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Abstract: Rapid and continuous evolution in telecommunication standards and applications has
increased the demand for a platform with high parallelization capability, high flexibility, and low
power consumption. FPGAs are known platforms that can provide all these requirements. However,
the evaluation of approaches, architectures, and scheduling policies in this era requires a suitable
and open-source benchmark suite that runs on FPGA. This paper harnesses high-level synthesis
tools to implement high-performance, resource-efficient, and easy-maintenance kernels for FPGAs.
We provide various implementations of each kernel of PHY-Bench and WiBench, which are the
most well-known benchmark suites for telecommunication applications on FPGAs. We analyze the
execution time and power consumption of different kernels on ARM processors and FPGA. We have
made all sources and documentation public for the benefit of the research community. The codes
are flexible, and all kernels can easily be regenerated for different sizes. The results show that the
FPGA can increase the speed by up to 19.4 times. Furthermore, we show that the power consumption
of the FPGA can be reduced by up to 45% by partially reconfiguring a kernel that fits the size of
the input data instead of using a large kernel that supports all inputs. We also show that partial
reconfiguration can improve the execution time for processing a sub-frame in the uplink application
by 33% compared to an FPGA-based approach without partial reconfiguration.

Keywords: 5G; partial reconfiguration; benchmark

1. Introduction

Nowadays, wireless communication systems must support services such as virtual
reality, 3D video communication, online games, IoT applications, autonomous vehicles,
machine translation, and smart-grid automation. To this end, these systems must support
high data rates, massive connectivity, low transmission delay, and high bandwidth. They
must also adapt to frequent workload changes due to the high mobility of connected
devices in the network [1,2]. FPGAs are well-known platforms for handling services with
high throughput demands, because of their high parallelization capability [3]. Furthermore,
partial reconfiguration (PR), also known as dynamic function exchange (DFX), improves
the system’s flexibility. With PR, the system can change part of the FPGA functionality
while other parts are working [4,5]. Therefore, in the case of peak data rates, the system
can increase the computational power by configuring a more parallel and faster module
with high signal activity on the FPGA. In the case of low data rate requests, the system
can configure a small, more sequential module with low signal activity on the FPGA to
reduce power consumption. Therefore, FPGAs offer high parallelization and adaptivity for
developing power-efficient and high-throughput services and applications [6–8].

Developers must evaluate kernels, mapping/scheduling policies, and application-level
decisions to design efficient mobile services. Although the PHY-Bench [9] and WiBench [10]
benchmark suites provide various LTE kernels, they were developed for general-purpose
processors with high-level languages such as C/C++. However, developing and testing
mobile communications services for FPGA is more challenging than for general-purpose
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CPUs. Therefore, developing new standards and updating the latest versions of kernels
developed using hardware description languages (HDLs) have higher costs and require
more time. In this regard, we harnessed the Vivado High-Level Synthesis (HLS) [11] tool to
convert the most famous LTE kernels from PHY-Bench and WiBench benchmark suites into
HDL modules. Therefore, it was possible to modify, test, and add new features with only a
meager cost [12]. This is because the developer can modify and test the kernels in C/C++
languages instead of HDL.

It is important to mention that, although HLS facilitates the procedure of converting
code developed in C/C++ to an HDL module, it usually results in low-performance kernels
because the codes are designed for sequential execution [13]. Therefore, we refactored the
structure of the kernels to enable dataflow optimization. Dataflow optimization provides
the opportunity for function-level pipelining and significantly improves the throughput
and latency. Another important parameter that must be considered is the effect of partial
reconfiguration on the system. Partial reconfiguration can improve the system’s energy
efficiency, especially when the system works under highly variant workloads. Therefore,
we provided a suitable HDL wrapper for each kernel to enable partial reconfiguration in the
system. With these wrappers, the system can replace the kernel that is currently working
on the FPGA with another kernel. Finally, we monitored the real-time power consumption
of the FPGA and analyzed the power–performance trade-off for different implementations.

Our main contributions in this paper are as follows:

• We developed an efficient HLS based-module for each kernel in PHY-Bench and
WiBench benchmark suites using Vivado HLS. Furthermore, to improve the con-
currency and parallelization in each kernel, we refactored the C/C++ implementa-
tions and changed them to apply dataflow optimization. We made the source code
available, and researchers can easily modify kernels and regenerate all kernels with
different sizes.

• We provided an HDL wrapper for each kernel with two AXI-Stream interfaces to
receive input data and send output data through DMA. The wrapper also has an
AXI-Lite interface to send and receive control and status signals. The wrappers for all
kernels have the same interface ports. Therefore, we can swap all kernels in the FPGA
during the run time with the help of partial reconfiguration.

• We compared each kernel’s execution time and power consumption during execution
on the ARM processor and on the ZynqMP SoC. To this end, we exploited the Ultra96-
V2 by Avnet, which is an ARM-based, Xilinx Zynq UltraScale+ MPSoC development
board [14], to run different kernels on an XCZU3EG-SBVA484 FPGA and an ARM
Cortex-A53 processor. It is important to mention that both the ARM Cortex-A53 and
XCZU3EG-SBVA484 FPGA are integrated on the same chip.

The rest of the paper is organized as follows. In Section 2, we briefly discuss some
basic concepts in designing with ZynqMP SoCs. In Section 3, we review the related work.
Section 4 discusses the characteristics of different kernels and how we synthesize them. In
Section 5, we implement the kernels on a real platform and evaluate the system’s power
consumption and execution time for both hardware and software. Section 6 discusses the
effect of partial reconfiguration, and we conclude the paper in Section 7.

2. Preliminaries

In this section we provide a brief explanation of the Zynq Ultrascale+ processing
system, the AXI bus, partial reconfiguration, and the PCAP interface.

