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Abstract: Fully automated homes, equipped with the latest Internet of Things (IoT) devices, aiming
to drastically improve the quality of lives of those inhabiting such homes, is it not a perfect setting
for cyber threats? More than that, this is a fear of many regular citizens and a trending topic for
researchers to apply Cyber Threat Intelligence (CTI) for seamless cyber security. This paper focuses
on the Risk Assessment (RA) methodology for smarthome environments, targeting to include all
types of IoT devices. Unfortunately, existing approaches mostly focus on the manual or periodic
formal RA, or individual device-specific cyber security solutions. This paper presents a Dynamic Risk
Assessment Framework (DRAF), aiming to automate the identification of ongoing attacks and the
evaluation of the likelihood of associated risks. Moreover, DRAF dynamically proposes mitigation
strategies when full automation of the decision making is not possible. The theoretical model of
DRAF was implemented and tested in smarthome testbeds deployed in several European countries.
The resulting data indicate strong promises for the automation of decision making to control the
tightly coupled balance between cyber security and privacy compromise in terms of the embedded
services’ usability, end-users’ expectations and their level of cyber concerns.

Keywords: risk assessment; automated decision making; IoT security; cyber attacks ontology;
smarthome; Cyber Threat Intelligence (CTI)

1. Introduction

The IoT has attracted considerable attention during recent decades and still presents
a significant opportunity for many industrial and business stakeholders in various do-
mains [1]. Smarthomes are adopting IoT as an emerging technology to provide specialised
services to control household appliances, automate specific tasks and, in general, improve
quality of life. These devices take all forms and shapes, varying from a smart lightning or
heating system to a smart fridge. Moreover, they are embedded in our daily appliances,
making it less and less transparent what data is going in and out of our homes, leveraging
existing and creating new cyber threats. Each of these devices, capable of communicating
with one another and with external services accessible through the Internet, creates unmon-
itored data flows, unknowingly exposing us, regular users, to all kinds of cyber threats.
The heterogeneity and diversity of the ‘Things’, as well as new lightweight communication
protocols appropriate for IoT technology, create new challenges for the protection of such
systems [2]. This gives a rise to the need for tools that provide visibility into the cyber
risks and threats in smarthomes in an easy and understandable way, tailored towards
people without a deep knowledge of Information Communication Technology (ICT) in
general. Such tools will empower their users to take control and make appropriate decisions
regarding home cyber security and their privacy.

Despite the acknowledged need for RA for smarthomes [3,4], the risk awareness solu-
tions available for regular users with the purpose of understanding ongoing risks evolving
on a daily basis are still very immature. Several academic works aim to provide policy
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based solutions [5] and formal periodic RA frameworks [3,6]. Other works demonstrate
limited system knowledge and a lack of dynamic adaptation [4], lack of risk propagation
and dependencies understanding [7] or lack of usability for regular citizens [8]. However,
to the best of our knowledge, none of these works are capable of establishing a holistic
approach to include the identification of risks and automation of mitigation measures in a
dynamic manner.

The main goal of the proposed framework is to provide a real-time security and pri-
vacy RA of the ongoing activities on the network. It validates current communications
by assessing any anomaly detected and deviations in the IoT device’s normal behaviour
through device profiles. DRAF performs real-time RA by continuous evaluation and moni-
toring of various risk levels at multiple stages of data processing. To control the behaviour
of devices and corresponding payload exchanges, permitted risk levels of ongoing network
activity are dynamically calculated for each network activity event, practically determining
the required decision to be taken. RA also involves establishing risk controls for the users’
privacy and making them aware of the associated risks. DRAF integrates multi-faceted
anomaly detection analysers and risk Receptors to support behaviour deviation detection,
involving deep understanding of risk propagation and inter-dependencies within the net-
work. For this purpose, it leverages the existing open threat modelling tools (e.g., the open
cyber threat intelligence platform) to integrate a network entity correlation ontology. Fur-
thermore, a set of expert values for risk estimation was established to allow the comparison
of associated impacts in various risk situations.

This work aims to reply to the following research questions:

RQ1.Can a generic ontology be developed to capture complex relationships between heterogeneous
IoT properties to encapsulate vulnerabilities, attack attribution, impact evaluation, and
mitigation strategies?

RQ2.Can a unique risk scoring be developed to eliminate environment context dependency? How
does the initial setting of the expert values for the RA offer a valid approach, and are these
values generally applicable in a standard installation?

RQ3.What are the limitations on the automated decision making for RA in dynamic environments,
such as smarthomes, where deployed IoT devices constantly evolve (get replaced, updated
and moved)?

Our contributions can be summarised as follows:

• Development of a generic ontology for the representation of the IoT objects to encap-
sulate vulnerabilities, attack attribution, impact evaluation, and mitigation strategies
in a smarthome environment.

• Presentation of the DRAF, encapsulating a risk scoring methodology based on the
expert opinion settings. This framework was validated in real-life testbeds deployed
in three European countries and demonstrates the potential of automated RA.

• Investigation into the limitations of the automated decision making for RA in a
smarthome environment and their potential adaptation for similar dynamic environ-
ments, such as autonomous driving.

This work is organised as follows. In Section 2, main concepts are presented, necessary
to understand the scope of this research, together with our analysis on the ongoing research
efforts. Section 3 outlines the methodology we have followed for the development of the
theoretical models. In Section 4, the implementation of the proposed approach framework
on dynamic RA is described. Then, in Section 5, the map of the performed experiments, the
deployment setup and the results are presented, followed by the analysis of the research
questions and identified challenges in Section 6. Finally, Section 7 concludes the paper and
outlines directions of future work.
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2. Related Work
2.1. Background

RA is a holistic process of measuring the probability and severity of various effects on
a system in question. In general, it is based on many unknowns, yet our concern should be
even higher when operating in a setting where we know very little. It is the only way to
enable any involved stakeholders to make pragmatic decisions on the system when those
risks will eventually occur. It is a multidisciplinary approach and can be broken down into
five stages:

1. Risk Identification

• What can go wrong?

2. Risk Modelling, Quantification and Measurement

• Assessing likelihood;
• Modelling relationships between risks and impacts.

3. Risk Evaluation

• Trade-offs in terms of costs, benefits and risks;
• Multi objective analysis.

4. Risk Acceptance and Avoidance

• Decision making through level of risk acceptability;
• How safe is safe enough?

5. Risk Management

• Execution or actual implementation of decision making.

Traditional Approaches

RA is a process enabling the identification, estimation and prioritisation of risks
associated with different dimensions: activity, operation, subject, environment.

Risks can be evaluated for each dimension in isolation or in a mixed setup, where
various combinations are possible. RA sets the foundations for the following risk evaluation
stages [9]:

• Acceptance: acknowledgement of the possibility of the risk to occur in a specific setup,
and taking the responsibility of dealing with the caused consequences;

• Mitigation: taking actions to limit the exposure of the risk and its consequences by
controlling and limiting its occurrence;

• Transfer: delegation or propagation of the risk occurrence to a third party capable of
taking responsibility and liability of the risk’s consequences; and

• Avoidance: ignorance of the risk occurrence likelihood and assumption of risk non-
existence, as evidence of its occurring is too low or the associated cost of mitigation
and transfer is too high.

When evaluating the risk stages and associated measurements costs, the RA relies on
five main variables:

• Assets: any items of value (infrastructure or reputation);
• Vulnerabilities: how to exploit assets;
• Threats: action to exploit vulnerability (deliberate or accidental);
• Attack likelihood: probability of threat; and
• Impact: estimation of the attack consequence.

