of neurons in layer k. The weights are estimated
using the backpropagation algorithm which tries to minimize the cost function, E. The
gradient descent algorithm is a conventional optimization algorithm for the estimation
procedure. However, its performance is inadequate for small noisy datasets [23]. Bayesian
regularization reduces the bias of the selection of the regularization constant and hence
improves the performance. The objective function can be rewritten, as depicted in Equation
(10), in terms of new hyperparameters α and β instead of γ.

F(W) = αEW + βED (10)

where ED is the sum of squared errors, ∑N
i=1

1
2 (yi − ŷi)

2.
The Bayesian optimization of the parameters of the regularization (α and β) can be

summarized in the following steps [23]:

1. Initialize the weights, W, and the regularization parameters α, β.
2. Apply the Levenberg–Marquardt algorithm to minimize F(W), the objective function.
3. Compute γ and k which are the effective, and a total number of parameters in the

network γ = k− 2αtrH−1, where H = 2βJT J + 2αIk and J is the Jacobian matrix of
the training errors.

4. Compute new estimation for the regularization parameters α = γ/2EW(W), and
β = (N − γ)/2ED(W).

5. Repeat steps 2 to 4 until attaining convergence.

4. Results and Discussion

The main objective of this study is to investigate the impact of COVID-19 pandemic
data in the forecasting models of gold, and oil prices. The basic idea is to select the most
significant features that would yield an improved prediction accuracy. The NN regressor
has been trained on 70% of the input data, 378 data samples, and tested on the remaining
30% of the data, 162 samples. Based on the attained results (F-value, and the p-value) from
the hypothesis testing presented in Table 2, the null hypothesis that states that there is
no relationship between the outcomes, oil/gold prices, and the integrated set of features
have been rejected and a linear association between them has been considered. In addition,
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the nonlinearity in such interactions can be detected via the deep autoencoder and the
Bayesian-based NN regression model.

Figure 4 shows dark colors for the highly correlated features with the outcomes. In
this study, only highly correlated features with the crude oil prices are considered relevant
features. The retrieved values for the PCC of the gold prices and the input variables are
much lower than those retrieved for oil prices. This ensures the higher sensitivity of the
oil price to the COVID-19 pandemic, in contrast with the gold price. The gold is a shelter
against economic crises and is believed as a safe haven during such health crises [47].
However, because it is well known that gold and oil prices have a strong association, the
same set of selected features are used in their forecasting models. A further reduction
for the relevant features has been made by selecting the features that have PCC >±0.7
with the Oil prices based on the colored-based correlation matrix shown in Figure 4. The
total number of vaccinations is highly correlated, PCC = 0.713, with the Oil prices and is
influencing its prices. The vaccination has started almost after 300 days after the start of
the pandemic in Saudi Arabia and has helped in the decreasing rate of the death rate and
yielded a rapid increase in oil prices. However, the prices are still having up, and down
variations with the emergence of the new strains of COVID-19.

We have selected the relevant features using a 2-stage stacked autoencoder as follows.
The 36 features have been reduced into 10 features using the first stage and then a further
reduction is carried out by the second stage of the autoencoder which yielded 5 signifi-
cant features. A hybrid feature selection is carried out by applying the 2-stage stacked
autoencoder on the features retrieved from the correlation analysis. Table 4 shows the
retrieved values for the MSE, and R squared for the NN regressor on the testing samples
when trained on all features, the significant ones retrieved by the PCC analysis, the Stacked
autoencoder, and Hybrid method of the PCC analysis, and the SA for the oil, and gold,
respectively. The corresponding fitting curves of the NN regression models are depicted in
Figures 7 and 8, respectively. The hybrid method, PCC-Stacked Autoencoders, has yielded
the minimum MSE and highest R squared values for the NN regressor as highlighted in
gray color in Table 4. However, the autoencoder has yielded the worse performance when
used solely on reducing the feature space as it fails to take into account the relationships
of data features. The retrieved results using the hybrid method show that considering
relationships in the data features can produce more robust features that can attain lower
MSE in further regression compared to the other utilized methods. Figure 9 shows the pre-
dicted values versus the true ones for the gold and oil prices using the hybrid PCC-Stacked
Autoencoders approach.

Table 4. The MSE, MAE, and R squared values for the NN regressor when trained on all features, the
significant ones retrieved by the correlation analysis, the Stacked autoencoder, and Hybrid method
for the oil, and gold, respectively.

Oil Dataset Gold Dataset

Feature Selection
Method MSE MAE R Squared MSE MAE R Squared

None 1.5 × 10−2 0.0628 0.993 2.13 × 10−1 0.2575 0.909

PCC Analysis 1.23 × 10−2 0.0583 0.994 1.13 × 10−1 0.192 0.943

Stacked
Autoencoders 2.019 × 10−2 0.0865 0.989 2.357 × 10−1 0.197 0.887

Hybrid PCC-
Stacked

Autoencoders
8.97 × 10−3 0.0476 0.995 5.356 × 10−2 0.0951 0.973
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Figure 7. The fitting curve of the NN regression models trained using different sets of features for
Oil Dataset.
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Figure 8. The fitting curves of the NN regression models trained using different sets of features for
Gold Dataset.
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Figure 9. The predicted values versus the true ones for the gold and oil prices versus 540 days
during the COVID-19 pandemic using the hybrid feature extraction-based approach and NN
regression models.