2.1. Zynq UltraScale+ MPSoC

The Zynq UltraScale+ MPSoC (ZynqMP) is a Xilinx product that integrates an FPGA,
two to four ARM Cortex-A53s, and two Cortex-R5s on a single chip. ZynqMP SoCs are
so powerful that it is possible to process hundreds of gigabits of data per second. These
systems can be used for a variety of applications such as 5G, industrial IoT, etc. The
ZynqMP has two parts. The first part, called the processing system (PS), contains ARM
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processors. It is possible to execute C/C++ applications or even boot the Linux operating
system on the PS part. The second part is the programmable logic (PL) part, which can be
used to execute RTL modules.

2.2. Partial Reconfiguration

Partial reconfiguration or dynamic function exchange allows FPGA developers to
design a system where the functionality of a part of the PL can be changed while the
other parts of the PL are active. To this end, the Vivado design tool generates a partial
bitstream for each reconfigurable module in addition to a full bitstream. Hence, at first,
the PL is programmed with the full bitstream. Then, during the execution, the PS can
partially reconfigure a module in the PL by programming the module’s partial bitstream
file. There are various ways to partially reconfigure the PL. In this paper, we used a process
configuration access port (PCAP) method, because it is fast and does not require any
additional logic in the PL.

2.3. Advanced Extensible Interface (AXI) Bus Interface

AXI is a high-performance bus interface, used for on-chip communications. In Xilinx
Vivado, there are three types of AXI interfaces: AXI-MM (memory mapped), AXI-Lite, and
AXI-Stream. AXI-MM is a simple bidirectional memory mapped data and address bus
interface that has the capability for supporting burst reads and writes. AXI-Lite is a simple
version of AXI-MM which does not supports burst reads and writes. It is usually used for
sending control signals and receiving the status signal. AXI-Stream, on the other hand, is a
fast, address-less unidirectional protocol used for transferring large quantities of data from
master modules to slave modules.

3. Related Work

ASIC-based accelerators provide satisfactory performance and power consumption;
however, they only execute a fixed program, and it is hard or impossible to change their
functionality [15]. Considering new demands and rapid technology evolution in LTE and
5G applications, the use of ASIC entails considerable costs due to the lack of flexibility [16].
Venkataramani et al. [15] proposed SPECTRUM, a predictable many-core platform for LTE
applications. The platform contains up to 256 lightweight ARM-based cores. Each core has
a private scratchpad memory, and a software-controlled network on chip (NoC) connects
all cores. As we show in this paper, due to the high parallelization capability of FPGAs,
the execution time and power consumption of LTE applications on FPGAs is much lower
than on ARM-based processors. Venkataramani et al. [17] also proposed a synchronous
data flow (SDF) compiler toolchain to improve the utilization of the system by harnessing
fine-grain scheduling.

Wittig et al. [18] pointed out the new performance demands and increasing parameter
space in new generations of mobile networks. They showed that the use of FPGA and
partial reconfiguration in communication applications could significantly improve the
system’s energy efficiency and reduce the sub-frame drop rate, due to the workload’s
adaptivity. Chamola et al. [19] surveyed various 5G applications implemented on FPGA.
They discuss the effect of FPGA on the performance and the energy consumption of
the system and how PR can improve them. Dhar et al. [20] proposed an integer linear
programming (ILP)-based scheduling to map tasks for any application on FPGA using PR.

The most well-known benchmarks for communication applications are PHY-Bench [9]
and WiBench [10]. These two benchmark suites provide various kernels commonly used in
communication applications and standards such as WCDMA and LTE. These benchmarks
are developed in C and C++ languages for general-purpose processors. Liang et al. [21]
exploited HLS to convert some of the WiBench kernels into HDL modules. However, their
modules and codes are not publicly available. In this paper, we also used HLS to convert
all PHY-Bench and WiBench kernels to HDL modules, and we provide the source code to
help the research community explore the effect of FPGA in communication applications.
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4. Kernel Characteristics

This section analyzes the characteristics of different kernels of PHY-Bench and WiBench
and discusses how the kernels are developed on the FPGA in detail. The Vivado High-Level
Synthesis tool is a part of Xilinx Vivado Design Suite, which enables the developer to develop
their modules using C, C++, or SystemC languages and transform them to RTL modules.
The generated RTL modules can be directly implemented on Xilinx products. HLS improves
productivity since the developer can design and test the modules faster in high-level languages
than in RTL. Furthermore, the developer can rapidly explore different design alternatives
with the help of some directives in HLS, in order to choose the best design. In this study,
we modified the source code of LTE benchmarks in the C language and we used the Vivado
High-Level Synthesis tool to compile them to RTL modules and test them.

The first step in making C/C++ code ready to be synthesized to an RTL module is to
eliminate all the system calls such as “print to the console”, “open a file”, etc. In addition,
all the dynamic memory allocations in the code should be replaced with static memory
allocations. Although these changes make the code synthesizable, the generated RTL module
has a very low performance. Therefore, HLS provides several primary directives such as
pipelining, loop unrolling, or array partitioning to improve the module performance. These
directives increase the parallelism in the code and reduce the latency of the generated HDL
module. To be more specific, we discuss these three directives in more detail as follows:

• Loop unroll: this directive takes a variable called “Factor” which indicates how much
the designer wants to unroll the loop. Assuming that Factor is set to N, then the HLS
compiler creates N copies of the loop body. Therefore, the generated RTL module runs N
iterations of the loop concurrently. Hence, the number of sequential iterations is reduced
by factor of N.

• Pipeline: this directive divides the body of loop or function into a set of pipes (sections)
and allows all sections to be run in a concurrent manner. This directive does not improve
the execution time of a single iteration of a loop. However, it improves the input interval
of the loop. This directive is very effective for loops where the dependency between
operations is low and the number of iterations is high.