The significance and weight of the previously mentioned variables produce variations
of the RA approaches and models. The asset-centric models, such as OCTAVE [7], evaluate
the impact of the risk occurrences. The threat-centric models, such as NIST SP800–30 [10],
are focused on the feasibility of the risk occurrence.

Furthermore, risks can be measured in two ways: qualitatively and quantitatively [11].
While the first method appears to be very simple, time- and cost-effective, it is also known
to be not precise and without impact measurement, as it uses non-numeric values as
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descriptive results. On the contrary, quantitative methods give a numeric probability,
enabling easy measurement of the impact. However, its complex modelling relies on the
historical data and, therefore, cannot provide values at loss at a particular time, especially
for the risks that never occurred before.

The hybrid RA methodologies aim to address those shortcomings by including user-
centric concepts in traditional RA models, where the following properties are included [12]:

• Human system integration: visual representation of the system;
• Interoperability identification: considerations towards dependencies; and
• Emergent behaviour evaluation: coupling systems for a new purpose.

2.2. Dynamic Risk Assessment

Understanding the operational environment is crucial in complex decision making
and dynamic environments [4], where the collection and projection of various contextual
factors, as well as time- and space-specific data collection takes place. The formal RA
models presented in Section 2.1 are based only on periodic assessment with limited system
knowledge and lack of dynamic adaptation of the evolving situational risks, where the user
is a key element in the future risk projections.

Several works exist in the domain of RA aiming to address this shortcoming with
partial automation. For instance, the RA framework [13] in IoT systems was developed
with periodic RA. The main reasoning for such an approach is the limitation on the system’s
knowledge and dynamic adaptation due to the lack of understanding of risk propagation
and dependencies between different assets.

The MS STRIDE and DREAD application for threat modelling, described in [14]
and widely used in RA, attempts to solve automation characteristics, yet still relies on a
completely manual approach. The application of OCTAVE methodology provided in [7]
presents the top 10 risks. Nevertheless, this method once again lacks dynamic properties
and is subject to one expert opinion for eventual risk score calculation. Furthermore, the
linking between threats and assets is unclear.

Atlam et al. [15] proposed a dynamic risk calculation method, but only in the domain
of access control for IoT devices, incorporating the real-time contextual data, such as user
attributes related to the surrounding environment. It is our understanding that this work is
the closest achievement towards dynamic RA in a real-time situational monitoring network
flow. Fuzzy logic and expert judgement risk estimation approaches were fused together
to enhance crucial aspects of risk model applications, such as dynamism and usability.
Nevertheless, this work stays only at the theoretical level, with future projected validation
with security expert interviews. Furthermore, a fuzzy logic enabled system implies natural
language based operation. While this can be beneficial in the setting where input is taken
directly from the end-users, in network monitoring solutions such an approach has severe
limitations, especially in terms of scalability. Alali et al. [16] also proposed the use of fuzzy
logic for the impact assessment of criminal activities. The authors developed a RA process
with the application of Mamdani and Sugeno fuzzy methods and compared RA models in
a simulation environment. While the viability of the proposed approach is sound, its main
limitation is that RA is performed on static objects only.

Gonzalez-Granadillo et al. [8] realised a dynamic risk management framework for
critical infrastructure systems. Their work was based on the fusion of three models:
attack modelling via attack graph generation, RA via threat risk quantification of observed
network events, and response assistance via evaluation of all possible mitigation actions
and safety scoring assignments. The main advancement of this work is the integration of
security action impacts into the final mitigation response. However, the whole framework
operates on a dynamically loaded set of configuration files: network topology, abstract
privacy policies, authorised mitigation actions, vulnerability inventory and a reachability
matrix. The final reports generated are for the risk management experts, not regular users,
and still need to be deployed in the operational environment after an expert analyses them
and chooses the most suitable action.
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This is where our advancement in automated RA, called DRAF, brings its innovation
capacity and implements theoretical advancements in real-life applications. The main
differentiating factors of our framework is its capability to execute RA on IoT assets in a
dynamic and constantly evolving smarthome environment. DRAF addresses the limitation
of existing frameworks in performing periodic and static RA by operating on the currently
observed data. Furthermore, not only does it integrate human-centric aspects into an
RA model, but it also empowers its users to perform dynamic near-to-real-time RA on
constantly evolving situational risks through the integration of a constant feed of the
external intelligence.

2.3. Attack Classification

One of the most broad surveys attempting to enumerate a full attack landscape in an
IoT ecosystem also proposed a classification system based on a layered approach: physical
objects, protocols, data and software [17]. However, the main drawback of this approach
is its overlapping attack attribution based on a singular property of any IoT object. For
example, an object jamming attack, which is classified under physical object attacks, lacks
annotation of the belonging property of the involved protocol characteristics.

Adat and Gupta [18] also propose a taxonomy of IoT based on the classical architecture
of IoT, composed of four layers: perceptual, network, support and application. Yet, the
explicit link between those architecture layers and the proposed threat classification is lack-
ing, as only a subset of layers can be explicitly annotated. Physical issues are linked to the
perceptual layer; data link, network and transport issues can be attributed to the network
layer. However, support and application layers are omitted all together. Nevertheless, an
in-depth review of commercial network protection solutions is presented.

Similarly, Chen et al. [19] presented an attack taxonomy based on the IoT ecosystem
architecture: perception, network, middle-ware and application. Further classification of
application domains was provided: industry (automobile or mining), urban infrastructure
(smart grid, transportation, logistics), healthcare (medical devices) and smart environment
(smarthome, smartphone, wearables).

A three-level attack classification approach was suggested by the authors of [20],
where the level attribution was dictated by the severity of the security issue, ranging from
low to high. The low level class was mostly correlated with physical and data link layers
of communication. The intermediary level mostly concerned communications, routing
and session management. Finally, the high level was applicable to applications executed
in the IoT devices. In contrast, a three-dimensional taxonomy of attacks was proposed
by [21], where the security landscape was analysed based on connectivity, actual device
specification characteristics and the application domain. Furthermore, the attacks were
classified into eight categories.

However, any attempt to uniquely attribute the attack to a specific category is prone
to fail, as any IoT ecosystem, due to its heterogeneous nature, will always have a multitude
of device specific properties, which will dictate attack scope. These include the affection
vector, mitigation possibilities, likelihood impact, and cascading effects.

On the contrary, by focusing on the risk analysis, one can merge several attacks into
the same risks, which matter the most to the end-user. Regular citizens are more keen to
know the result of the attack and how it affects them rather than the technical cause at
the root of the problem. For instance, the technology specific attack attribution provided
in [22] can be used to form a multidimensional IoT attack correlation model, which, in
turn, serves as the basis of the generic threat model and RA. The need for the development
of a standardised representation of the diversified properties of a generic IoT object is
continuously increasing as we move towards attack attribution issue, especially in the
context of raising end-users’ awareness. Our proposal is to move towards embedding
attack classification directly in the RA process, where the end-user will be presented with
comprehensible information on what the possible consequences of the detected threat are.
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2.4. Threat Modelling and Ontologies

An excellent identification of the current research gap in the domain of threat mod-
elling and its standardisation adoption is provided in [23], outlining potential solutions
to narrow the gap. A wide adaptation and referencing to the same (standardised) threat
modelling framework would be highly beneficial to enable the possibility of comparative
studies, where the reasoning on the model selection and attack prioritisation would be
possible. Unfortunately, such a recommendation remains an unrealistic target due to the
competitive nature of security research in the IoT environment. Most of the existing frame-
works either come from similar, yet relevant, domains, or have a dedicated focus on some
specific attributes.