The performance of the proposed framework is evaluated versus several state-of-
the-art forecasting models for oil, and gold prices. We compared our framework to that
developed by Yu et al. [37], Xin James [48], Yan et al. [9], Weng et al. [49], He et al. [50],
Khani et al. [51], and Jabeur et al. [52] as depicted in Table 5. The comparison shows that
the proposed framework achieves the minimum RMSE, MSE, and MAE for forecasting the
oil prices overall mentioned studies. The results yielded in this study have outperformed
the early regression method, ARIMA, and the classical ML regressors including the SVR,
and ANN. High performance has been attained by the help of using the proposed feature
selection mechanism. In addition, we have compared our approach to another work [9] that
has employed the feature reduction on the feature space of predicting the oil prices. They
have retrieved 0.0844 for the MAE which is higher than the corresponding value yielded
in our approach, 0.0476. Regarding the retrieved results for forecasting the gold prices,
it has surpassed the ones yielded by the Multivariate Empirical Mode Decomposition
approach [50] and is comparable with the attained results by Khani et al. [51]. The study of
Yan et al. [9] in particular, was picked for comparison as it is very close to our proposed
framework so far. Both studies similarly have utilized feature reduction approaches for
selecting the significant features for building the forecasting models. However, Yan’s
study was applied only on oil datasets and used different methods rather than the deep
autoencoder for the reduction of the feature space including the principal component
analysis, PCA, locally linear embedding, LLE, and multidimensional scale, MDS.



Electronics 2022, 11, 991 20 of 23

Table 5. Comparing the results of the proposed framework for forecasting the oil, and gold prices with state-of the-art forecasting models.

Publication Method Dataset MSE R Squared MAE RMSE

Yu et al. [37] Support Vector Regression (SVR), ANN, and ARIMA Crude Oil - - -
5.0493(ARIMA)

3.9337(SVR)
4.8682(ANN)

Xin James [48] SVR, and ARIMA Crude Oil prices - - 1.1433(ARIMA)
1.1246(SVR) -

Yan et al. [9] De-dimension machine learning model using PCA,
and RNN/LSTM approach to forecast the oil prices. Crude Oil prices - -

0.0844(RNN)
0.0905 (LSTM)
0.2784 (SVM)

-

Weng et al. [49] Gold prices prediction using GA-ROSELM, genetic algorithm
regularization online extreme learning machine

silver price, oil price,
gold price - - 5.681 -

He et al. [50] Denoising model to detect the noise factors in forecasting metal
price using Multivariate Empirical Mode Decomposition Silver, and gold prices 1.222 - - 1.105

Khani et al. [51] Encoder–decoder LSTM model for forecasting gold prices
during the COVID-19 pandemic.

COVID-19 data records,
and gold prices 0.0217 0.858 - 0.147

Jabeur et al. [52] XGBoost machine learning approach for forecasting gold prices. Metals, oil, and
gold prices - 0.994 21.948 -

Proposed framework PCC-Stacked Autoencoder Hybrid feature extraction approach for
forecasting the oil, and gold prices during the COVID-19 pandemic.

COVID-19 data records,
oil, and gold prices

0.0089 (oil)
0.0536 (gold)

0.995 (oil)
0.973 (gold)

0.0476 (oil)
0.0951 (gold)

0.094 (oil)
0.231 (gold)
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5. Conclusions

The global lockdown carried out with respect to the COVID-19 pandemic has severe
consequences on the economy of the whole world. Oil and gold as well as experienced a
downward trend due to the increased rate in the number of confirmed COVID-19 cases.
Therefore, accurate forecasting for the oil, and gold during the COVID-19 period may assist
the investors and stakeholders in their risk management decisions.

This study is the first one to investigate the impact of the lately published features
of COVID-19 datasets that may influence the accuracy of the oil/gold prices forecasting
models including the Stringency index, reproduction rate, Positive Rate, and Vaccina-
tions. Based on the PCC analysis, the total number of vaccinations is positively correlated,
PCC = 0.713, with the Oil prices and is strongly influencing its prices. The vaccination has
aided in a rapid increase in oil prices. However, the developments of the new strains of
COVID-19 are causing the instability of its prices. The yielded results provide an indication
that the gold prices are more stable and have less sensitivity compared to the oil. The gold
tends to respond in contrast with the other kinds of commodities which are highly affected
with respect to the COVID-19 pandemic.

Deep autoencoders along with a Bayesian NN regressor are adopted to investigate
the impact of COVID-19 pandemic datasets on gold/oil prices during the period 1 April
2020–30 September 2021 in Saudi Arabia. The key factors in the feature space that may
influence the accuracy of the forecasting models are selected using a hybrid approach of
stacked autoencoders and the Pearson Correlation analysis. The applied feature reduction
methods including PCC, 2-stage Stacked Autoencoder, and the PCC-Stacked Autoencoders
demonstrate that the hybrid approach has yielded more significant features by considering
the relationship between the input features using the PCC. These key features have attained
the minimum MSE, and highest R squared values for the NN regressor compared to other
methods. The presented approach for forecasting the oil/gold prices has outperformed the
early well-known regression technique, ARIMA, the classical ML (SVR, and ANN), and
deep learning methods (RNN, and LSTM).
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