• Array partition: by default, the HLS compiler implements each array in the code with
one large memory with one or two ports to access the data. The array partitioning
divides the array into two or more smaller memories, which increases the number of
access ports to the array.

For simple kernels such as Scramble, Descramble, SubCarrierMap, SubCarrierDemap,
Modulation (WiBench), AntennaCombining, Windowing, MatchFilter, Interleave, and
Demap (PHY-Bench), we can achieve a desirable performance with the primary directives.
This is because the structures of these kernels are very simple. These kernels mostly contain
single or multiple simple loops where they modify the data from the input array(s) and
write the modified data to the output array(s). Therefore there is no need to optimize
these kernels further. On the other hand, the Equalizer, Demodulation, RxRateMatch,
and TxRateMatch kernels in WiBench and the CombinerWeights kernel in PHY-Bench
are more complicated. They contain several sub-functions, and they are designed to be
optimal for general-purpose processors. Therefore, although primary directives such as
pipeline improve the performance of these kernels, we can improve them further without
any significant effect on the FPGA resource utilization by using dataflow optimization.
Dataflow optimization is a powerful directive that can take full advantage of parallelization
and concurrency in the FPGA.

In dataflow optimization, the C/C++ code inside a function or loop must be partitioned
into a set of sequential sub-functions. Then, HLS puts a memory channel between every
two consecutive functions. There are buffers and FIFOs in each channel to store the data
from the producer function and deliver them to the consumer function. Therefore, all
functions can be executed in parallel, which improves the throughput and latency of the
kernel. Although dataflow is an ideal solution, some behaviors in the C/C++ kernel need
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to be resolved in order to use this directive. Some of the most important rules for dataflow
optimization are: (1) no feedback between sub-functions; (2) no conditional execution
between sub-functions; and (3) data should flow from one sub-function to the next, and the
data cannot skip a sub-function. Another important point in dataflow optimization is that
the code’s throughput depends on the slowest function in the dataflow region. Therefore,
the functions need to be partitioned carefully to ensure they have almost the same latency,
to achieve the best performance. Therefore, we refactored the structure of the complex
kernels of PHY-Bench and WiBench to harness the full potential of parallel execution in
FPGA with dataflow optimization.

Finally, FFT and IFFT kernels from PHY-Bench and SCFDMADemodulation, SCFD-
MAModulation, TransformDecoder, and TransformPrecoder kernels from the WiBench bench-
mark suite calculate discrete Fourier transforms (DFTs) to convert signals from the time
domain to the frequency domain, and vice versa, using a fast Fourier transform (FFT) algo-
rithm. Since FFT is widely used in different applications, Xilinx has already implemented this
module efficiently. Therefore, although it is possible to use HLS to implement these kernels
on the FPGA, the most efficient way is to use the FFT IP core provided by Xilinx.

Table 1 shows the latency and utilized resource of three implementations of each
kernel for the PL part of the Ultrascale+ ZynqMP SoC (XCZU3EG-SBVA484). In the “No-
Directive” implementation, we only made small changes to the C/C++ code to make
the kernel synthesizable. The generated HDL modules had the highest execution time
(latency), but they used fewer FPGA resources than the other implementations. In the
“Primary-Directive” implementation, pipelining the loops in the code improved the latency
of some kernels by up to 10 times. On the other hand, it increased the required FPGA
resources by up to 2 times in some kernels. For instance, in the “Equalizer” kernel, the
number of utilized DSPs increased from 18.89% to 34.44%. This is because, without primary
directives, the synthesizer runs the loops sequentially and reuses the resources as much as
possible. As mentioned earlier, some kernels achieved a desirable performance using the
primary directive only. For more complicated kernels, Table 1 shows that compared to the
“Primary-Directive” implementation, the “Dataflow” implementation, which used dataflow
optimization, improved the performance of those kernels by up to 12 times. Table 1 shows
that in the “Dataflow” implementation, the utilization of BRAM increased, because the
synthesizer adds local buffers between sub-functions to increase parallelism. It is important
to mention that our experiments show that different implementations of each kernel do
not significantly affect the system’s power consumption. We present the energy and power
consumption of each kernel in Table 2.

The results show that the power consumption of the board does not change when the
task is run on a single ARM Cortex-A53. This is because, when we run an application on
the processor, one core is active during the execution and the power consumption is the
same for all tasks (kernels). On the other hand, the number of FPGA resources that each
kernel requires is different. This means the number of active cells in the FPGA during the
execution of each task is different, which leads to dynamic power consumption.

Table 1. Latency and resource utilization of different kernels of PHY-Bench and WiBench benchmark
suites on the PL part of Ultrascale+ Zynq with XCZU3EG-SBVA484.

Kernel Implementation
Latency Resources (%)

Clk Speedup 1 BRAM DSP FF LUT

W
iB

en
ch

Equalizer No-Directive 619,276 – 0.00 18.89 17.83 38.09
(LAY = 2, ANT = 2, Primary-Directive 607,351 1.02 0.00 34.44 22.54 44.86

SYM = 14, MDFT = 75) Dataflow 95,371 6.49 2.78 47.78 25.82 42.07

Demodulation No-Directive 1,821,604 – 0.00 3.06 2.94 5.03
(LAY = 2, ANT = 2, Primary-Directive 748,804 2.43 0.00 2.78 3.13 5.17

SYM = 14, MDFT = 75) Dataflow 349,274 5.22 0.23 5.00 4.29 8.17

Modulation No-Directive 16,203 – 0.00 0.83 0.53 1.16
(LAY = 2, ANT = 2, Primary-Directive 16,203 1.00 0.00 0.83 0.53 1.16

SYM = 14, MDFT = 75) Dataflow 16,203 1.00 0.00 0.83 0.53 1.16
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Table 1. Cont.