Doynikova et al. [24] presented an ontology on metrics for cyber security assessment,
as well as comparative studies on existing ontologies for security management. Unfor-
tunately, none of them combine all necessary aspects of IoT object specific properties,
correlated security issues and associated mitigation actions.

Semantic-based approaches were widely proposed in the recent academic literature.
One of the most complete and promising approaches is based on the Semantic Web Rule Lan-
guage (SWRL), which is designed specifically for smarthome safety services [25]. However,
the main limitation of their approach is that devices’ data are redirected to the middleware
on the remote server, which is further uploaded to the database to map with the ontology
and propagates risk related information to a safety manager. Furthermore, their ontology
does not incorporate cybersecurity related attributes, such as vulnerabilities, threats and
Personal Data (PD) data exposure, constraining its capacity for attack and risk correlation.

The closest taxonomy of threats in the smarthome domain belongs to [26]. It incorpo-
rates impacts on the system and home’s occupants and their lives. However, explicit links
between attack classification and an IoT object taxonomy is not provided. This classification
serves as a base for the definition of our IoT Stack, which takes any existing and freely avail-
able ontology one step further by incorporating the functionality of vulnerability-attack-risk
association in real time. This innovative step bypasses the static evaluation of the possible
attack attribution and impact prediction, making the RA process truly dynamic.

3. Materials and Methods
3.1. Attack and Risk Mapping

In a classical setting, when observing network traffic and detecting an ongoing or
recent attack, one of the most important challenges is to identify the source of the threat.
Once the origin of the threat is known, it can be addressed adequately.

To identify an ongoing attack, one needs to have a deep understanding of the numerous
properties that each attack can possess. This task becomes even more challenging when
dealing with passive network traffic observation. One way to approach this is to create a
generic attack taxonomy relevant to a specific environment. However, this implies creation
of static definitions and classification of known attacks existing up to today only. This means
that tomorrow’s attacks will not be included when using such approach. An alternative
method is to start from the entities that can be deployed on the network and create an
ontology supporting a generic description of properties belonging to those objects. This, in
turn, enables reverse association from an IoT device property to a specific technological
risk, which in turn will serve as a descriptor of attack association.

3.1.1. IoT Stack

For this purpose, we have developed IoT Stack ontology. As already stated in
Section 2.4, our work is based on the existing taxonomy of the smarthome domain. With
the aim to further extend it with the attack attribution properties, we have performed
literature reviews and conducted several interviews with the expert groups. Furthermore,
through the establishment of the reference architecture for securing smarthomes [27,28],
a comprehensive set of the generic IoT object properties was derived. Each IoT device
is characterised by multidimensional properties at three layers that we have identified:
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hardware, software and data. An attack can not be attributed by only one property defining
the IoT stack. This is why attack association with the risk always overlaps with various IoT
stack properties.

A smarthome is a system that can not be secured by isolating its components. Instead,
we break it apart with the help of the IoT stack, extract smaller properties, attribute them
to the associated attacks and risks, and monitor the smarthome as a whole. With this
approach, we can also slice the observing system when a more detailed view is required,
for instance by looking at a specific IoT device as a whole system on its own.

Furthermore, multiple properties of IoT devices dictate the affection vector, mitigation
possibilities, likelihood and impact vector, and cascading vectors. During our studies, we
have extracted key properties allowing such a correlation, which incorporates substantial
variation of the IoT objects’s properties at the identified layers.

The overall concept of allowing attributions from the attack to the affected IoT device,
and from specific characteristics of the IoT device back to the associated potential attack
is depicted in Figure 1, represented with many-to-many relationship. Furthermore, an
illustrative example of the multidimensional properties specification of the IoT object by
utilising the IoT Stack concept is presented in Figure 2.

Device
• Short name
• Code
• Full name
• Manufacturer

⋮

• Type (Data, Software
or Hardware)

• Name

IoT Stack
∗ ∗ • Name

• Category (Physical,
Network or Software)

• Layer (Object, Data,
Protocol or Software)

Attack

∗ ∗

Figure 1. IoT Stack with many-to-many relationship concept.

Device
Property Value

Short name Smartwatch
Code smwXYZ
Full name NewWatch
Manufacturer SungSam

IoT Stack
Type Name

Data GPS
Data Pressure
Data Gyro sensor
Software Activities
Software Sleep monitor
Software Firmware
Hardware Bluetooth

Attacks
Name Category Layer

Physical Damage Physical Object
Device Injection Network Protocol
Sensitive Data Software Data

Figure 2. IoT Stack example.

Such an approach enables each property to be linked to the risk through attack
association, targeting the inclusion of all types of IoT objects that can be deployed in
the smarthome.

3.2. Risk Definition

Extending the original idea of a system concept, we consider the smarthome environ-
ment as a holistic system, where risks can be measured quantitatively by utilising formal
methodology on impact assessments when making decisions in critical situations.

Our initial analysis was inspired by the formal methodology widely used in the risk
identification stage of the RA, called Hierarchical Holographic Modelling (HHM) [29].
This unique methodology enables the versatile aspects and dimensions of a system to be
captured from the systemic modelling perspective, corresponding to our vision on the
system’s slicing approach, where the object in question can be observed from a different
granularity view (see Section 3.1.1). More specifically, the definition and application of the
HHM framework will serve as a basis for the smarthome risk identification, answering
the prime RA question: ‘What can go wrong?’. The graphical representation of the final
definition of the HHM for the smarthome environment is depicted in Figure 3.
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Manufacturer Human Process Operations Cost
Customers
Requests Time Legal

Software Updates Access to Data Vulnerability Design Openness

Hardware Connectivity Localisation
Performance
Capabilities Materials

User Behaviour Awareness Risk Perception

Smarthome
Privacy and Security
Risks Exposure

Figure 3. HHM for smarthome risk identification.

The main sources of cyber risks in the smarthome environment can be classified into
four categories:

• Manufacturer related, such as human factors, industrial process influence, opera-
tions, specifications, and protocols utilised, manufacturing costs, prioritisation of the
customer requests, time constraints and legal compliance and obligations;

• Software related, such as the capability to perform and frequency of the updates,
potential access to various kinds of data (personal and non-personal), vulnerability
exposure, the inclusion of security and privacy threat modelling in the design process
and source code openness for independent auditing;

• Hardware related, such as connectivity capabilities (direct Internet access or proxy
mediator), the localisation of the object, the power and performance constraints and
the actual materials used for object fabrication; and

• User related, such as behaviour patterns, general cyber awareness and human
risk perception.

The visualisation and deep understanding of these perspectives set the foundation of
the development of the risk model, defined in the next section.

3.3. Risk Model

While developing the IoT Stack concept, we have observed that, similarly to the speci-
fication of IoT objects’ multidimensional properties, generic risk can also be represented by
various descriptors.

