
����������
�������

Citation: Mabrouk, E.; Raslan, Y.;

Hedar, A.-R. Immune System

Programming: A Machine Learning

Approach Based on Artificial

Immune Systems Enhanced by Local

Search. Electronics 2022, 11, 982.

https://doi.org/10.3390/

electronics11070982

Academic Editors: Namgi Kim

and Hyunsoo Yoon

Received: 15 February 2022

Accepted: 17 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Immune System Programming: A Machine Learning Approach
Based on Artificial Immune Systems Enhanced by Local Search
Emad Mabrouk 1,2 , Yara Raslan 2 and Abdel-Rahman Hedar 3,*

1 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
emad.mabrouk@aum.edu.kw

2 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt;
yara.raslan@science.aun.edu.eg

3 Department of Computer Science, Faculty of Computers & Information, Assiut University,
Assiut 71526, Egypt

* Correspondence: hedar@aun.edu.eg; Tel.: +20-10-0070-4940

Abstract: The foundation of machine learning is to enable computers to automatically solve certain
problems. One of the main tools for achieving this goal is genetic programming (GP), which was
developed from the genetic algorithm to expand its scope in machine learning. Although many
studies have been conducted on GP, there are many questions about the disruption effect of the main
GP breeding operators, i.e., crossover and mutation. Moreover, this method often suffers from high
computational costs when implemented in some complex applications. This paper presents the meta-
heuristics programming framework to create new practical machine learning tools alternative to the
GP method. Furthermore, the immune system programming with local search (ISPLS) algorithm is
composed from the proposed framework to enhance the classical artificial immune system algorithm
with the tree data structure to deal with machine learning applications. The ISPLS method uses a
set of breeding procedures over a tree space with gradual changes in order to surmount the defects
of GP, especially the high disruptions of its basic operations. The efficiency of the proposed ISPLS
method was proven through several numerical experiments, including promising results for symbolic
regression, 6-bit multiplexer and 3-bit even-parity problems.

Keywords: artificial immune system; immune system programming; machine learning; meta-
heuristics; meta-heuristic programming

1. Introduction

A genetic algorithm (GA) is a meta-heuristic search algorithm that mimics the bio-
logical processes of natural selection and survival of the best. GA has been studied and
experimented with widely through many applications in several areas [1]. Next, genetic
programming (GP) was introduced as a new evolutionary algorithm that inherits the GA
strategy [2,3]. The first appearance of pure GP was written in 1985 by Nichael Cramer [4].
He used the idea of GA to propose the tree-based genetic programming approach. Then,
this work became popularized via a search technique created by John Koza in the 1990s [5,6].
John Koza demonstrated the feasibility of the GP in many application areas. Since then,
the number of research in this field has spread and increased rapidly, and the concept of
GP was widely applied in plenty of applications, such as classification [7,8], control [9,10],
dynamic processes [11,12], electrical circuit design [13,14], chemical engineering including
polymer design [15,16], regression [17,18], and signal processing [19,20].

The main differences between GA and GP can be summarized in the representation of
solutions and application fields. Candidate solutions in GP are represented as executed
forms, usually hierarchical tree forms, while solutions in GA are represented as fixed-length
binary strings or linear real-valued codes [16]. In GP, each tree consists of a set of leaf nodes
called terminals and a set of internal nodes called functions. The functions and terminals are

Electronics 2022, 11, 982. https://doi.org/10.3390/electronics11070982 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11070982
https://doi.org/10.3390/electronics11070982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8039-0728
https://orcid.org/0000-0002-9936-5987
https://doi.org/10.3390/electronics11070982
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11070982?type=check_update&version=3

Electronics 2022, 11, 982 2 of 20

defined to represent candidate solutions depending on the problem under study. Moreover,
the tree-based representation of a solution is an important feature of GP and enables it to
handle and solve a variety of applications. The GP algorithm optimizes a population of
computer programs in tree-based representation that evolve in each generation according
to their fitness value defined by a program’s ability to solve the problem. The algorithm
begins the search with a randomly generated set of computer programs. Then, based
on their fitness, some individuals are selected from the current population to breed new
individuals, using the crossover and/or mutation operators. This process is iterated to
drive the population toward the main goal. Consequently, GP is known to pursue the goal
of machine learning, which means that computers program themselves without humans
guiding them step by step. In addition, many challenging real-world problems have been
solved by using the GP technique [18,21]. Despite all these GP successes and applications,
standard breeding operators can spoil promising solutions, and there are some risks that
the optimal structure will be difficult to find. Therefore, there have been many attempts to
modify GP operators with the purpose of maintaining promising individuals and reaching
optimal solutions [13,22].

Meta-heuristics are often seen as promising options for solving problems that can
be modeled or transformed into optimization problems. The most widely used data-
structure types that are used in meta-heuristics are real-valued vectors and bit strings [23].
Choosing a suitable meta-heuristic method that solves a given problem is fundamental.
The performance of different meta-heuristics varies, even when they are applied to the same
problem. Moreover, the “No Free Lunch” theorem reports that the average performance
of search algorithms is equal over all possible applications, so no search method is better
than others in general [24]. The presence of a large variety of meta-heuristics methods
has stimulated many attempts to extend the scope of meta-heuristics to deal with the
tree-data structure and accommodate different types of applications. Using the tree-data
structure, there are a limited number of successful attempts to produce alternatives to
GP from traditional meta-heuristic methods, such as memetic programming [25], tabu
programming [26], and scatter programming [27]. Therefore, we aim to extend more
efficient meta-heuristics methods and design new machine learning tools that use tree data
structure and manipulate computer programs.

This paper introduces the immune system programming with a local search (ISPLS)
algorithm that searches for an appropriate computer program and inspires its idea from the
artificial immune system (AIS) algorithm. The AIS algorithm is a meta-heuristic method
that takes inspiration from the human natural immune system. The immune system has
many attributes that would be advisable for an artificial system to have, such as self-
organization, learning, adaptation, and recognition. AIS is growing rapidly, and it applies
the principles of the natural immune system in a wide range of application areas [28,29].
Therefore, we introduce ISPLS as a new machine learning approach that behaves as an
AIS algorithm but deals with computer programs that are represented as trees. The main
contribution of the proposed algorithm is to plan more alternatives to the GP algorithm in
order to adapt more application areas by using the evolutionary and adaptive mechanisms
of AIS. The main focus is that ISPLS uses breeding operators over a tree space to generate
new offspring from the current parent. These breeding operators make the effects of the
program under some restrictions. In addition, ISPLS exploits the breeding operators in the
structure of the local search (LS) procedure with gradual changes in order to overcome the
defects of GP. The results show that ISPLS is promising in terms of solving many benchmark
problems; symbolic regression, 6-bit multiplexer and 3-bit even-parity problems.

The paper is organized as follows. The next section illustrates the main framework of
MHP. Section 3 describes the basic concept of AIS, which is an inspirational source for the
proposed algorithm. Section 4 shows the proposed ISPLS algorithm together with breeding
operators over tree space and the LS procedure that achieves the intensification principle
in the most promising areas. The numerical results of the ISPLS method are shown in

Electronics 2022, 11, 982 3 of 20

Section 5 for three types of benchmark problems: symbolic regression, 6-bit multiplexer,
and 3-bit even-parity problems. Finally, the conclusion appears in Section 6.

2. Meta-Heuristic Programming (MHP)

Meta-heuristics can be categorized into two categories: population-based methods
and point-to-point methods [1]. In the latter group of methods, at the end of each iteration,
the search provides only one solution with which the search then begins in the next iteration.
On the other hand, at the end of each iteration, population-based methods retrieve a set of
many solutions. The most famous meta-heuristic method is the GA, which is considered
an example of population-based meta-heuristics, while tabu search, simulated annealing
and ant colony optimization are point-to-point meta-heuristics [30,31].