Kernel Implementation
Latency Resources (%)

Clk Speedup 1 BRAM DSP FF LUT

W
iB

en
ch

Descramble No-Directive 64,803 – 0.00 1.67 0.52 0.69
(LAY = 2, ANT = 2, Primary-Directive 7211 8.99 0.00 1.67 0.59 0.78

SYM = 14, MDFT = 75) Dataflow 7211 8.99 0.00 1.67 0.59 0.78

Scramble No-Directive 14,403 – 0.00 0.83 0.33 0.45
(LAY = 2, ANT = 2, Primary-Directive 7204 2.00 0.00 0.83 0.31 0.48

SYM = 14, MDFT = 75) Dataflow 7204 2.00 0.00 0.83 0.31 0.48

RxRateMatch No-Directive 2486097 – 27.31 2.78 8.96 17.08
(LAY = 2, ANT = 2, Primary-Directive 2,395,848 1.04 27.31 9.72 12.89 22.87

SYM = 14, MDFT = 75) Dataflow 197,861 12.56 31.48 9.72 12.99 23.44

TxRateMatch No-Directive 1,923,250 – 27.31 4.44 9.29 17.77
(LAY = 2, ANT = 2, Primary-Directive 1,907,485 1.01 27.31 10.00 13.08 23.25

SYM = 14, MDFT = 75) Dataflow 158,678 12.12 31.25 15.28 20.60 35.35

SubCarrierDemap No-Directive 4992 – 0.46 0.56 0.87 1.93
(LAY = 2, ANT = 2, Primary-Directive 2621 1.90 0.46 2.22 1.11 2.46

SYM = 14, MDFT = 75) Dataflow 2621 1.90 0.46 2.22 1.11 2.46

SubCarrierMap No-Directive 6529 – 0.46 0.56 0.72 1.76
(LAY = 2, ANT = 2, Primary-Directive 2355 2.77 0.46 2.50 0.99 2.11

SYM = 14, MDFT = 75) Dataflow 2355 2.77 0.46 2.50 0.99 2.11

PH
Y-

B
en

ch

AntennaCombining No-Directive 9601 – 0.00 4.44 0.47 0.63
(LAY = 4, ANT = 4, Primary-Directive 4805 2.00 0.00 4.44 0.50 0.65

SC = 1200) Dataflow 4805 2.00 0.00 4.44 0.50 0.65

Windowing No-Directive 2403 – 0.00 0.56 0.40 0.94
(LAY = 1, ANT = 1, Primary-Directive 1208 1.99 0.00 0.56 0.44 1.01

SC = 1200) Dataflow 1208 1.99 0.00 0.56 0.44 1.01

MatchFilter No-Directive 6001 – 0.00 1.67 0.33 0.45
(LAY = 1, ANT = 1, Primary-Directive 1205 4.98 0.00 1.67 0.44 0.55

SC = 1200) Dataflow 1205 4.98 0.00 1.67 0.44 0.55

CombinerWeights No-Directive 149,601 – 0.46 8.89 7.09 15.43
(LAY = 4, ANT = 4, Primary-Directive 123,501 1.21 0.69 15.00 8.91 22.03

SC = 100) Dataflow 28,964 5.17 3.80 18.83 13.13 24.96

Demap No-Directive 134,401 – 0.00 3.33 1.74 4.82
(LAY = 4, SYM = 6, Primary-Directive 28,809 4.67 0.00 3.33 2.57 9.13

SC = 50, MOD = 64QAM) Dataflow 28,809 4.67 0.00 3.33 2.57 9.13

Interleave No-Directive 4064 – 0.00 1.39 0.64 1.32
(LAY = 1, SYM = 1, Primary-Directive 1267 3.21 0.00 1.39 2.16 8.03

SC = 1200) Dataflow 1267 3.21 0.00 1.39 2.16 8.03
1 Speedup with respect to No-Directive.

Table 2. The energy, power consumption, and execution time of different kernels on XCZU3EG-
SBVA484 FPGA with 250 MHz clock frequency and ARM Cortex-A53 processor (only one core) with
1.5 GHz frequency.

Kernel
Latency (µs) HW Power (mW) Energy (mJ)

HW SW Speedup HW SW HW SW

W
iB

en
ch

Equalizer 495.9 6210.8 12.5 405.0 968.7 201 6016
Demodulation 1760.3 21,694.2 12.3 375.0 968.7 660 21,015

Modulation 111.5 1933.8 17.3 315.2 968.7 35 1873
Descramble 41.0 764.1 18.7 315.2 968.7 13 740

Scramble 54.5 771.2 14.2 315.2 968.7 17 747
RxRateMatch 815.2 2702.6 3.3 405.0 968.7 330 2618
TxRateMatch 641.1 2662.0 4.2 405.0 968.7 260 2579

Turbo Encoder 385.6 1204.0 3.1 406.2 968.7 157 1166
SubCarrierDemap 20.1 382.6 19.0 315.2 968.7 6 371

SubCarrierMap 21.9 407.2 18.6 315.2 968.7 7 394
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Table 2. Cont.