The smallest piece of information describing the risk descriptor, which can also be
observed directly in the network traffic, is defined as an Artefact. The Artefact itself can be
defined by several properties: origin, name and message. An Artefact which is assigned a
certain weight then forms a so-called Receptor. Each Artefact with different weight values
will create a new Receptor. Finally, risk is composed of numerous Receptors. The main
concept here comes from the idea that each Receptor can be associated with many risks,
and each Artefact is accepted by many Receptors. In order for the risk to become active,
i.e., identified to be caused by an Attack, certain Receptors should be activated to outweigh
the threshold of the risk. Figure 4 outlines the full Object Role Modelling (ORM) schematic
for the risk model from the implementation perspective. More details on the technical
implementation of this model are given in Section 4.1.
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Device
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Figure 4. ORM for the risk model.

3.3.1. Risk Calculation

The main question that we want to answer here is: ‘What is the likelihood that Risk X
will happen, given X, Y and Z circumstances’? Let us assume that we are given R1: a PD
leak. For the IoT device, iKettle, we have the following properties:

• Software: v23.6.4;
• Data: username; risk weight: 0.3; and
• Hardware: BLE; risk weight: 0.4.

In this case, the overall R1 = Medium, as the device potentially can leak only username.
For the IoT device Fitbit watch, we have the following properties:

• Software: PROM24js;
• Data: age; risk weight: 0.7;
• Data: address: risk weight: 0.6;
• Hardware: WiFi; risk weight: 0.7; and
• Hardware: BLE; risk weight: 0.4.

In this case, the overall R1 = High, as the device has access to PD data directly and
has direct connectivity to the network to transmit the data. Hence, the R1 for the Fitbit
watch is higher than the R1 for the iKettle. However, the question is then raised of how to
determine such initial weights. In this specific example, it is rather intuitive, but we need
to build a scientifically sound model to support such a comparison.

3.3.2. Methodology on Risk Mapping Derivation

We have established the following methodology to identify the starting weight values
for the IoT stack properties association with risks. First, we performed an extensive
literature review to collect all relevant approaches and risks estimations in the domain of
smarthomes and intelligent buildings. We have searched all indexed scientific repositories
with the following search words: risk estimation, RA, smarthome, IoT, cyber physical
systems, intelligent buildings, formal RA, and risk identification. This resulting list of
papers was screened first for the relevance of the content. Then, in-depth analysis of most
relevant works was performed to identify the list of the most appropriate risks appearing
frequently in the scientific literature. The exhaustive list was aggregated with initial severity
classification and potential cause attribution. In the second phase, we started from the
attack classification landscape gathering, where the taxonomy of smarthome specific attacks
was developed. It consisted of three main categories: Physical, Network and Software
attacks. Each group was further classified into specific attacks. For each attack, we then
derived a list of associated risks, based on the expert opinion survey. In the third phase, we
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cross-correlated risk lists from two previous phases and finalised it into a single list with
manually assigned risk attribute weights. An extract of the data can be seen in Table 1.

Table 1. Risks and attacks association.

Risk Name Risk Shortname Attack Association

Physical Damage PD Physical Damage
Trigger Fake Events TFE Malicious Device Injection

Flood Network with Fake Events FNFE Mechanical Exhausting
Absence of Service AS DoS Participation

Sniff Traffic ST Device impersonation
Battery Exhausting BE Battery Attack

Unauthorised Control UC Malware
Leaking Data LD Sensitive Data

Gateway Abnormality CA Gateway Misbehaviour
Malicious Destination MD Malicious Destination

3.3.3. Expert Values for Receptor Weights

We have applied the same methodology as for the risk mapping (Section 3.3.2) to
establish expert defined values for the initial Receptors’ weights. Based on the literature
review and expert opinion surveys, we have assigned averaged values for each identified
risk Receptor. As described in Section 3.3, each risk can be triggered by the Receptor
provided by the network Artefact. Therefore, we had to decompose all identified risks into
associated Receptors and attribute the values for linked Artefacts, as shown in the Table 2.
We have marked in green the Receptors with different weights that can trigger the same
‘Unauthorised Control’ risk.

Table 2. Snippet of expert values for Receptors.

Artefact Name Risk Shortname Expert Value for Weight

SUSPICIOUS_TRAFFIC
UC 0.5
ST 0.4
LD 0.4

UNKNOWN_TRAFFIC
UC 0.2
LD 0.2

FNFE 0.2

SUCCESSFUL_DOS
UC 0.8
AS 0.8

FNFE 0.2

BATTERY_ATTACK

BE 0.8
ST 0.4
AS 0.2
PD 0.2

NEW_EXTERNAL_IP_ADDRESS

TFE 0.4
ST 0.4
UC 0.4
LD 0.2

Furthermore, we have created a logical structure to calibrate the weights at run-time,
depending on the anomaly report’s type (Section 4.4.3) and the feedback collected directly
from the end-users of the proposed solution (Section 4.5.3).
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4. Implementation

Inspired by the Immune Theory, which arose from the biology domain [30,31], we
have conceptualised and implemented DRAF. This section illustrates in detail the internal
architecture of the DRAF with the entire flow of the RA, as shown in Figure 5.
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Figure 5. DRAF architecture with data flow and risk propagation.

Data coming in from the several underlying modules is interpreted and allocated to
the several distinct Analysers for further processing. These Analysers will each output a
set of zero or more risk related events, so-called Artefacts.

These Artefacts are entities describing an element of the threat risk and an associated
probability. This probability is the confidence level of the existence of that element of risk,
which is thereafter reflected against a set of predefined risk scenarios for identification. A
risk, as seen by DRAF, can be defined as a set of risk Receptors, which are the Artefacts
with threshold and weight values. Each induced Artefact from the Analysers comes with
a probability high enough to overcome the threshold for activation of risk and is then
multiplied by the Artefacts internal weight attribution. The sum of all activated risk
Receptors gives an overall risk likelihood. Using the matching and threshold comparison, a
resulting set of risks with their likelihoods are then set as candidates for the calculation of the
Immediate Risk Level (IRL) and the Current Risk Level (CRL). This produces a sparse matrix
of the risks and their severity in conjunction with current in-place automation, possible
(user) actions and outcomes (see [32] for more details on the theoretic model application
for the definition of the risk levels). The Risk Automation and Exposure recommendation
and related statistical data are parsed through producing a set of Instructions for the
Mitigation Advisor.

4.1. Architecture and Workflow

The main goal of the DRAF is to provide real-time security and privacy RA of the
ongoing activities on the network. It validates the current communication by assessing
any anomaly detected and deviations in the IoT device’s normal behaviour through device
profiles. RA performs real-time RA by continuous evaluation and monitoring of various
risk levels at multiple stages of data processing. To control the behaviour of devices
and corresponding payload exchanges, permitted risk levels of ongoing network activity
are dynamically calculated for each network activity event, practically determining the
required decision to be taken. RA also establishes the risk controls for the users’ privacy
and makes them aware of the associated risks. DRAF integrates multi-faceted anomaly
detection analysers and risk Receptors to support behaviour deviation detection, involving
a deep understanding of risk propagation and inter-dependencies within the network. For
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this purpose, it leverages the existing open threat modelling tools (e.g., the Open cyber
threat intelligence platform (https://www.opencti.io/en/, accessed on 27 February 2022))
to integrate a network entity correlation ontology.

4.2. Input Processor

The main controller component for the DRAF is depicted in Figure 6. It receives and
manages incoming Anomaly reports that trigger the creation of the jobs to be executed. It
is composed of a Launcher and Scheduler, and is constrained by the Reporting Strategies
(RSs) for conform and standardised anomaly reporting inputs.

Analysers
Decision 
Handler

Risk Level
Estimator

Performance 
tracker

Anomaly report Communicator

Launcher

Run-time 
environment

Reporting 
Strategies

Scheduler

Database 
connectivity

Figure 6. Input Processor.