The MHP is a framework that attempts to cover many of the well-known meta-
heuristic methods and generalizes the data structures used in these methods to be tree-
data structures, instead of bit strings or vectors of numbers [26]. In the MHP framework,
the initial computer programs can be adapted through four procedures to find an acceptable
target solution to the problem at hand. The order of these procedures depends on the
meta-heuristic algorithm. These procedures are as follows [26,30]:

• TrialProgram: attempts to generate trial programs from the current program(s).
• Enhancement: enhances the search process by exploiting the best region (good regions

are explored more thoroughly to find better solutions) or escaping from the local
region if an improvement step is not achieved.

• UpdateProgram: selects one or more programs to use for the next generation or the
next iterate.

• Diversification: directs the search to new unexplored regions in the search space or to
escape from the local area.

TrialProgram and UpdateProgram procedures are the basic procedures in MHP.
The other procedures are added to achieve better and faster performance from MHP. In
fact, by using these procedures, the MHP behaves as an intelligent hybrid framework [30].
The layout of the MHP framework follows the following steps:

1. Initialization: Generate an initial population P0 (or an initial program x0) and initialize
the iteration counter k := 0.

2. Main Loop: Repeat the main search steps (2.1)–(2.4) for M times.

2.1 Trial Solutions: Use TrialProgram Procedure in order to create trial programs Sk
from the current ones Pk (or xk).

2.2 Enhancement: Apply Enhancement Procedure to improve the programs in Sk.
2.3 Solution Updating: Apply UpdateProgram Procedure to choose the next popu-

lation Pk+1 (or next iterate program xx+1).
2.4 Update Parameter: Update the current parameters.

3. Termination: Proceed to Step 5 if the termination criteria are met.
4. Diversification: If it is necessary to diversify, apply DiverseProgram Procedure to up-

date the population Pk+1 (or solution xk+1) with new diverse solutions.
Set k =: k + 1 and go to Step 2.

5. Intensification: Apply Enhancement Procedure to improve the best programs obtained
so far.

3. Artificial Immune System

The immune system of each organism differs according to its attributes. The human
immune system aims to protect the human body from harmful bacteria, fungi, para-
sites, and viruses that are classified as pathogenic sources and capable of causing dis-
ease [32]. Moreover, the immune system recognizes pathogens through antigen molecules
and presents different forms of antibodies consisting of T cells and B cells to generate a
reaction against these pathogens [33,34].

Electronics 2022, 11, 982 4 of 20

Although diseases come in many forms, the immune system is considered an adaptive
and robust system because it is capable of forming a group of immune cells of many shapes
and sizes [35]. These cells combine to form more complex structures called antibodies.
In order for the immune system to be more effective, it can change the structure of immune
cells to maximize their affinity for the antigen through the process of affinity mutation.
Thus, despite the complexity of diseases, immune cells try to adapt themselves to fight
these diseases without any prior knowledge of their structure [36,37].

Clonal selection is a popularly accepted theory used to model the immune system’s
responses to infection. The clonal selection was proposed by Frank Burnet in 1959 [38].
It is based on the cloning and affinity maturation concept. The entire process of clonal
selection is based on antigen recognition and cell proliferation. B cells are used to destroy all
antigens that invade the body. When the body is exposed to a foreign antigen attack, these
B cells clone a specific type of antibody, Ab, which achieves the best bond with antigen Ag.
The bending between Ab and Ag is measured by how well the Ab paratope matches an
epitope of the Ag. A closer match means a stronger bond. The mutation process is applied
to the cloned cells to ensure diversity. Moreover, the selection process ensures that the cells
with a higher affinity survive [32].

Many artificial immune algorithms have been proposed to imitate the clonal selection
theory. De Castro and Von Zuben [32] introduced a clonal selection algorithm called
CLONALG to solve learning and optimization problems in 2002. The CLONALG algorithm
is illustrated in Algorithm 1, and its flowchart is explained in Figure 1. For more details,
see [32].

Algorithm 1 CLONALG algorithm.

1. Create an initial population at random consisting of Npop candidate solutions according
to the problem under study.

2. Evaluate all antibodies and determine their affinities.

3. Select n antibodies with the highest affinities.

4. Create clones of n selected antibodies (the number of copies is determined according to
their affinities); a higher affinity means a larger clone size.

5. Mutate the cloned antibodies at a rate inversely proportional to their affinities.

6. Re-select the best n mutated cloned antibodies with the highest affinity to compose the
new repertoire.

7. Replace some low-affinity members of the antibody pool with the new random ones.

8. Repeat Steps 2 to 7 until a given stopping criterion is met.

9. Return the best antibodies found.

From the CLONALG algorithm, one can note that individuals have independent
mutation rates based on their affinities. Specifically, promising solutions that are close
to the optimal solution are processed with smaller mutation rates, while those that fall
far from the optimal solution undergo greater mutation rates [32]. The cloning process
means reproducing new solutions that are copies of their parents. The number of clones,
Ni

c, generated from each of the n best solutions is calculated as follows:

Ni
c = d0.5 +

β ∗ Npop

i
e, (1)

where β is a clonal factor ∈ [0, 1], i is the current solution rank i ∈ [1, n], and Npop is the
population size; see [37]. By observing the AIS algorithm, one can note that the clonal
selection immune algorithm is a class of evolutionary algorithms and that it is inspired by
the human immune system [31].

Electronics 2022, 11, 982 5 of 20

Figure 1. Flowchart of the CLONALG algorithm [32].

4. Immune System Programming with Local Search

The proposed ISPLS algorithm deals with a computer program that is represented as
a tree with some inner nodes acting as functions and some external nodes representing
terminals. The set of functions and the set of terminals and their domains are determined
by the user based on the problem at hand. In addition, the tree construction is converted
into executable code during the coding process. The search space in the case of the ISPLS
algorithm is the collection of all computer programs that can be represented as tree forms.
In addition, each computer program has some neighborhoods that should be generated
by using the breeding operators that are illustrated in Section 4.1. With these breeding
operators, the LS procedure is defined in Section 4.2 for creating new computer programs
that meet certain conditions, which are explained later. Section 4.3 summarizes the full
steps of the proposed ISPLS algorithm.

The running algorithm of ISPLS achieves the MHP conditions as shown in the
following stages:

1. Initial Stage: The set Pop of initial programs is randomly generated.
2. Evaluation Stage: For each program in Pop, evaluate its efficiency through its ability

to solve the considered problem.
3. Clonal Stage: Create some clones of the most promising programs in Pop and save

them as the Copy set.
4. Mutation Stage: Apply a mutation mechanism on programs in the Copy set to create a

new set of children programs called the Children set.
5. Divers Stage: Construct a new set, named the Diverse set, that contains diverse

programs to assist the search process variety.
6. Replace Stage: Replace the Pop set with selected programs from Pop ∪ Children

∪Diverse.

By iterating the last five stages, the ISPLS looks through the search space of the
computer program to gain access to an elite program that solves the problem under

Electronics 2022, 11, 982 6 of 20

consideration. However, during the search process of the main algorithm, the ISPLS
should achieve the balance between the intensification search and the diversification search.
In fact, the intensification search is achieved by ISPLS through the clonal process and uses
the mutation process on a small scale to get close to the neighboring of the current program.
The diversification search can be done by carrying out a large-scale mutation process of
some selected programs, as long as a new set of random programs is generated in each
generation during the diversification stage.

In the clonal stage, the fitness values of all programs in the current population are
used to rank these programs in descending sort order. Then, each of the first n programs is
replicated several times to produce Ni

c clones according to Equation (1). On the other hand,
the ISPLS algorithm implements a mutation process with different scales of each program
in the first n best programs using a factor called Mi

c, which is calculated as follows:

Mi
c = eiλ, (2)

where λ is a given parameter with a positive value, and i is the program rank; see [37].
The values of Ni

c and Mi
c are proportional to the program efficiency. For the best program

in the current population, Ni
c arrives at its maximum value, and Mi

c reaches its minimum
value. Therefore, the algorithm applies several mutations with small scales and produces a
deep exploration around the best program. As long as i increases, Ni

c decreases, and Mi
c

increases. Therefore, the algorithm applies mutation processes using a large scale to defeat
the trapping in the local maxima or minima.