Kernel
Latency (µs) HW Power (mW) Energy (mJ)

HW SW Speedup HW SW HW SW

PH
Y-

B
en

ch

AntennaCombining 19.8 339.1 17.1 405.0 968.7 8 328
Windowing 5.4 40.5 7.4 315.2 968.7 2 39
MatchFilter 5.5 83.3 15.1 315.2 968.7 2 81

CombinerWeights 111.9 461.2 4.1 405.0 968.7 45 447
Demap 115.8 2247.4 19.4 360.5 968.7 42 2177

Interleave 5.5 53.2 9.7 315.2 968.7 2 52

5. Execution Time and Power Comparison for Hardware and Software on a
Real Platform

This section describes how these kernels were implemented on a real platform to
measure the latency and the power consumption. Figure 1 shows an overview of the
ZynqMP SoC. The system includes a Zynq processing system, a direct memory access
(DMA) [22], a module called “Kernel_Wrapper”, and a couple of interconnects. We hid
the clock and reset the signals in the figure for the sake of clarity. The “Kernel_Wrapper”
contains an LTE kernel, multiple memories to store input and output data, and three
AXI interfaces. In each kernel, there are two types of ports. The first type is responsible
for receiving the input scaler data and the control signals from processor and sending
back the output scaler data and status signals. The second type is responsible for input
and output arrays in the kernel. These ports read and write data to local memories or
FIFOs in the FPGA. The “Kernel_Wrapper” is the partially reconfigurable module of the
design; therefore, it must have the same interface for all kernels. To this end, wrappers
for all kernels have one AXI-Lite interface and two AXI-Stream interfaces. The processor
configures the DMA and the kernel by reading the output scaler data and status signals and
writing input scaler data and control signals using the AXI-Lite interface (brown wires in
Figure 1). The “Kernel_Wrapper” has an AXI-Stream slave port that obtains the processor’s
data through the DMA and writes them to the input memories (blue wires in Figure 1).
Finally, the “Kernel_Wrapper” has an AXI-Stream master port that sends back the results
of the kernel, which are stored in the output memories of the processor through the DMA
(red wires in Figure 1). In Figure 1, we only considered one PR region for running kernels.
However, it is possible to increase the number of PR regions to improve the performance.
For this purpose, for each additional slot, a DMA and a “Kernel_Wrapper” module must
be added and connected to the processor using AXI interconnects.

Zynq UltraScale+

AXI
Interconnect

S_AXI_HPM

DMA

M_AXI_MM2S

M_AXI_S2MM

S_AXIS_S2MM

M_AXIS_MM2S

S_AXI_Lite
Kernel_Wrapper

S_AXIS

M_AXIS

S_AXI_Lite

AXI
Interconnect

S_AXI_HPC0

Figure 1. An overview of the system, including Zynq processor, DMA, Kernel_Wrapper module, and
two interconnects.
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Figure 2 shows the structure of the “Kernel_Wrapper” module. The data port of the
AXI-Stream interface is connected to all the input memories. The processor first sets the
chip enable (CE) pin of one of the input memories through the AXI-Lite interface and then
starts the DMA engine to fill out the initial data. It repeats this procedure for all input
memories. Then, the processor starts the kernel and checks for the done signal. When the
LTE kernel sets the done signal, this means that the results are in the output memories.
Then, the processor configures the selection bit of the multiplexer through AXI-Lite and
reads the stored data in the output memory with the help of the DMA.

LTE

Kernel

Mem

Mem

Mem

.

.

.

.

.

.

M
u

lt
ip

le
x
e

r

Mem

Mem

Mem

Scalar Data Ctrl/Status Signals

O
u

tp
u
t

C
E

In
p

u
t

C
E

AXIS

Master

AXIS

Slave

AXI

Lite

D
a

ta

Figure 2. The structure of the Kernel_Wrapper module.

We executed each kernel on both the ARM processor (software) and FPGA (hard-
ware), and we compared each kernel’s execution time and power consumption. To this
end, we exploited the Ultra96-V2 board by Avnet for running different kernels on the
XCZU3EG-SBVA484 FPGA or the ARM Cortex-A53 processor and monitoring their real-
time power consumption. Ultra96-V2 is an ARM-based, Xilinx Zynq UltraScale+ MPSoC
development board with two power management units called “IRPS5401”. These units are
accessible through an IIC bus called “PMBus”, and we were able to read the FPGA and
ARM processors’ voltage, current, power, and temperature separately using PMBus during
the execution. The ARM Cortex-A53 works with a 1.5 GHz clock frequency, and the FPGA
frequency is 250 MHz for all kernels.

The results in Table 2 show the effectiveness of the FPGA compared to ARM processors.
It is important to mention that both ARM Cortex-A53 and XCZU3EG-SBVA484 FPGA are
integrated on the same chip. We only used one core of the ARM Cortex-A53 in the PS. The
power consumption of ARM Cortex-A53 was the same for all kernels and was 2.4 to 3 times
higher than that of the FPGA. The main reason is that the frequency of the FPGA is much
lower than that of the processor, and the kernels only occupy a small portion of the FPGA,
while the rest of the FPGA is idle. Table 2 also shows that the execution time of each kernel
on the FPGA was up to 19.4 times lower than on the ARM Cortex-A53 processor.

6. Partial Reconfiguration Effect

The partial reconfiguration feature delivers an effective solution for a more flexible
HW/SW system with higher performance. In other words, to design a more efficient
system, we needed partial reconfiguration to dynamically change the context of the FPGA
during the run time. This is because the resources of the FPGA are limited and we could
not statically implement all tasks. Therefore, with the help of partial reconfiguration, as for
the PS, we could easily change the PL context and run more tasks on the PL. Hence, in the
following subsections we will demonstrate the effects of PR with some experiments.

6.1. Effect of Partial Reconfiguration on Power Consumption: A Case Study on FFT

In this section, we present an experiment to show the effect of the module’s size on
the power consumption of the system and how it can be reduced with the help of partial
reconfiguration. To this end, we considered two designs. In the first design, we instantiated
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one FFT module on the partial reconfigurable region in the FPGA. We considered different
scenarios, with a number of data samples in each frame of the FFT, called the transform
length (TL), from 8 up to 4096. There was also another scenario where the system did not
need to compute the FFT. Therefore, we considered an empty module without an FFT core
but with the same interface. In the second design, we did the same, but instead of one
FFT the PR region consisted of ten FFTs, all with the same transform length but different
inputs. These scenarios are commonly used in LTE applications. For instance, in the uplink
receiver application of PHY-Bench (Section 6.2), FFT’s transform length must be equal to or
bigger than the number of sub-carriers. Furthermore, the number of layers, antennas, and
symbols affects the number of FFT modules that are needed.