4.2.1. Launcher

The Launcher is a wrapper component responsible for the run-time environment con-
figuration of the DRAF’s essential internal components, such as performance tracker, access
to database repositories, risk estimator, communication handler, decision making, analysers
launchers and the actual job scheduler. It serves as an initiator of the main execution process
and exists in four variations to permit necessary integration into different deployment envi-
ronments: a stand-alone command line Java virtual machine (JVM)-enabled environment,
Jsvc (http://commons.apache.org/proper/commons-daemon/jsvc.html, accessed on 27
February 2022) and OSGi (https://www.osgi.org/, accessed on 27 February 2022) wrappers
for specific gateway environments and a dedicated trials launcher for controlled testing of
the DRAF automation features. It also initiates a Communicator component, responsible
for listening to all incoming messages to be further dispatched and normalised for the risk
analysis, as well as to handle remote call execution for asynchronous communications.

4.2.2. Reporting Strategies

To process incoming network messages coming from an external anomaly report-
ing module, a structured formulation of its content is required. The goal is to get the
right information processed into the correct outputting Artefacts with minimal overhead.
The network messages describe a detected anomaly report through the means of several
predefined attributes:

• Severity: the degree the impact of the detected anomaly can have on the device or
home environment;

• Priority: the importance of having the anomaly resolved or investigated. This attribute
relates mostly to the end-user point of view of how an anomaly may affect them (e.g.,
private data leakage vs. a non-functional smart lamp);

• Reliability: the confidence factor from the anomaly reporting module;
• Attack attribution: a reporting module can indicate a potential attack classification for

a detected anomaly;
• Attack probability: the confidence of the reporting module on the attack’s class attribution;
• Source/Destination: depending on the reporting module field of view within the

network, these two fields contain the corresponding source and destination identifiers.

https://www.opencti.io/en/
http://commons.apache.org/proper/commons-daemon/jsvc.html
https://www.osgi.org/
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These identifiers are provided in several granular levels, namely at the smarthome
level, indicating there is something wrong in the network, at the interface of a device
(e.g., gateway endpoint with device ID or interface channel) or generic subnetwork
type (e.g., Zigbee, Bluetooth, Z-wave), or precisely to the device by providing its
Internet Protocol address (IP) or Media Access Control address (MAC);

• Target recipient: similar to source/destination, looking at the communication channel
can precisely narrow down the scope of the anomaly. Depending on the type of
analysed communication protocol, this can be indicated as broadcast, unicast or
multicast destination points; and

• Reasoning: a descriptive field in which the reporting module may provide additional
information through the means of a fixed set of acceptable values.

While restricting and enforcing conformance to the input structure reduces the com-
plexity, it does not entirely cover the vast differences that the reporting modules can exhibit.
This means, for example, that a reporting module may report, in particular, a certain attack
detection, while another reporting module operates at a higher level of granularity and
reports on overall changes in the network communication behaviour. As a result, not all
anomaly occurrences contain information on every attribute, nor is it required. Taking into
account that any reporting module can differ and is residing somewhere in the network,
e.g., on an IoT device, intermediate gateway or a home server, it is important to take into
account their purpose. To illustrate this further we exemplify this with some questions:

• What information needs to be transmitted? A reporting module can encompass a broad
range of monitoring functionalities that can describe a variety of anomalies or focus
on very specific issues. Thus, the information that reporting modules can provide can
vary strongly and distinctly from one another.

• When and in what form? Many factors influence when a report will be generated, due to
the intended functions of the module, the observed parameters, its operating context
(on edge device, on the gateway or even external as a service in the Internet). The
DRAF has to handle asynchronously the incoming reports from multiple reporting
modules, which report in an irregular (sparse) manner.

• Why and how? As functions differ, their intent for providing a report can be misleading.
For example a module monitoring the absence of data reporting, e.g., a life beat packet
from a smart smoke detector, may indicate that the battery has been depleted or the
device is malfunctioning. On the other hand, a bed sensor may also report absence
of data due to the person not being at home, while both stating the same report for
absence of data.

Although most of these questions are covered by the attributes defined previously,
we further systemise reporting modules into RSs by identifying their prime attributes. We
defined three anomaly RSs that DRAF is fully integrated with. Each RS focuses on a subset
of the variables as shown in Table 3.

• Aggregated Prioritisation (AG): As the name implies, the primary attribute is priority.
The anomaly reports incorporate intelligence on the aggregation of anomalies output
based on the priority of the individual elements and provide their final outcome as
the conclusion of the aggregation process (e.g., threshold, time window, batch size)
with a priority score.

• Behaviour Deviation (BD): Leaning towards the severity and reliability as primary
attributes, there are anomaly reports that report device and non-device behaviour de-
viations and higher level (application layer) events caused by a smarthome habitants.

• Attack Attribution (AA): Represented by anomaly reports that provide attack attri-
bution data, either in the report as a dynamically filled attack identifier or as a fixed
identifier defined by the scope of a specific attack detection use case.
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Table 3. Correlation matrix: inclusion of anomaly reports’ attributes per Reporting Strategy.

Strategy Priority Severity Reliability Attribution Probability Src/Dst Recipient Reasoning

AG 3 3 3 3

BD 3 3 3 3 3

AA 3 3 3

Based on the identified strategy for an incoming reporting message, the DRAF then
applies weight adjustments that influence the internal risk analysers’ assessment of the
report (see Section 4.4.3).

4.2.3. Scheduler

The main DRAF workflow control unit, Scheduler, is in charge of incoming reports
propagation from the the input reception and the risk analyser job dispatching to the result
collector for the Decision Handler (DH) when the risk exceeds the configured acceptable
risk threshold. It contains several functions/classes:

• Job creator: for each packet an encapsulated job is launched, enabling the control and
monitoring of the analysis of the packet;

• Parameter application: an internal interface to get and set DRAF parameters (e.g.,
number of threads, sleep time settings, priorities);

• Selection of the checker for the performance control and monitoring. For example,
Block Rules (BR) are always verified, but Behaviour Analyser (BA) or Payload Check
(PC) verification depends on the metrics that influence the choice of not running
a checker; and

• Tracker: responsible for the main pipeline monitor. It creates estimations of how long
jobs take to complete based on the historical effort log. For example, a huge number
of profiles per device can influence the time it takes to process a packet from a specific
device. Additionally, the type of the data might affect the effort for the PC.

4.3. Risk Analysers

Scheduler coordinates and runs a set of Analysers producing risk Artefacts, which in
turn trigger risk Receptors. The correlation between internal components is depicted in
Figure 7.
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Figure 7. Risk analysers.
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4.3.1. Behaviour Analyser

The aim of the BA is to see if the data flow from a device is within the nominal
operations of non-faulty day-to-day usage data behaviour. The difficulty of operating and
judging device behaviour roots in many unknowns of its operating environment.

Other than operating within a smarthome, nothing much is known, and its behaviour
is established based on historic data flows, for which the Profile Building (PB) is responsible.
For each device, the PB creates a graph of connected data flows, also known as the Device
Profile, linking the flows together chronologically. as nodes. Each node then has the
observed attributes of the data flows (accumulating, aggregating and merging of similar
data flows). Each Device Profile is specific to the device and associated user’s interaction
with it.

The Profile Handler (PH) component is responsible for the management and com-
munication with the PB for retrieving and restructuring the Device Profiles to be used by
the Analyser.