4.1. Breeding Operations

The mutation stage has a main role in advance of the search operation. The ISPLS
algorithm depends on the LS procedure to perform the mutation process and obtain good
programs in the neighborhood of the current one. The LS procedure employs three types of
breeding operations, shaking, grafting, and pruning, in different scales to achieve harmony
between intensification and diversification searches. The basic ideas of these breeding
operations are taken from the tabu programming [26], with some modifications. Those
three operations can be classified into two categories: fixed-structure search and dynamic-
structure search. Fixed-structure search discovers the neighborhood of the present program
by altering its nodes without changing its structure. On the other hand, the dynamic
structure search is able to modify the structure of the current program through extend-
ing some of its terminal nodes or deleting some of its subtrees. The LS procedure uses
the shaking process as a fixed structure search. However, gra f ting and pruning are em-
ployed as dynamic-structure searches. Before starting the description of shaking, grafting
and pruning procedures, some basic notations are defined. For a program P, we define
the following:

• d(P), the program depth, is the number of links in the path from the root of the
program P to its farthest terminal node.

• d(l) is the number of links in the path from node l to the root of the program that
contains l.

• Md is the maximum depth for a program that is allowed during the search process.
• |P| is the number of all nodes in the program P.

4.1.1. Shaking Procedure

The shaking search process can be classified as a fixed-structure search. It creates
a new set of computer programs called XS from the current program P by changing,
at most, Mc nodes that are selected randomly from P without any effect on the structure.
The selected nodes and their alternatives should have the same properties, i.e., a terminal
node is replaced with a new terminal one, and a function node is replaced with a new
function on conditions that have the same number of arguments. Procedure 1 introduces

Electronics 2022, 11, 982 7 of 20

the description of the shaking process that creates a set of N trials from the current program
P, with a maximum number of changes Mc for each trial.

Procedure 1. Xs = Shaking(P, N, Mc)

1. Initialization: Set Γ to hold the numbers of all changeable nodes in P and set the program pool
Xs to be empty.

2. If Γ is empty, then terminate. Otherwise, let Mc equal to min{Mc, |Γ|}.
3. Main Loop: For i = 1, . . . , N, do the following Steps 3.1–3.4.

3.1 Set P̃ = P.
3.2 Let v be a random permutation of numbers in Γ.
3.3 For j = 1, . . . , Mc, do the following Step 3.3.1.

3.3.1 If a similar alternative value from the collection of terminals or functions exists,
replace P̃(v(j)) with it.

3.4 Add P̃ to Xs.

4. Return with Xs.

It is important to note that in Step 3.3.1 of Procedure 1, a leaf node is exchanged with
another leaf node from the terminal set, and a function node is exchanged with another
function node of the same number of arguments. However, the procedure is terminated if
there are no alternatives for all nodes in the program.

4.1.2. Grafting Procedure

The grafting search is performed as a dynamic structure search to enhance the search
process. This process creates a set XG of new programs altered from a program P through
the expansion of some of its terminal nodes, which are selected randomly, to be subtrees.
Procedure 2 introduces the grafting process to create N trial programs from a program P,
where at most Mc terminals are expanded to become subtrees.

Procedure 2. Xg = Grafting(P, N, Mc, Md)

1. Initialization: Initialize Xg to be an empty program pool set.

2. Main Loop: For i = 1, . . . , N, do the following Steps 2.1–2.3.

2.1 Set P̃ = P.
2.2 For j = 1, . . . , Mc, do the following Steps 2.2.1–2.2.3.

2.2.1 Set T to contain all terminal nodes in P̃ whose depth is less than or equal to
(Md − i).

2.2.2 If T is empty, then terminate. If not, choose a terminal node t ∈ T at random.
2.2.3 The node t is replaced with a new randomly generated subtree with depth i.

2.3 Update P̃ and add it to Xg.

3. Return with Xg.

4.1.3. Pruning Procedure

The pruning search process is also another type of dynamic structure search, and it is
considered the reverse of the grafting process. The pruning process generates a new set
of changed programs XP from the program P by changing some of its branches by some
terminals. Procedure 3 illustrate the description of the pruning process to create N trials
from the program P, where the procedure cuts, at most, Mc branches of a specified depth,
selected randomly, for each trial.

Procedure 3. Xp = Pruning(P, N, Mc)

Electronics 2022, 11, 982 8 of 20

1. Initialization: Initialize Xp to be an empty program pool set and update N to be equal to
min{N, d(P)}.

2. Main Loop: For i = 1, . . . , N, do the following Steps 2.1–2.3.

2.1 Set P̃ = P.
2.2 For j = 1, . . . , Mc, do the following Steps 2.2.1–2.2.3.

2.2.1 Set S to contain all subtrees in P̃ whose depth is equal to i.
2.2.2 From S, choose a subtree θ at random.
2.2.3 Replace θ with a terminal node chosen from the set of terminals at random.

2.3 Update P̃ and add it to Xp.

3. Return with Xp.

Figure 2 shows, graphically, the strategy of the three types of breeding operations.
As was mentioned above in the breeding operators, some values must be determined before
calling these three procedures, such as N and Mc. The N value determines the number
of trials that are produced, but also this number of trials is dependent on the number of
functions and terminals in the original solution. On the other hand, the Mc value controls
the amount of changes in each trial; with more detail, if the value of N = 3 and Mc = 1,
that means the shaking procedure is introduced in three trials. The first trial is generated
by choosing a random node and replacing it with another alternative node, and the second
trial is also generated by choosing one random node and replacing it with an alternative
node, and so on. On the other hand, when the grafting procedure is called, the first trial is
generated by choosing a random node and replacing it with a subtree of depth equal to
1, while the second trial is generated by choosing a random node and replacing it with a
subtree of depth equal to 2, and so on.

Figure 2. Generating new programs using shaking, grafting and pruning procedures [30].

Applying the breeding operators’ procedures and getting on the neighbors of the
current solution P requires a lot of information about it, such as the size of P, the number
of terminal nodes and function node in P, the number of the argument to each function
node in P, and the depth of each branch in the solution. Moreover, by applying the
previous breeding procedures, no one asserts obtaining all the neighbors around an original
solution. So, these procedures are considered stochastic search procedures that obtain
random candidate solutions in the neighborhood of the solution at hand. In other words,
you can obtain totally different results in each call of any of these procedures, although you
are using the same solution and the same parameters.

Electronics 2022, 11, 982 9 of 20

To enhance the result of the search process, the previous breeding procedures were
designed to be able to explore the search space gradually. They can be applied with a small
scale of changes to avoid the disruption of the current solution and also applied with a big
scale of changes to keep the principle of diversity. The gradual changes keep the balance
between the intensification and the diversification principles in the search process, and this
is considered a major issue that should be taken into account in designing efficient search
procedures [1]. On the other hand, the ISPLS is using an LS procedure that is a strategy
that exploits the previous breeding procedures to improve the search process. The next
subsection illustrates the LS procedure with its details.

4.2. LS Procedure

In this subsection, the breeding procedures that were shown in Section 4.1 are em-
ployed in the LS procedure to create new programs under some restrictions. Specifically,
when intensification is desired, the LS procedure is used on a small scale. Exactly the
contrary, the LS procedure is used on a large scale when the diversification search is re-
quired. The LS procedure is proposed to find the best program in the neighborhood of the
current program and also to cover all the search space by moving from one area to another.
Procedure 4 illustrates the steps of the LS procedure, where the main loop of the procedure
is terminated if the maximum number M f of non-improvements is reached.