We partially reconfigured the PL to execute FFTs with various transform lengths.
The latency and power consumption values are presented in Table 3. The latency of both
designs was the same because, in the second scenario, all the FFT modules were running
in parallel. Table 3 shows that, for the design with a single FFT module, we could reduce
the power consumption by up to 21% by using a suitable FFT (TL = 8) kernel instead of a
large FFT (TL = 8192). For the design with ten FFT modules, the power could be reduced
by up to 45%. Therefore, considering the input frame parameter, we could reconfigure a
suitable FFT on the FPGA instead of using a large FFT to support all inputs. Additionally,
Table 3 shows that the module with no FFT (idle case) still consumes a noticeable amount
of power, due to the static part of the design. Therefore, if the size of the dynamic part of
the design, which is changed during the partial reconfiguration, becomes much bigger than
the size of the static part, as it does in the second design with ten FFTs, then the PR has a
more dominant effect on the power consumption.

Table 3. The power consumption and latency of one-FFT and ten-FFT modules with various transform
lengths.

Transform
Length

Latency
(Clk)

Power Consumption
of One FFT

(mW)

Power Consumption of Ten
FFTs All with the Same
Transform Length (mW)

Idle 0 312.50 312.50
8 94 343.75 343.75

16 146 343.75 343.75
32 242 343.75 375.00
64 434 359.25 375.00

128 834 359.25 406.25
256 1682 375.00 406.25
512 3490 375.00 437.50

1024 7346 375.00 437.50
2048 15,554 375.00 437.50
4086 32,978 406.25 500.00
8192 69,858 437.50 625.00

6.2. Effect of Partial Reconfiguration on Time and Area: A Real-World Application Example

In this section, we show the potential of partial reconfiguration to improve the exe-
cution time and area efficiency of the system with an example. Since exploring different
scenarios on the board was time-consuming, we developed a Python script to find the best
schedule that maps the tasks on HW and SW using the data extracted from the board. The
Python script explores all the possible solutions and reports the best one. Figure 3 shows
the SDF graph [23] of the LTE uplink receiver application from the PHY benchmark [9]
for one-user equipment. The computation and latency of each kernel depend on various
parameters such as the total number of layers (LAY), antennas (ANT), sub-carriers (SC),
and symbols (SYM), and the modulation scheme (MOD). In Figure 3, the rectangles show
how many times each actor needs to be fired to complete one iteration of the application.
The figure also shows the parallelization factor (PF) per kernel [15]. For instance, if we
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consider LAY = 2, ANT = 2, and SC = 1200, then ideally, we can parallelize the “Matched-
Filter” kernel by a factor of 2 × 2 × 1200 = 4800. Furthermore, the numbers on the arrows
represent the data each actor consumes or produces in each run.
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Figure 3. The SDF graph of an uplink stream application in PHY-Bench.

In uplink applications, the system needs to completely execute the graph shown in
Figure 3 in 1 ms for each subframe. This experiment assumed that the system had 2 antennas,
2 layers, 6 data symbols, and up to 1200 subcarriers. In addition, the system used a 64QAM
modulation scheme. The FFT and IFFT kernels are the bottleneck of this application. The
FFT and IFFT nodes cannot start their execution before receiving all the sub-carriers (1200 in
this example) of a layer and an antenna. In addition, it is impossible to break the operation
into a smaller number of sub-carriers without affecting the functionality. The parallelization
improves the system’s performance; however, it increases the system’s overhead, considering
the additional logic required for scattering the input data and gathering the output data.
Therefore, to provide an efficient design, we adjusted the input size of the other kernels to
balance the execution time of all kernels. The results are presented in Tables 4 and 5. The
second, third, and fourth columns of Table 4 show the execution time of each kernel, the
number of times that kernel had to be executed, and the FPGA resources (maximum of LUT,
FF, or DSP) used in each instance of the kernel, respectively.

Table 4. The result of running uplink application of PHY-Bench on XCZU3EG-SBVA484 FPGA for
fully sequential and fully parallel strategies when LAY = 2, ANT = 2, SC = 1200, SYM = 6, and
MOD = 64QAM.

Time Runs Res Fully Sequential Fully Parallel
Kernel (µs) (#) (%) Time (µs) Res (%) Time (µs) Res (%)

MatchFilter 19.2 1.0 2.0 19.2 2.0 19.2 2.0
IFFT 62.2 4.0 1.5 248.9 1.5 62.2 6.0

Windowing 19.2 1.0 1.0 19.2 1.0 19.2 1.0
FFT 62.2 4.0 1.5 248.9 1.5 62.2 6.0

CombW 44.2 20.0 8.0 884.8 8.0 44.2 160.0
AntComb 20.5 1.0 5.0 20.5 5.0 20.5 5.0

IFFT 62.2 12.0 1.5 746.6 1.5 62.2 18.0
Interleave 20.4 6.0 5.0 122.4 5.0 20.4 30.0

Demap 58.2 12.0 6.0 698.8 6.0 58.2 72.0

Total Time (ms) - - - 3.0 - 0.4 -
Total Res (%) - - - - 31.5 - 300.0
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Table 5. The results of running an uplink application of PHY-Bench on XCZU3EG-SBVA484 FPGA for
partially parallel and partial reconfiguration strategies when LAY = 2, ANT = 2, SC = 1200, SYM = 6,
and MOD = 64QAM.