The main logic of the BA, which is responsible for comparing the current packet with
any existing profile, is encapsulated in the functionality of the Contextual Checker (CC).
Whenever the BA receives a processing job from the Scheduler, it will request from the PB
the device profile linked to the job. The profile is then internally loaded through the PH
in a new data structure enhanced for several operations. From the job, the properties and
metrics are translated into a comparison query that can be given to the PH. Consecutively,
PH will compare the query parameters with the nodes in the graph and output a set of
pointers to nodes that are closest to the given query data. The CC then analyses these nodes
on several aspects, with examples including:

• A comparison to the historical observations between the last identified pointers and
accepted pointers;

• A comparison to the forecasted behaviour for the predicted pointers;
• Query matching thresholds with weights per identified property (e.g., 5 out of 10 prop-

erties matched);
• Per matched property evaluation of the threshold margins of the comparison per node

(e.g., flow size property matched 80%); and
• Analysis of the system and user set configuration and preferences, forming exception

or inclusion rules for properties, e.g., ‘ignore flow size’.

Finally, CC then determines if the behaviour is in line with its expectations of that
specific device and marks the identified pointers as accepted pointers. The output will be
an Artefact of misbehaviour with a given weight, as previously described in Section 3.3.

The Active Profile (AcP) is a profile that was matched in the recent past with incoming
packets to the DRAF and is currently being tracked. It is a cursor in the profile’s tree,
indicating at what stage the communication flow is, as well as the depths of the built tree.

The Garbage Collector (GC) is a separate process that monitors AcPs and checks on
their activity and progression heuristics (e.g., time constraints on the next node in the tree).

We assume that several communications are going on at the same time. Additionally,
there can be several matching profiles for a packet/flow, which should decrease over time,
either by new packets and their matching probability or checking in the tree for the next
node timeouts by GC. Therefore, we have built a structure to support the buffer of all
active profiles.

A separate process for monitoring the absence of any communication was also en-
visioned as part of the device presence behaviour. It keeps track of profiles’ activity by
counting how many times the profile was executed partially and fully.

Finally, the BA has a secondary behaviour verification algorithm running indepen-
dently from its main function. In this case, it periodically requests a device profile from
the PB and deduces in which time period it is expected of the device to communicate on
the network. This algorithm further verifies if this has happened, and if not, it emits an
Artefact of absence.
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4.3.2. Payload Check

The PC uses the gathered information to inspect the data of the flow for any suspicious
data patterns, the scope of which is predefined by user configuration. In addition, when
the data stream is encrypted, it tries to verify the certificate data related to it. The internal
logic of this component includes the following features:

• RegEx matching: a set of regular expressions to detect private data;
• Secure Socket Layer (SSL) check: verify the SSL certificate and see if proper SSL packet

is observed; and
• Suspicious payload confidence level.

4.3.3. Block Rules

The BR are re-verified and extended to a broader view on the target destination to see
if there could be any reason if a certain communication should be blocked. This includes the
current rules in place from the IPtables, which are the raw rules as used by the underlying
Operating System (OS) provided through the interoperable middleware or complemented
by user-added information from the user configuration or public blacklisting. It verifies the
authenticity of the destination (e.g., who is scraping from several sources). The gathered in-
formation is used to produce threat/risk levels for three categories: direct destination (e.g.,
IP), domain name (e.g., the Domain Name System (DNS) name) and connectivity (neigh-
bouring IPs) in relation to their reputations (e.g., previously reported hosting malware
and/or phishing sources and gathered by the central intelligence repository).

The current implementation of the BR operates on various interface types (IP, Bluetooth,
Zigbee, Z-Wave, RF869, and PPP). However, in the case of IP traffic, we check only the
destination, while in all other cases, both the destination and source are verified. BR is
supported by the following use cases:

• Public Blacklist: based on the data retrieved from the official external threat intelligence
by means of the scoring system;

• Private Whitelist: as the name indicates, it enables the public blacklist to be bypassed
by adding the destination point to the whitelist; and

• Private Blacklist: a personalised blacklist of selected addresses.

BR performs external checks only once a dedicated alert is sent and executes the
following procedure:

• Prioritisation: check the local whitelist, private blacklist and then copy of the public
blacklist;

• Data refresh: if not blacklisted, then check with the external repository. If there is a
reply time out, assume that IP is not present in the central intelligence repository (as
the local copy of the public blacklist was synchronised earlier); and

• Score comparison: if the address is not blacklisted, check the score through the external
resilience infrastructure. If the reply times out, assume that IP is safe. Otherwise,
perform the reputation scoring routine [33].

4.3.4. Alert Processor

The Alert Processor (AP)’s primary function is to act on messages coming from the
externally plugged reporting modules. These components provide a risk/anomaly analysis
themselves and ‘merely’ inform the DRAF. It is up to the AP to handle the provided
information in an appropriate way, meaning that the information given may not always be
conclusive and the AP will try to consult with the other analyser outputs and historic data
to relate the presented risks with ongoing events. Furthermore, it will apply aggregation
and merging strategies to the incoming messages, as the underlying components may
continuously emit these messages, and it would not be appropriate to overwhelm either
the DH or the Mitigation Advisor (MA), and thus, ultimately the user, with it.
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4.4. Risk Level Estimator

The overall workflow of the Risk Level Estimator (RLE) is illustrated in Figure 8. It is
the most crucial component of the DRAF responsible for the risk estimation of an ongoing
event and its impact on the overall risk level.
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Risks
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Risk 2  V'2
...         ...
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Figure 8. Risk Level Estimator.

The risk model is composed of a collection of identified risks atomically split in the
risk Receptors (as outlined in Section 3.2) and serves as a main controlling input for the
RLE. Risk Receptors identify the set of currently applicable risks by incorporating the threat
level, consequential exposure and the automation strategy.

4.4.1. Immediate Risk Level

One or more produced Artefacts with an established Receptor’s weights, initialised
with expert weight values, can trigger one or more risks. For the risk to become active,
an overall cumulative weight of all Receptors should overpass the established Receptor
threshold. This threshold is controlled by the end-user and depends on his personal risk
perception in terms of the compromise between acceptable risk tolerance and smarthome
functionality. The currently processed Artefact produces a value called IRL. It initialises
the corrective course of actions towards DH, described in detail in Section 4.5.

4.4.2. Current Risk Level

CRL is responsible for tracking all recently active risks by maintaining an in-memory
table on the latest risk estimation scores. Once a risk value from IRL is processed by the
weight adjustment, a comparison can be performed by CRL to identify whether any of
the active risks exceed the risk threshold. Risk estimation is calculated by summing up
CRL with the risk brought by the observed Artefact. This approach enables the sequential
processing of the multiple Artefacts, as any of them can contribute to the detection of a risk.
When Receptors weights are below the threshold, the average value is used for summing
up risk estimation. When the latest Receptor observed is above the threshold, its value is
used to report the detected risk accident.

The risk threshold value is controlled by two elements: the Accepted Risk Level
and the Historical Raise Factors. The Accepted Risk Level is a structure to support the
user definition of Accepted Risk Levels per device and is used for the overall smarthome
installation. It has a dynamic property, as it evaluates over the time the initial setting by
means of the feedback pipeline from the user interface. For example, if the user prefers to
perform corrective action on the automated decision, then the Accepted Risk Level will be
modified accordingly. This is implemented through the Historical Raise Factors feature,
which reviews the risk history to reveal when and what risk events occurred, what was
handled automatically, and which event requested a decision from the user.