Procedure 4. P̃ = LS(P, N, Mc, Md, M f)

1. Initialization: Set P̃ = P, and k = 0.

2. Main Loop: do the following Steps 2.1–2.5 while k ≤ M f .

2.1 Apply the shaking procedure and set X = Shaking(P, N, Mc).
2.2 Set Xbest be the best program in X.
2.3 If Xbest is better than P, then set P = Xbest and go to Step 2.1. Otherwise, set k = k + 1.
2.4 If P is better than P̃, then set P̃ = P.
2.5 If k < M f , apply only one option randomly selected from the following choices (i) or (ii).

(i) Apply the grafting procedure and set Y = Grafting(P, N, Mc, Md).
(ii) Apply the pruning procedure and set Y = Pruning(P, N, Mc).

Let P = Ybest, where Ybest is the best program in the Y.

3. Termination: Return P̃.

In the initialization step, Step 1, the procedure starts with a program P that is received
from another algorithm. In addition, P̃ and a counter k take their initial values. The counter
k is used to count the number of non-improvements during the search process. The user
must determine two positive integers, M f and N. Specifically, M f is the maximum number
of non-improvements, and N represents the number of trial programs that are generated in
the neighborhood of the current program by using shaking, grafting and pruning search
procedures. In Step 2.1, an inner loop iterates the shaking procedure until it finds a better
program near P. Then, it replaces the current program P, and the procedure goes back
to Step 2.1. Otherwise, the LS procedure updates the counter k and proceeds to Step
2.4 to update P̃ if a better program is explored. In Step 2.5, when the number of non-
improvements reaches the maximum number of non-improvements M f , the procedure
stops and returns with P̃. Otherwise, it proceeds to Step 2.6 to diversify the search process
by applying either the grafting or the pruning procedure, which is chosen randomly. In Step
2.7, the procedure replaces P with the best program in Y and updates P̃ if a better program
is explored, then goes back to Step 2.1. Finally, when the termination condition is satisfied,
the algorithm stops at Step 3 and returns with the best program found. The main loop is
repeated as long as the value of the counter k does not exceed the maximum value M f .
Therefore, the number of fitness evaluations needed during a single run of the LS procedure

Electronics 2022, 11, 982 10 of 20

varies depending on the improvement of the current program. Figure 3 shows the flowchart
of the proposed LS procedure.

Figure 3. Flowchart of the LS procedure.

As mentioned above, the strategy of the LS procedure depends on the shaking proce-
dure that detects the close tree structures around the current program and moves to the
best of them. Applying this operation several times leads to making good exploration
around the current program; the strategy also uses the dynamic structure search to move to
another area when the change for the better is stopped in this region. Therefore, the ISPLS
algorithm exploits the LS procedure to enhance the search operation.

4.3. ISPLS Algorithm

Algorithm 2 summarizes the complete steps of the ISPLS method, using the breeding
operations and procedures introduced in the previous subsections, where nrate is given,
and it represents the rate of the most promising solutions that will be cloned and mutated.
Additionally, the value drate is given, and it represents the rate of new programs that are
created in the diversification stage.

The termination condition is satisfied by one or more of the following: the algorithm
reaches the maximum number of iterations, the algorithm reaches the maximum number
of fitness evaluations, or the algorithm obtains the optimal solution.

Electronics 2022, 11, 982 11 of 20

Algorithm 2 ISPLS algorithm.

1. Initialization:

1.1 Read Npop, Md, M f , nrate, drate, β and λ.
1.2 Set n = dNpop ∗ nratee, d = dNpop ∗ dratee.
1.3 Construct the program population Pop to contain Npop randomly

generated programs.
1.4 Evaluate the fitness of all Pop programs.

2. Main Loop: While the termination criteria are not met, do Steps 2.1–2.7.

2.1 Sort the Pop programs according to their fitness values in descending order.
2.2 Move the n best programs in Pop to a new set called BestPop.
2.3 Calculate Nc and Mc for programs in BestPop using Equations (1) and (2), respectively.
2.4 For i = 1, 2, ..., n, do the following Step 2.4.1.

2.4.1 Update BestPop(i) = LS(BestPop(i), Nc(i), Mc(i), Md, M f).

2.5 Construct a diverse program set DivPop to contain d randomly generated programs.
2.6 Evaluate the fitness of all DivPop programs.
2.7 Update the Pop to have the best Npop programs contained in BestPop ∪ Pop

∪DivPop.

3. Termination: Return the best program in Pop.

The ISPLS algorithm uses the strategy of the artificial immune system and provides it
by the LS procedure to guide the search to an optimal solution in a suitable time. In Steps
1.1–1.3, the algorithm begins by reading and determining the parameter values, and then it
generates the initial solutions in a Pop set. Then, it sorts the initial population in descending
order according to the fitness value to give the good solutions more opportunity for
improvement by the LS procedure. In each iteration, the algorithm selects the best solutions
in the population and applies the LS procedure to each of them. The algorithm is designed
to consider the number of trials of one solution that are represented by each of the breeding
operators as the number of cloning of this solution to ensure that there is no repetition in
the output of the breeding operators. In addition, each solution has a single substitute in
the next generation. The algorithm in each generation enhances the search operation by
adding a new set of solutions that is generated randomly to increase the diversification.
The main loop is repeated until a termination condition is satisfied, then it returns with the
best program obtained.

The BestPop set represents the memory section, while the other elements of the popu-
lation are considered the remaining section. The replace stage rivals between the output of
the LS procedure BestPop, the remaining section, and the newly generated solution DivPop.

The computational complexity of the worst-case scenario for a single iteration of the
main loop of Algorithm 2 is O(Npop log(Npop) + M f MdTsLc), and it can be interpreted as
follows:

• Step 2.1 is O(Npop log(Npop)), to sorting all programs in Pop.
• Step 2.2 is O(n), to fill BestPop.
• Step 2.4 is O(M f MdTsLc), to update BestPop, where Lc = ∑n

i=1 Nc(i).
• Step 2.5 is O(d), to generate a set of d programs for DivPop.
• Step 2.7 is O(Npop + d), to update Pop.

It means that the computational complexity of the proposed ISPLS algorithm,
Algorithm 2, is O((Npop log(Npop) + M f MdTsLc)Nitr), where Nitr represents the maxi-
mum number of iterations. Similarly, the computational complexity of the AIS algorithm is
O((Npop log(Npop) + MdTsLc)Nitr), since AIS uses a simple mutation procedure to update

Electronics 2022, 11, 982 12 of 20

BestPop [35]. As a result, the complexity of ISPLS is higher than the corresponding com-
plexity of AIS, unless the LS procedure succeeds in improving the programs in BestPop and
finds the optimal solution.

5. Experimental Results

In this section, we focus on the performance of the proposed ISPLS algorithm under
different environments. In all experiments, the algorithm is terminated as soon as the maxi-
mum number of fitness evaluations is reached or the optimal solution is found. In addition,
some comparisons between the ISPLS algorithm and other algorithms are reported. It is
important to note that, for the ISPLS algorithm, the initial population in each test problem
is generated as full trees of depth Sd, which can be considered a parameter.

5.1. Test Problems
5.1.1. Symbolic Regression Problems

The main target in a symbolic regression problem is to find a mathematical formula
that fits a given data set. The fitness value for a program is computed as the sum with an
inverse sign of absolute errors between the expected output and the actual output of all
fitness cases. Therefore, the maximum fitness value for this problem is 0. In this paper,
we considered four symbolic regression problems where a polynomial function f will be
given, and the target for each problem is to produce a new function g that approximates the
original polynomial with the minimum error by using a data set generated in random from
f [26]. The set {+,−, ∗, %}, is used as the function set for all symbolic regression problems,
where the operator % is the protected division, i.e., a%b = 1 if b = 0 and a%b = a/b
otherwise [30,39].