Partially Parallel Partial Reconfiguration
Kernel Time (µs) Res (%) PF Time (µs) Res (%) PF

MatchFilter 19.2 2.0 1.0 19.2 2.0 1.0
IFFT 62.2 6.0 4.0 62.2 6.0 4.0

Windowing 19.2 1.0 1.0 19.2 1.0 1.0
FFT 62.2 6.0 4.0 62.2 6.0 4.0

CombW 221.2 32.0 4.0 177.0 40.0 5.0
AntComb 20.5 5.0 1.0 20.5 5.0 1.0

IFFT 186.6 6.0 4.0 62.2 18.0 12.0
Interleave 122.4 5.0 1.0 20.4 30.0 6.0

Demap 232.9 18.0 3.0 116.5 36.0 6.0

Total Time (ms) 0.9 - - 0.6 - -
Total Res (%) - 81.0 - - 80.0 -

The first approach was to instantiate only one instance for each kernel and run each
kernel sequentially to complete the application. This approach only occupies 32% of the
XCZU3EG-SBVA484 FPGA resources. However, it takes 3 ms to process a single sub-frame,
which is not desirable. The second approach was to instantiate each kernel as many times
as necessary and run all kernel instances in parallel. In this case, the execution time was
368.4 µs, which is less than 1 ms, satisfying the timing requirement. However, in this
approach, we needed an FPGA with resources at least three times higher than XCZU3EG-
SBVA484. The third approach (Table 5) was to unroll the kernel execution partially. The
fourth column of Table 5 shows the parallelization factor for each kernel. For example,
there were four CombW kernel instances and they were sequentially executed five times.
This strategy achieved a 0.9 ms execution time with 81% utilization of the FPGA. Although
the third approach satisfied both timing and area requirements, it was not scalable. For
example, if we increased the number of antennas and layers from two to four, we could
satisfy neither the timing nor the area requirements. The fourth approach was to use partial
reconfiguration to improve the scalability of the third approach. To this end, we needed to
set two partially reconfigurable regions (PRRs). Then, the system partially reconfigured
PRR1 with the first kernel, which was MatchFilter. While the first kernel was running,
the system partially reconfigured PRR2 with the second kernel, which was FFT. When the
first kernel was executed, the second kernel in PRR2 started the execution, and the system
partially reconfigured the third kernel in PRR1. Assuming that the PR time is less than the
execution time of each kernel, we can hide the timing overhead for partial reconfiguration.
This is a fair assumption for many applications in view of the speed of PCAP in recent Zynq
ultra-scale FPGAs, which is approximately 450 MB/s. Furthermore, we can instantiate
more instances of each kernel to further improve the timing of the application. Considering
two PRRs, the system must fit the largest kernel (here this is CombW) into each PRR.
Therefore, in this strategy, we achieved a 0.6 ms execution time with 80% utilization of the
FPGA.

7. Conclusions

In this paper, we implemented well-known and useful LTE kernels on the FPGA
using Vivado HLS. The use of HLS for generating these kernels makes it possible for
users to modify, enhance, or test the kernels without interfering with the HDL code. We
also refactored the structure of more complex kernels to apply dataflow optimization and
improve the parallelism and performance of more complex kernels. We implemented all
kernels on an Avnet Ultra96 board, and the results showed that executing the kernels on
FPGA achieved an increase in speed of up to 19.4 times compared to running them on
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ARM processors. Finally, we observed the effect of partial reconfiguration, and the results
showed up to 45% power reduction. In addition, using PR, we could improve resource
utilization, and the results showed that we could improve the execution time for processing
a sub-frame by 33% compared to an FPGA-based approach without PR.
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BRAM Block Random Access Memory
CE Chip Enable
DFT Discrete Fourier Transform
DFX Dynamic Function Exchange
DMA Direct Memory Access
FF Flipflop
FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field Programmable Gate Array
HDL Hardware Description Language
HLS High-Level Synthesis
IFFT Inverse Fast Fourier Transform
IoT Internet of Things
ILP Integer Linear Programming
LAY Layers
LTE Long-Term Evolution
MOD Modulation Scheme
MPSoC Multi-Processor System on Chip
NoC Network on Chip
PR Partial Reconfiguration
PRR Partially Reconfigurable Regions
RTL Register Transfer Level
SC Sub-Carriers
SDF Synchronous Data Flow
SYM Symbols
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WCDMA Wideband Code Division Multiple Access

References
1. Khasanov, R.; Robledo, J.; Menard, C.; Goens, A.; Castrillon, J. Domain-specific hybrid mapping for energy-efficient baseband

processing in wireless networks. ACM Trans. Embed. Comput. Syst. (TECS) 2021, 20, 1–26. [CrossRef]
2. Slalmi, A.; Saadane, R.; Chehri, A.; Kharraz, H. How will 5G transform industrial IoT: Latency and reliability analysis. In Human

Centred Intelligent Systems; Springer: Singapore, 2021; pp. 335–345.
3. Ha, S.; Teich, J.; Haubelt, C.; Glaß, M.; Mitra, T.; Dömer, R.; Eles, P.; Shrivastava, A.; Gerstlauer, A.; Bhattacharyya, S.S. Introduction

to hardware/software codesign. In Handbook of Hardware/Software Codesign; Springer: Dordrecht, The Netherlands, 2017; pp. 3–26.

https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
http://doi.org/10.1145/3476991


Electronics 2022, 11, 978 13 of 13

4. Xilinx. Vivado Design Suite User Guide, Partial Reconfiguration. 2019. Available online: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf (accessed on 21 February 2022).