4.4.3. Weight Adjustments

As previously mentioned, to calibrate expert weights assigned to the Receptors, we
have implemented a weight adjustments strategy for each type of the RS. More specifically,
we have integrated 180 different types of external anomaly reporting inputs, which can
be categorised into three major RSs, as was described in Section 4.2. Below we provide
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examples of the weight adjustment per RS type through an example of a specific anomaly
report integrated in the DRAF.

AG Weight Adjustment

This report example of type AG provides aggregated reports on IP-related anomalies
of the format presented in Listing 1, including its own classification on the alert priority.

The maximum number of the occurrences provided in the list of FlowAlert can change
from one deployment environment to another. Therefore the controlling variable for giving
indicative value on the maximum number of accumulated alert_counts is externalised
into the configuration settings of DRAF.

Listing 1. AG alert format extract.

message AGReport {
repeated AttackAler t a t t a c k _ a l e r t ;

}
message AttackAler t {

required AttackClass a l e r t _ c l a s s ;
required s t r i n g a l e r t _ d e s c r i p t i o n ;
required P r i o r i t y a l e r t _ p r i o r i t y ;
repeated FlowAlert f l o w _ a l e r t ;

}
message FlowAlert {

required s t r i n g s r c _ i p ;
required s t r i n g dst_ ip ;
required uint32 s r c _ p o r t ;
required uint32 dst_por t ;
required uint32 a l e r t _ c o u n t ;

}

For each attributed Artefact, the Receptor’s weight for the associated risks is adjusted
in the following way:

1. Prioritisation: alert_priority is given higher impact, and the sum of alert_count
is given lower impact;

2. Normalisation: a higher priority with a higher count should be more crucial to report,
yet a higher priority with a low count is more valuable than low priority with a high
count;

3. Score adaptation:

(priority + 1) ∗ signi f icanceFactor − occurrenceCount

where significanceFactor is loaded from application properties and corresponds
to the forecasted maximum number of occurrences (as described above);

4. The final score adaptation strategy is calculated based on two variables:

• stepSize: adaptationScore/signi f icanceFactor;
• maxNumberOfSteps: number of possible priorities scores, equal to 4 for the AG

type of report;

5. During the risk evaluation phase, the Artefact’s weight is adjusted according to this
score, taking into consideration the observation of other ongoing anomalies.

For example, for an Artefact with the Receptor weight 0.8, an alert of HIGH priority
(highest value) and 10 occurrences will give a final weight of 0.8. For an Artefact with
a Receptor weight of 0.8, an alert with VERY_LOW priority and 1000 occurrences will
give a final weight of 0.6. The adjusted weight is always less or equal to the predefined
weight value.
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BD Weight Adjustment

This module provides reports on the devices’ behaviour deviation anomalies with
corresponding severity and reliability scores, summarised in Listing 2.

Listing 2. BD alert format extract.

message AnomalyDetection {
required uint32 s e v e r i t y _ s c o r e ;
required uint32 r e l i a b i l i t y _ s c o r e ;
required DeviceInfo device ;
required s t r i n g timestamp ;
required s t r i n g reason ;

}

The severity_score’s value range is [0, 10], where 0 is a safe score and 1 to 10 is
a threat, where 10 is the most severe score. The score 0 is used for the ‘safe’ reports,
while values in the range [1, 10] are used for ‘threat’ reporting. The reliability_score’s
value range is [0, 10], where 0 is the lowest confidence and 10 is the highest confidence
of the algorithm for its response. Furthermore, the severity-reliability relationship for
‘threat’ is linearly dependent (e.g., 1 severity score corresponds to 1 reliability score), and
severity-reliability for ‘safe’ depends on the stability of the cluster.

The controlling variables for ensuring configurable and dynamic adaptations for
anomaly reporting are externalised into the configuration settings of DRAF, setting the
margins for the threat detection sparsity.

For each attributed Artefact, the Receptor’s weight for the associated risks are adjusted
in the following way:

1. Prioritisation: severity_score is given higher impact, while reliability_score is
given lower impact;

2. Normalisation: higher severity with higher reliability should be more urgent to report,
yet higher reliability with lower reliability is more valuable than low severity with
high reliability;

3. Score adaptation:

severity ∗ signi f icanceFactor + reliability

where significanceFactor is a multiplication product of the value ranges of severity
and reliability, loaded from application properties;

4. The final score adaptation strategy is calculated based on two variables:

• stepSize: adaptationScore/signi f icanceFactor;
• maxNumberOfSteps: number of possible priority scores, equal to 10 for the BD

type of report;

5. During the risk evaluation phase, an Artefact’s weight is adjusted according to this
score, taking into consideration the observation of other ongoing anomalies.

For example, for an Artefact with a Receptor weight of 0.7, an alert with a severity
score of 7 (highest value) and a reliability score of 7 will give a final weight of 0.6. For an
Artefact with a Receptor weight of 0.8, a BD alert with a severity score of 1 and a reliability
score of 1 will give a final weight of 0.4. The adjusted weight is always less than or equal to
the predefined weight value.

AA Weight Adjustment

This module provides reports on detected attack classifications for devices based
on various metrics, where attribution probabilities are incorporated for the most likely
detection attribution, as summarised in Listing 3.
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Listing 3. AA alert format extract.

message Cybersecur i tyS ta tus {
required Inter faceType i f _ t y p e ;
required I n t e r f a c e I d i f _ i d ;
required i n t 3 2 i d _ s l o t ;
required f l o a t at tack_proba ;
required double s t a r t _ t i m e ;
required double end_time ;
repeated A t t a c k C l a s s i f i c a t i o n a t t a c k _ c l a s s i f i c a t i o n ;

}
message A t t a c k C l a s s i f i c a t i o n {

required At tack At t r ib ut ion a t t a c k _ c l a s s ;
required f l o a t p r o b a b i l i t y ;
opt iona l DeviceId device_id ;

}

The attack_proba’s value range is [0, 1], where 1 corresponds to the highest likelihood.
Furthermore, each AttackClassification provides an additional probability for attack
classification to a specific attack class. The controlling variables for ensuring configurable
and dynamic adaptations for anomaly reporting are externalised into the configuration
settings of DRAF, setting the margins for the threat detection sparsity and the threshold for
integrating the report result into the overall RA.

For each AA attributed Artefact, the Receptor’s weight for the associated risks are
adjusted in the following way:

1. Prioritisation: overall attack_proba is given higher impact, than individual probabi-
lities for each classified attack;

2. Normalisation: the bigger the difference between two variables, the less impact will
be propagated to the RA;

3. Score adaptation:

attackProbability ∗ signi f icanceFactor + di f f Factor

where significanceFactor is a scaling product of probabilityScale, loaded from
application properties, and diffFactor is the normalised difference of the overall
attack probability and probability of attack class attribution;

4. The final score adaptation strategy is calculated based on two variables:

• stepSize: (1 − threshold) ∗ scale;
• maxNumberOfSteps: number of possible priority scores, considering the threshold;

5. During the risk evaluation phase, the Artefact’s weight is adjusted according to this
score, taking into consideration the observation of other ongoing anomalies.

4.5. Decision Handler

Depending on the user preference settings and resulting risk identification, DH either
propagates a mitigation strategy to the end-user or performs automated actions with the
possibility for the user to retract decisions made through a feedback loop.