The Fourth Degree Polynomial

In this subsection, we consider the quartic polynomial function f (x) = x4 + x3 +
x2 + x, where a data set of 20 fitness cases of the form (x, f (x)) is obtained by choosing
x uniformly at random in the interval [−1, 1] [2,26]. This problem is referred to as the
SR-QP problem in this paper. The function set of the SR-QP problem is {+,−, ∗, %}, and
the terminal set is the singleton {x}.

The Quintic Degree Polynomial

In this problem, we consider the quintic polynomial function f (x) = x5 − 2x3 + x,
where a data set of 50 fitness cases of the form (x, f (x)) is obtained by choosing x uniformly
at random in the interval [−1, 1] [39]. This problem is referred to as the SR-QUP problem.
The function set of the SR-QUP problem is set to be {+,−, ∗, %}, and the terminal set is
{x}.

The Sixtic Degree Polynomial

Here, we consider the sixtic polynomial function f (x) = x6 − 2x4 + x2, where a data
set containing 50 fitness cases of the form (x, f (x)) is obtained by choosing x uniformly
at random in the interval [−1, 1] [39]. This problem is referred to as the SR-SP problem
throughout the remainder of this paper. Moreover, we use {+,−, ∗, %} as the function set
for the SR-SP problem and the terminal set is {x}.

The Multivariate Polynomial

In this problem, the multivariate polynomial function f (x1, x2, x3, x4) = x1x2 + x3x4 +
x1x4 is considered, where a data set of 50 fitness cases of the form (x1, x2, x3, x4, f (x1, x2, x3, x4))
is generated randomly with xi ∈ [−1, 1], i = 1, 2, 3, 4. This problem is referred to as the
POLY-4 problem in this paper. Similarly, to the previous problems, we use {+,−, ∗, %} as
the function set; however, the variables x1, x2, x3 and x4 are used to form the terminal set
for the POLY-4 problem.

Electronics 2022, 11, 982 13 of 20

5.1.2. 6-Bit Multiplexer Problem

The input to the Boolean 6-Bit Multiplexer (6-BM) function is composed of two “ad-
dress” bits a1 and a0, and four “data” bits d3, d2, d1 and d0. However, the value of the 6-BM
function is the data bit da0+2a1 that is singled out by the two address bits, a0 and a1. All 26

combinations of the arguments are considered fitness cases. The truth table is formed by
calculating the Boolean value of each combination. The fitness value of a program is evalu-
ated as the number of fitness cases, where the Boolean values returned by that program are
the correct Boolean values. Therefore, the program’s maximum fitness value is the same as
the number of fitness cases, which is 64 [26,30]. For the 6-BM problem, the function set is
the set of Boolean functions {AND, OR, NOT, IF}, where IF(x, y, z) returns y if x is true,
and it returns z otherwise. Moreover, the set of arguments {a0, a1, d0, d1, d2, d3} is used as
the terminal set.

5.1.3. 3-Bit Even-Parity Problem

A parity bit is a check bit (1 or 0) that is added to the end of a string of binary code.
This parity bit is used to denote whether the total number of 1-bits in the string is even
or odd. Parity bits are used for error detection purposes, e.g., detecting of transmission
errors [40]. The Boolean 3-bit even-parity (3-BEP) function is a function of 3 arguments of
bit type, namely a0, a1 and a2. Therefore, the function returns 1 if the arguments include an
even number of 1-bits, and it returns 0 otherwise. All 23 combinations of the arguments are
considered fitness cases. The truth table is formed by calculating the Boolean value of each
combination. The fitness value of a program is computed as the number of fitness cases,
where Boolean values returned by the program are the correct Boolean values. Therefore,
the program’s maximum fitness value for the 3-BEP problem is 8 [27,39]. For the 3-BEP
problem, the set of Boolean functions {AND, OR, NAND, NOR} forms the function set,
and the set of arguments {a0, a1, a2} forms the terminal set [41].

5.2. Parameter Tuning

This subsection discusses the performance of the ISPLS algorithm through the bench-
mark problems in the previous subsection. We focus on the effect of the ISPLS parameters
and their proper values for each test problem. Therefore, a set of different values is specified
for each of these parameters. Then for each value, 100 independent runs are performed in
order to calculate the mean value of the number of fitness evaluations used through these
independent runs. Other parameters are fixed at their standard values given in Table 1.
These values are determined from the common setting in the literature and from some
pilot experiments as well. The results obtained from parameter tuning differ from one
problem to another because of the difference in the problem’s structure and complexity.
This is the reason for applying the parameter tuning process to each problem. Through
all the experiments in this paper, we use the maximum depth Md = 7, which means the
maximum length of a program is 255 nodes for the SR-QP, SR-QUP, SR-SP, POLY-4 and
3-BEP problems. However, the maximum length as of a program for the 6-BM problem is
3280 since the function set contains the ternary function IF(x, y, z).

Tables 2 and 3 show the performance of the ISPLS algorithm with different values of
each parameter for all the problems under consideration. In all the experiments shown in
these tables, the ISPLS algorithm terminates when it obtains the optimal program with the
maximum fitness value.

Electronics 2022, 11, 982 14 of 20

Table 1. Standard values of ISPLS parameters for the test problems.

Parameter Sd Npop β M f nrate drate λ

SR-QP 3 25 0.2 1 0.5 0.25 0.04
SR-QUP 4 50 0.2 1 0.6 0.25 0.04

SR-SP 4 75 0.2 1 0.5 0.25 0.06
POLY-4 3 50 0.2 2 0.5 0.25 0.06
6-BM 4 50 0.2 2 0.5 0.25 0.04
3-BEP 5 50 0.2 2 0.5 0.25 0.04

Table 2. ISPLS performance under different values of parameters Sd, Npop and β.

Parameter SR-QP SR-QUP SR-SP POLY-4 6-BM 3-BEP

Name Value Mean Mean Mean Mean Mean Mean

2 2252 46,013 16,699 4560 15,880 70,359
3 1166 15,794 13,242 5326 9689 74,225

Sd 4 1360 8485 7867 6855 9300 10,480
5 2920 6334 7415 24,225 8928 3036
6 9060 15,662 19,366 - 9404 2539

25 1170 9141 14,731 4708 9604 2822
50 1422 8927 10,606 4694 7679 3512

Npop 75 1641 9122 10,177 5599 9660 3400
100 2118 8652 11,475 5941 11,644 3035
125 1764 8536 13,330 6729 9534 3254

0.05 1835 8361 12,815 9184 21,363 3948
0.1 1541 8839 10,346 7066 11,886 3032

β 0.15 1099 7498 10,322 5796 10,730 2911
0.2 1213 8503 9147 4956 10,747 2841
0.25 1202 8311 7824 5276 8875 3290

We used the ANOVA statistical test to analyze the performance of the proposed
algorithm using different parameter values for 6 benchmark problems with the full set of
runs, 20,900 independent runs. All data were transformed using log function, then analysis
of variance was performed using Proc Mixed of the SAS version 9.2, and mean values
(per 100 runs) were compared by Duncan’s at a significance level of 5% [42]. The results
of the statistical analysis indicate that the benchmark problems are independent and the
selection of parameter values is a problem-based issue. Similarly, the results indicate that
the set of parameters have significant effect and independent for p > 0.0001. The crucial
parameters for the ISPLS algorithm are Sd, Npop and β. The best value for Sd depends on
the problem itself, and suitable values are limited between 3 and 5 for all problems under
study. The value of Npop should be large enough, but not too much, to cover the entire
search space. For all problems, it is preferable to specify a value for Npop between 25 and
75. Moreover, large values of β reflect the best performance for all problems, and the best
values of β are limited from 0.15 to 0.25. On the other hand, M f and nrate have a moderate
effect of the performance of the algorithm. Furthermore, the performance is stable for all
proposed values of drate and λ. The computational results presented in Tables 2 and 3 also
reflect the same conclusions obtained from the statistical test of ISPLS parameter values.