5. Vipin, K.; Fahmy, S.A. FPGA dynamic and partial reconfiguration: A survey of architectures, methods, and applications. ACM
Comput. Surv. (CSUR) 2018, 51, 1–39. [CrossRef]

6. Lopes Ferreira, M.; Canas Ferreira, J. An FPGA-oriented baseband modulator architecture for 4G/5G communication scenarios.
Electronics 2019, 8, 2. [CrossRef]

7. Visconti, P.; Velazquez, R.; Del-Valle-Soto, C.; de Fazio, R. FPGA based technical solutions for high throughput data processing
and encryption for 5G communication: A review. Telkomnika 2021, 19, 1291–1306. [CrossRef]

8. Barlee, K.W.; Stewart, R.W.; Crockett, L.H.; MacEwen, N.C. Rapid prototyping and validation of FS-FBMC dynamic spectrum
radio with simulink and ZynqSDR. IEEE Open J. Commun. Soc. 2020, 2, 113–131. [CrossRef]

9. Själander, M.; McKee, S.A.; Brauer, P.; Engdal, D.; Vajda, A. An LTE uplink receiver PHY benchmark and subframe-based power
management. In Proceedings of the International Symposium on Performance Analysis of Systems & Software, New Brunswick,
NJ, USA, 1–3 April 2012; pp. 25–34.

10. Zheng, Q.; Chen, Y.; Dreslinski, R.; Chakrabarti, C.; Anastasopoulos, A.; Mahlke, S.; Mudge, T. WiBench: An open source kernel
suite for benchmarking wireless systems. In Proceedings of the International Symposium on Workload Characterization (IISWC),
Portland, OR, USA, 22–24 September 2013; pp. 123–132.

11. Xilinx. Vitis High-Level Synthesis User Guide. 2021. Available online: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2020_2/ug1399-vitis-hls.pdf (accessed on 21 February 2022).

12. Chen, Y.; He, J.; Zhang, X.; Hao, C.; Chen, D. Cloud-DNN: An open framework for mapping DNN models to cloud FPGAs. In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26
February 2019; pp. 73–82.

13. Lahti, S.; Sjövall, P.; Vanne, J.; Hämäläinen, T.D. Are we there yet? A study on the state of high-level synthesis. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2018, 38, 898–911. [CrossRef]

14. Xilinx. Zynq UltraScale+ Device Technical Reference Manual. 2020. Available online: https://www.xilinx.com/support/
documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf (accessed on 21 February 2022).

15. Venkataramani, V.; Kulkarni, A.; Mitra, T.; Peh, L.S. SPECTRUM: A Software-defined Predictable Many-core Architecture for
LTE/5G Baseband Processing. ACM Trans. Embed. Comput. Syst. (TECS) 2020, 19, 1–28. [CrossRef]

16. Gustavsson, U.; Frenger, P.; Fager, C.; Eriksson, T.; Zirath, H.; Dielacher, F.; Studer, C.; Pärssinen, A.; Correia, R.; Matos, J.N.;
et al. Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE J. Microwaves 2021, 1, 86–100.
[CrossRef]

17. Venkataramani, V.; Bodin, B.; Kulkarni, A.; Mitra, T.; Peh, L.S. Time-Predictable Software-Defined Architecture with Sdf-Based
Compiler Flow for 5g Baseband Processing. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1553–1557.

18. Wittig, R.; Goens, A.; Menard, C.; Matus, E.; Fettweis, G.P.; Castrillon, J. Modem Design in the Era of 5G and Beyond: The Need
for a Formal Approach. In Proceedings of the 27th International Conference on Telecommunications (ICT), Bali, Indonesia,
5–7 October 2020; pp. 1–5.

19. Chamola, V.; Patra, S.; Kumar, N.; Guizani, M. Fpga for 5g: Re-configurable hardware for next generation communication. IEEE
Wirel. Commun. 2020, 27, 140–147. [CrossRef]

20. Dhar, A.; Yu, M.; Zuo, W.; Wang, X.; Kim, N.S.; Chen, D. Leveraging Dynamic Partial Reconfiguration with Scalable ILP Based
Task Scheduling. In Proceedings of the 33rd International Conference on VLSI Design and 19th International Conference on
Embedded Systems (VLSID), Bangalore, India, 4–8 January 2020; pp. 201–206.

21. Liang, Y.; Wang, S. Quantitative performance and power analysis of LTE using high level synthesis. In Proceedings of the 11th
International Conference on ASIC (ASICON), Chengdu, China, 3–6 November 2015; pp. 1–4.

22. Xilinx. AXI DMA LogiCORE IP Product Guide. 2019. Available online: https://www.xilinx.com/support/documentation/ip_
documentation/axi_dma/v7_1/pg021_axi_dma.pdf (accessed on 21 February 2022).

23. Lee, E.A.; Messerschmitt, D.G. Synchronous data flow. Proc. IEEE 1987, 75, 1235–1245. [CrossRef]

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
http://dx.doi.org/10.1145/3193827
http://dx.doi.org/10.3390/electronics8010002
http://dx.doi.org/10.12928/telkomnika.v19i4.18400
http://dx.doi.org/10.1109/OJCOMS.2020.3039928
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
http://dx.doi.org/10.1109/TCAD.2018.2834439
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
http://dx.doi.org/10.1145/3400032
http://dx.doi.org/10.1109/JMW.2020.3034648
http://dx.doi.org/10.1109/MWC.001.1900359
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://dx.doi.org/10.1109/PROC.1987.13876

	Introduction
	Preliminaries
	Zynq UltraScale+ MPSoC
	Partial Reconfiguration
	Advanced Extensible Interface (AXI) Bus Interface

	Related Work
	Kernel Characteristics
	Execution Time and Power Comparison for Hardware and Software on a Real Platform
	Partial Reconfiguration Effect
	Effect of Partial Reconfiguration on Power Consumption: A Case Study on FFT
	Effect of Partial Reconfiguration on Time and Area: A Real-World Application Example

	Conclusions
	References