Electronics 2022, 11, 982 15 of 20

Table 3. ISPLS performance under different values of parameters M f , nrate, drate and λ.

Parameter SR-QP SR-QUP SR-SP POLY-4 6-BM 3-BEP

Name Value Mean Mean Mean Mean Mean Mean

1 1447 8431 8310 4441 9747 3459
2 1362 8671 9099 4959 9298 2921

M f 3 1354 7874 9030 6042 8188 2656
4 1644 8715 8032 6504 9050 3023
5 1425 12,526 9817 6976 9770 2884

0.3 1213 13,169 8706 4512 8370 2363
0.4 1132 10,357 7299 5030 7977 2344

nrate 0.5 1216 8688 9047 5406 8940 3022
0.6 1242 7717 10,398 5628 10,673 3024
0.7 1385 8422 9518 5598 10,905 2848

0.2 1311 11,170 9871 5083 9464 2842
0.25 1348 8097 9267 5190 8755 3285

drate 0.3 1207 9813 9936 4943 8689 2778
0.35 1345 7413 8887 5287 9638 2979
0.4 1343 8863 7221 4694 8426 2847

0.02 1180 8105 10,449 4407 9984 3591
0.03 1387 10,238 7885 4081 9668 3369

λ 0.04 1310 8879 7675 4176 9585 3220
0.05 1238 8593 8596 5293 8177 2660
0.06 1203 11,130 9115 4680 8401 3038

5.3. Comparative Results

In this subsection, we examine the performance of the ISPLS algorithm along with
some different GP algorithms that appeared in the literature.

5.3.1. ISPLS Algorithm vs. GPLab Toolbox and TP Algorithm

GPLab [43,44] is a Matlab toolbox that includes the traditional features and capabilities
of GP tools that can be used for a wide range of uses. In this experiment, we compared
the results of the ISPLS algorithm with the corresponding results of the GPLab toolbox,
assuming that both have a limited number of fitness evaluations. Table 4 illustrates the
comparison between ISPLS and GPLab, where MaxnFits is referred to as the maximum
allowed number of fitness evaluations [26].

Tabu programming (TP) algorithm is an extended version of the tabu search algo-
rithm [30], in which the search space of the TP algorithm is a collection of all computer
programs that can be represented as trees. The main contribution of TP is designing other
alternatives to the GP algorithm in order to accommodate more application areas. Table 4
illustrates the comparison between ISPLS, TP and GPLab for 100 independent runs with a
limited number of fitness evaluations for each run. Specifically, the maximum number of
fitness evaluations for each run is 2500 for the SR-QP problem and 25,000 for both 6-BM
and 3-BEP problems [26]. The results of these algorithms are shown in Table 4 in terms of
the mean of the number of fitness evaluations needed for each run and the success rate.
A one-sample t-test, two-tailed, is used to compare the significant differences between
the means of GPLab and TP versus ISPLS, where p < 0.01 ∗∗ means that the difference is
highly significant, p < 0.05 ∗ means the difference is significant, and p > 0.05 means the
difference is not significant. Parameter values of ISPLS are shown in Table 1, except in the
3-BEB problem where the nrate equals 0.3.

Electronics 2022, 11, 982 16 of 20

Table 4. Comparison of GPLab, TP and ISPLS algorithms under the same limitations on the number of
fitness evaluations, where p > 0.05 means “not significantly different”, p < 0.05 ∗means “significantly
different”, and p < 0.01 ∗∗ means “highly significant”.

GPLab TP ISPLS

Problem Mean Rate p Value Mean Rate p Value Mean Rate

SR-QP 1303 81% 0.011 ∗ 801 99% <0.01 ∗∗ 1129 97%
6-BM 8445 100% 0.0879 7829 98% 0.6410 7599 98%
3-BEP 11,175 77% <0.01 ∗∗ 5612 100% <0.01 ∗∗ 2363 100%

5.3.2. ISPLS Algorithm vs. GP and BC-GP Algorithms

Poli and Langdon [45] introduced the BC-GP algorithm as a modified version of the
GP algorithms. Moreover, extensive numerical experiments have been performed using
thousands of independent runs to compare between the standard GP algorithm and the
backward-chaining GP (BC-GP) algorithm for the SR-QP and POLY-4 problems [45,46].
In this section, we performed several experiments for the same problems using the ISPLS
algorithm to compare our results with those of Poli and Langdon [46].

Poli and Langdon [45] used the GP and BC-GP algorithms through two different
experiments for the SR-QP problem with different settings. In the first experiment, 5000 in-
dependent runs were performed for using Npop = 100 for 30 generations, i.e., the maximum
number of fitness evaluations for each algorithm was MaxnFits = 3000. In the second
experiment, 1000 independent runs were performed using Npop = 1000 for 30 generations,
i.e., the maximum number of fitness evaluations for each algorithm was MaxnFits = 30,000.
Similar experiments were conducted for the POLY-4 problem, where 5000 independent
runs and other 1000 independent runs were performed with Npop = 1000 and Npop =
10,000, respectively. For each run, the GP and BC-GP algorithms iterated for 30 generations,
i.e., MaxnFits = 30,000 and MaxnFits = 300,000 fitness evaluations. Results of the GP and
BC-GP algorithms are obtained from [46].

For the ISPLS algorithm, six different experiments were conducted for the SR-SP
problem using different settings. Mainly, 5000 independent runs with MaxnFits = 3000,
and 1000 independent runs with MaxnFits = 30,000 were performed, where each experi-
ment was repeated three times using Npop = 25, Npop = 50 and Npop = 100. The remaining
parameter values of the ISPLS algorithm are shown in Table 1. Figure 4 shows the perfor-
mance of the proposed algorithm compared with the GP and BC-GP algorithms in terms of
the rate of success for the SR-QP problem.

For the POLY-4 problem, we repeated the same experiments of the SR-QP problem
using the ISPLS algorithms. Specifically, 5000 independent runs with MaxnFits = 30,000,
and 1000 independent runs with MaxnFits = 300,000 were performed and repeated three
times using Npop = 50, Npop = 100 and Npop = 150. The remaining parameter values of the
ISPLS algorithm are shown in Table 1. Figure 5 shows the performance of all algorithms in
terms of the rate of success for the POLY-4 problem.

As noticed from the previous figures, the ISPLS algorithm can find an optimal solution
very fast compared with the BC-GP and GP algorithms. Therefore, the ISPLS algorithm
can save a lot of time and computations during the search process. One can conclude that
ISPLS was superior to GP and BC-GP.

Electronics 2022, 11, 982 17 of 20

Figure 4. Performance of ISPLS, BC-GP, and GP algorithms for the SR-QP problem.

Figure 5. Performance of ISPLS, BC-GP and GP algorithms for the POLY-4 problem.

5.3.3. ISPLS Algorithm vs. CGP, ECGP, EGGP, TAPMCGP and FMCGP Algorithms

Walker and Miller in [39], Atkinson in [47] and Fang and Joe in [48] examined the
performance of different versions of the Cartesian genetic programming (CGP) algorithm.
Specifically, extensive numerical experiments have been performed on many benchmark
problems using the CGP, ECGP, EGGP, TAPMCGP, and FMCGP algorithms. In this ex-
periment, we present a comparison between the performance of these algorithms and the
performance of the ISPLS algorithm. For the CGP and ECGP algorithms in [39], 50 inde-
pendent runs were performed for each problem under study. However, for the CGP, EGGP,
TAPMCGP, and FMCGP algorithms in [47,48], 100 independent runs were performed for
each problem under study. Similarly, we also performed 100 independent runs for each
problem using the ISPLS algorithm. For each run, the algorithm ran until an optimal solu-
tion with the maximum fitness value was discovered. The parameter values of the ISPLS
algorithm for each problem are shown in Table 1. Moreover, we used Sd = 5, drate = 0.4
and nrate = 0.3 for the SR-QUP, SR-SP and 3-BEP problems, respectively.

Table 5 shows the performance of the CGP, ECGP, EGGP and ISPLS algorithms in
terms of the median (ME), median standard deviation (MAD) and interquartile range (IQR)
of the number of fitness evaluations used to reach the optimal solution, where results of
CGP, ECGP and EGGP were reported from the original references [39,47]. Table 6 shows
the performance of Baseline CGP, TAPMCGP, FMCGP and ISPLS algorithms in terms of the
mean and standard deviation (Std) of the number of fitness evaluations used to reach the
optimal solution, where results of Baseline CGP, TAPMCGP, and FMCGP were reported
from its original reference [48]. A one-sample t-test, two-tailed, was used to compare the
significant differences between the means of the Baseline CGP, TAPMCGP, and FMCGP

Electronics 2022, 11, 982 18 of 20

versus ISPLS, where p < 0.01 ∗∗ means the difference is very significant, p < 0.05 ∗ means
the difference is very significant, and p > 0.05 means the difference is not significant.

From results in Tables 5 and 6, we can see that the ISPLS algorithm clearly outperforms
all algorithms under consideration for all test problems, except the FMCGP algorithm
for the SR-SP problem. These results reflect the power of the LS procedure with the the
proposed breeding operator: shaking, grafting and pruning operators.

Table 5. Comparison of CGP, ECGP, EGGP and ISPLS algorithms, in terms of ME, MAD, and IQR.
All values are expressed in terms of thousands.

Problem CGP ECGP CGP EGGP ISPLS
[39] [39] [47] [47]

ME 32.2 25.9 – – 3.5
SR-QUP MAD 31.0 24.4 – – 6.9

IQR 525.6 296.8 – – 5.9

ME 12.7 29.7 – – 4.6
SR-SP MAD 10.9 25.1 – – 5.4

IQR 64.1 279.4 – – 6.2

ME 6.0 5.9 4.4 2.8 1.5
3-BEP MAD 2.9 3.8 2.5 1.6 1.6

IQR 6.6 10.4 5.3 4.8 2.4

Table 6. Comparison of CGP, TAPMCGP, FMCGP and ISPLS algorithms, in terms of mean and Std,
where p > 0.05 means “not significantly different”, p < 0.05 ∗ means “significantly different”,
and p < 0.01 ∗∗ means “highly significant”.

Problem Baseline CGP TAPMCGP FMCGP ISPLS
[48] [48] [48]

Mean 28,633.66 7150.55 10,537.45 6333.97
SR-QUP Std 51,655.34 15,221.36 16,538.50 6276.15

p value <0.01 ∗∗ 0.1962 <0.01 ∗∗

Mean 15,843.74 6832.54 5676.55 7221.01
SR-SP Std 25,609.54 12,326.49 5865.20 7591.74

p value <0.01 ∗∗ 0.6100 0.044 ∗

6. Conclusions

The ISPLS algorithm is proposed as an extension of the AIS algorithm, which is a pop-
ular population-based meta-heuristic method. Solution representation can be distinguished
as the main difference between ISPLS and AIS algorithms. More specifically, solutions
in the ISPLS algorithm are computer programs represented by parse trees. In addition,
the proposed sets of local search procedures are used to define and explore the best neigh-
borhoods of a solution. This procedure is able to balance between the intensification and
the diversification searches. Three types of standard problems were used to test the perfor-
mance of the ISPLS algorithm through a set of experiments to analyze the main parameters
of the proposed algorithm. From these numerical experiments, the ISPLS algorithm showed
promising performance compared to different versions of the GP algorithm. Specifically,
the ISPLS algorithm outperformed the GP algorithm in terms of success rate and also
the required number of fitness evaluations to reach an optimal solution, at least for the
well-studied test problems.

Author Contributions: Conceptualization, E.M., Y.R. and A.-R.H.; methodology, E.M., Y.R. and
A.-R.H.; programming and implementation, E.M., Y.R. and A.-R.H.; writing—original draft prepara-
tion, E.M. and Y.R.; writing—review and editing, E.M., Y.R. and A.-R.H. All authors have read and
agreed to the published version of the manuscript.

Electronics 2022, 11, 982 19 of 20

Funding: This research received no external funding.

Data Availability Statement: Main results of the paper attached as Excel file.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gendreau, M.; Potvin, J.Y. Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2.
2. Koza, J.R. Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems; Stanford

University: Stanford, CA, USA, 1990.
3. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA,

1992; Volume 1.
4. Cramer, N.L. A representation for the adaptive generation of simple sequential programs. In Proceedings of the First International

Conference on Genetic Algorithms, Pittsburgh, PA, USA, 24–26 July 1985; pp. 183–187.
5. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112.

[CrossRef]
6. Koza, J.R. Genetic Programming III: Darwinian Invention and Problem Solving; Morgan Kaufmann: Burlington, MA, USA, 1999;

Volume 3.
7. Santoso, L.; Singh, B.; Rajest, S.; Regin, R.; Kadhim, K. A genetic programming approach to binary classification problem. EAI

Endorsed Trans. Energy Web 2020, 8, e11. [CrossRef]
8. Devarriya, D.; Gulati, C.; Mansharamani, V.; Sakalle, A.; Bhardwaj, A. Unbalanced breast cancer data classification using novel

fitness functions in genetic programming. Expert Syst. Appl. 2020, 140, 112866. [CrossRef]
9. Hu, N.; Zhong, J.; Zhou, J.T.; Zhou, S.; Cai, W.; Monterola, C. Guide them through: An automatic crowd control framework using

multi-objective genetic programming. Appl. Soft Comput. 2018, 66, 90–103. [CrossRef]
10. De Vega, F.F.; Olague, G.; Lanza, D.; Banzhaf, W.; Goodman, E.; Menendez-Clavijo, J.; Martinez, A. Time and individual duration

in genetic programming. IEEE Access 2020, 8, 38692–38713. [CrossRef]
11. De Giorgi, M.G.; Quarta, M. Hybrid multigene genetic programming-artificial neural networks approach for dynamic performance

prediction of an aeroengine. Aerosp. Sci. Technol. 2020, 103, 105902. [CrossRef]
12. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Collaborative multifidelity-based surrogate models for genetic programming in

dynamic flexible job shop scheduling. IEEE Trans. Cybern. 2021. [CrossRef]
13. Hodan, D.; Mrazek, V.; Vasicek, Z. Semantically-oriented mutation operator in cartesian genetic programming for evolutionary

circuit design. Genet. Program. Evolvable Mach. 2021, 22, 539–572. [CrossRef]
14. Dray, K.E.; Edelstein, H.I.; Dreyer, K.S.; Leonard, J.N. Control of mammalian cell-based devices with genetic programming. Curr.

Opin. Syst. Biol. 2021, 28, 100372. [CrossRef]
15. Alviso, D.; Artana, G.; Duriez, T. Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic

programming. Fuel 2020, 264, 116844. [CrossRef]
16. Huang, J.; Liew, J.; Ademiloye, A.; Liew, K.M. Artificial intelligence in materials modeling and design. Arch. Comput. Methods

Eng. 2021, 28, 3399–3413. [CrossRef]
17. Zhong, J.; Feng, L.; Cai, W.; Ong, Y.S. Multifactorial genetic programming for symbolic regression problems. IEEE Trans. Syst.

Man Cybern. Syst. 2018, 50, 4492–4505. [CrossRef]
18. Chaabene, W.B.; Nehdi, M.L. Genetic programming based symbolic regression for shear capacity prediction of SFRC beams.

Constr. Build. Mater. 2021, 280, 122523. [CrossRef]
19. Gayanov, R.; Mironov, K.; Kurennov, D. Estimating the trajectory of a thrown object from video signal with use of genetic

programming. In Proceedings of the 2017 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), Bilbao, Spain, 18–20 December 2017; pp. 134–138.

20. Pigozzi, F.; Medvet, E.; Nenzi, L. Mining Road Traffic Rules with Signal Temporal Logic and Grammar-Based Genetic Program-
ming. Appl. Sci. 2021, 11, 10573. [CrossRef]

21. Mabrouk, E.; Ayman, A.; Raslan, Y.; Hedar, A.R. Immune system programming for medical image segmentation. J. Comput. Sci.
2019, 31, 111–125. [CrossRef]

22. Meier, A.; Gonter, M.; Kruse, R. Accelerating convergence in cartesian genetic programming by using a new genetic operator.
In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands,
6–10 July 2013; pp. 981–988.

23. Montoya, F.G.; Navarro, R.B. Optimization Methods Applied to Power Systems: Volume 1; MDPI: Basel, Switzerland, 2019.
24. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and

Optimization; Springer: Cham, Switzerland, 2019; pp. 57–82.
25. Mabrouk, E.; Hedar, A.R.; Fukushima, M. Memetic programming with adaptive local search using tree data structures.

In Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology,
Cergy-Pontoise, France, 28–31 October 2008; pp. 258–264.

26. Hedar, A.R.; Mabrouk, E.; Fukushima, M. Tabu programming: A new problem solver through adaptive memory programming
over tree data structures. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 373–406. [CrossRef]

http://doi.org/10.1007/BF00175355
http://dx.doi.org/10.4108/eai.13-7-2018.165523
http://dx.doi.org/10.1016/j.eswa.2019.112866
http://dx.doi.org/10.1016/j.asoc.2018.01.037
http://dx.doi.org/10.1109/ACCESS.2020.2975753
http://dx.doi.org/10.1016/j.ast.2020.105902
http://dx.doi.org/10.1109/TCYB.2021.3050141
http://dx.doi.org/10.1007/s10710-021-09416-6
http://dx.doi.org/10.1016/j.coisb.2021.100372
http://dx.doi.org/10.1016/j.fuel.2019.116844
http://dx.doi.org/10.1007/s11831-020-09506-1
http://dx.doi.org/10.1109/TSMC.2018.2853719
http://dx.doi.org/10.1016/j.conbuildmat.2021.122523
http://dx.doi.org/10.3390/app112210573
http://dx.doi.org/10.1016/j.jocs.2019.01.002
http://dx.doi.org/10.1142/S0219622011004373

Electronics 2022, 11, 982 20 of 20

27. Osman, M.K. Designing Machine Learning Tools Based on Meta-Heuristic Programming. Ph.D. Thesis, University of Cairo,
Cairo, Egypt, 2011.

28. Saleh, A.J.; Karim, A.; Shanmugam, B.; Azam, S.; Kannoorpatti, K.; Jonkman, M.; Boer, F.D. An intelligent spam detection model
based on artificial immune system. Information 2019, 10, 209. [CrossRef]

29. Park, H.; Choi, J.E.; Kim, D.; Hong, S.J. Artificial immune system for fault detection and classification of semiconductor equipment.
Electronics 2021, 10, 944. [CrossRef]

30. Mabrouk, E. Meta-Heuristics Programming and Its Applications. Ph.D. Thesis, University of Kyoto, Kyoto, Japan, 2011.
31. Talbi, E. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
32. De Castro, L.N.; Timmis, J. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003, 7, 526–544.

[CrossRef]
33. Bondal, A.A. Artificial Immune Systems Applied to Job Shop Scheduling. Ph.D. Thesis, Ohio University, Athens, OH, USA, 2008.
34. Gonzalez, F.; Dasgupta, D. A Study of Artificial Immune Systems Applied to Anomaly Detection. Ph.D. Thesis, University of

Memphis, Memphis, TN, USA, 2003.
35. Farmer, J.D.; Packard, N.H.; Perelson, A.S. The immune system, adaptation, and machine learning. Phys. D Nonlinear Phenom.

1986, 22, 187–204. [CrossRef]
36. Aickelin, U.; Greensmith, J.; Twycross, J. Immune system approaches to intrusion detection—A review. In Artificial Immune

Systems; Springer: Berlin/Heidelberg, Germany, 2004; pp. 316–329.
37. Brownlee, J. Clonal Selection Theory & CLONALG–The Clonal Selection Classification Algorithm (CSCA); Technical Report; Swinburne

University of Technology: Melbourne, VIC, Australia, 2005.
38. Al-Enezi, J.; Abbod, M.; Alsharhan, S. Artificial immune systems-models, algorithms and applications. IJRRAS 2010, 3, 118–131.
39. Walker, J.A.; Miller, J.F. The automatic acquisition, evolution and reuse of modules in cartesian genetic programming. Evol.

Comput. IEEE Trans. 2008, 12, 397–417. [CrossRef]
40. Gangopadhyay, D.; Reyhani-Masoleh, A. Multiple-bit parity-based concurrent fault detection architecture for parallel CRC

computation. IEEE Trans. Comput. 2015, 65, 2143–2157. [CrossRef]
41. Walker, J.A.; Miller, J.F. Evolution and acquisition of modules in cartesian genetic programming. In Genetic Programming; Springer:

Berlin/Heidelberg, Germany, 2004; pp. 187–197.
42. Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY,

USA, 1997.
43. Silva, S.; Almeida, J. GPLAB—A Genetic Programming Toolbox for MATLAB. 2003. Available online: http://gplab.sourceforge.net/

(accessed on 10 March 2022).
44. William, E.; Northern, J., III. Genetic programming lab (GPLab) tool set version 3.0. In Proceedings of the Region 5 Conference,

2008 IEEE, Kansas City, MO, USA, 17–20 April 2008; pp. 1–6.
45. Poli, R. Tournament selection, iterated coupon-collection problem, and backward-chaining evolutionary algorithms. In Founda-

tions of Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2005; pp. 132–155.
46. Poli, R.; Langdon, W.B. Backward-chaining evolutionary algorithms. Artif. Intell. 2006, 170, 953–982. [CrossRef]
47. Atkinson, T. Evolving Graphs by Graph Programming. Ph.D. Thesis, University of York, York, UK, 2019.
48. Fang, W.; Gu, M. FMCGP: Frameshift mutation cartesian genetic programming. Complex Intell. Syst. 2021, 7, 1195–1206.

[CrossRef]

http://dx.doi.org/10.3390/info10060209
http://dx.doi.org/10.3390/electronics10080944
http://dx.doi.org/10.1007/s00500-002-0237-z
http://dx.doi.org/10.1016/0167-2789(86)90240-X
http://dx.doi.org/10.1109/TEVC.2007.903549
http://dx.doi.org/10.1109/TC.2015.2479617
http://gplab.sourceforge.net/
http://dx.doi.org/10.1016/j.artint.2006.04.003
http://dx.doi.org/10.1007/s40747-020-00241-5

	Introduction
	Meta-Heuristic Programming (MHP)
	Artificial Immune System
	Immune System Programming with Local Search
	Breeding Operations
	Shaking Procedure
	Grafting Procedure
	Pruning Procedure

	LS Procedure
	ISPLS Algorithm

	Experimental Results
	Test Problems
	Symbolic Regression Problems
	6-Bit Multiplexer Problem
	3-Bit Even-Parity Problem

	Parameter Tuning
	Comparative Results
	ISPLS Algorithm vs. GPLab Toolbox and TP Algorithm
	ISPLS Algorithm vs. GP and BC-GP Algorithms
	ISPLS Algorithm vs. CGP, ECGP, EGGP, TAPMCGP and FMCGP Algorithms

	Conclusions
	References