4.5.1. Automated Decision Making

Utilising resulting data on exposure and automation together with user preferences, a
course of Mitigation Advisory is extracted. Furthermore, a tracking mechanism is initiated
for the follow-up of the scenario actively presented to the end-user.

The developed algorithm, demonstrated in Algorithm 1, outlines its main logic with
the following abbreviations utilised:

• SCI corresponds to Special Case Intervention, where no automation is possible at all;
only Mitigation Advisory is provided;
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• AA corresponds to Automated Action, where a decision was made in accordance with
user’s desirable risk level settings;

• SI corresponds to Security Intervention, where a decision should be made by the user
with a recommendation.

Algorithm 1: Decision Handler.
Result: send(notification)
loading user configuration;
if isMitigation then

notification = SCI;
else

getDecisionsCommands;
if isSafeRiskLevel then

executeCommand;
notification = AA;

else
if isNotificationDisabled then

executeCommand;
notification = AA;

else
notification = SI;

end
end

end

As can be observed from the above algorithm, a mandatory user interaction is required
only in the case of SCI. In the other two instances, an automated decision will be executed,
which can be verified by the end-user. Guided by the validation methodology established
at the architecture level of the overall GHOST solution [27], a set of automatable technical
actions was established, an extract of which is depicted in Table 4. The purpose of this
example is to show the variety of possible technical actions that we could automate and to
demonstrate the variation of the composed variables for the action selection. For example,
different Receptors can cause the same risk, leading to different actions (ID1 and ID2). The
same action can be executed in case of different risks triggered by different Receptors (ID2
and ID3). The same risk can lead to the same action, even if caused by different Receptors
(ID3 and ID4). Additionally, the same Receptors causing different risks will lead to different
actions (ID5 and ID8). This is due to the underlying risk model, which enables the diverse
mapping of the Receptors, risks and associated attacks.

Table 4. Automatable action mapping.

ID Technical Action Triggered Risk Final Receptor

1 Verify physical integrity Physical Damage BEHAVIOUR DEVIATION
2 Verify battery Physical Damage FREQUENCY ANOMALY
3 Verify battery Battery Exhausting BATTERY ATTACK
4 Verify battery Battery Exhausting BATTERY SILENT
5 Block device temporarily Flood Network with Fake Events NEW EXTERNAL IP ADDRESS
6 Block device permanently Unauthorised Control UNREGISTERED DEVICE
7 Drop packets for flow temporarily Sniff Traffic NETWORK SCAN
8 Drop packets for flow permanently Sniff Traffic NEW EXTERNAL IP ADDRESS
9 Drop packets for source temporarily Leaking Data STRING DETECT

10 Drop packets for source permanently Leaking data TROJAN ACTIVITY
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4.5.2. Rendering Mediator

This component is responsible for the translation of the risk parameters into an end-
user-friendly explanation and acts as mediator between the Automated Decision Making
and Web Interpreter. More specifically, it provides the reasoning on the automated action
performed by DRAF or the Mitigation Advisory provided to the end-user. It is composed of:

• The attribution level, e.g., device, interface, gateway;
• The last triggered Receptor, which enabled acceptable risk threshold over-passing;
• The associated risk, controlled by the attack vector scope;
• The identifier for the translation key; and
• The mitigation advisory.

Furthermore, to follow-up on the pending user decisions or to correlate user decisions
with reoccurring risks, a tracking mechanism is implemented.

The sample output is provided in Table 5, outlining the partial selection of the resulting
variables. It should be emphasised that the ability of the DRAF to perform automated
decisions is tightly coupled with the end-user preferences linked to their risk perception.
For instance, for row ID1, we can see that the Mitigation Advisory value is set to n/a, while
in row ID2, Mitigation Advisory is set to Block. This happens when the end-user is selecting
a high tolerance risk acceptability level, meaning allowing maximum automation of DRAF,
and does not receive notifications for each automated action (in case of ID1). However,
when the end-user settings indicate that all automated actions should be reviewed, we
provide the Mitigation Advisory. The final text displayed to the end-user corresponds to
“Private data has been detected, coming from a blood pressure measurement device”. A similar
differentiation can be observed in the rows ID3 and ID4. In both cases, the risk of communi-
cation with a malicious destination was addressed by continuous blocking of the traffic on
a specific interface with the blacklisted address. However, in the row ID3, the end-user’s
settings permitted the maximum automation level, hence, no Mitigation Advisory was
provided. The final end-user text for the row ID4 corresponds to “Communication to a
known malicious destination, botnet.com, was detected again on your network. Please contact the
manufacturer to replace the malfunctioning device”. Finally, the row ID6 demonstrates the
output of the DRAF when only mitigation by the end-user is possible due to technical
limitations of the automation aspects. The final end-user text corresponded to the following:
“No measurements were detected for the sleeping sensors. Please indicate how you resolved the issue:
(i) I removed the device; (ii) I checked the device and behaviour is normal; (iii) Contact Manufacturer.”.

Table 5. Output sample.

ID Type Automated
Decision

Alternatives User Action Mitigation
Advisory

Attribution
Level

Triggered Risk

1 AA Block Keep blocking,
Allow

n/a n/a Device Leaking Data

2 SI Block Keep blocking,
Allow

n/a Block Device Leaking Data

3 AA Keep blocking Keep blocking,
Allow

n/a n/a Interface Malicious Destination

4 SI Keep blocking Keep blocking,
Allow

n/a Manufacturer Interface Malicious Destination

5 SI Block Keep allowing,
Block

Allow Block Device Leaking Data

6 SCI n/a Removed,
Checked,

Manufacturer

Removed n/a Device Absence of Service
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4.5.3. Feedback Refinement

To include the direct feedback of the end-users in the automated decision-making
process, a set of user interfaces with different input options was created, as described in
Section 4.5.1. Together with the Historical Raise Factors, this approach served to allow
the fine-tuning and rectification (if desired) of the automated decisions to be overruled by
the end-users. An example of such an action is demonstrated in Table 5, row ID5, where
the output of the automated decision-making was refined directly by the end-user from
continuing to block the traffic to allow it instead.

5. Results

We have executed several experiments to validate the proposed solution. Table 6
shows the correlation between each experiment, RQ relevance and utilised method for the
validation of achieved results.

Table 6. Experimental validation mapping.

Objective Relevance Setup Method

Performance overhead RQ3 (Section 5.1.1) Real-life trials Run-rime monitoring
Workflow validation RQ1 (Section 5.1.3) Testbed Real attack execution

Expert values RQ2 (Section 5.1.4) Testbed Replay of real attack execution
Risk coverage RQ1 (Section 5.1.5) Real-life trials Statistical analysis

5.1. Experimental Validation

The DRAF was deployed in more than 80 smarthomes as part of real-life trials in
three European countries (Spain, Norway and Romania) in the period from June 2019
to April 2020 under the umbrella of the GHOST research project (https://cordis.europa.
eu/project/id/740923, accessed on 27 February 2022). Furthermore, explicit validation
and the calibration of the DRAF workflow was implemented with the help of the GHOST-
IoT-dataset [34] in a testbed environment, fully replicating the smarthome setup. This
dataset was collected in anticipation of the ethical constraints for attack simulation in
real-life deployments faced in the GHOST project. For this purpose, on the voluntary basis,
a full smarthome setup was deployed in one of the project participant’s apartments to
capture two types of smarthome network traffic: normal behaviour and attack simulation.
Availability of this data is a significant contribution to the functional validation of the IoT
enabled environment under the execution of a cyber threat.

The purpose of all executed experiments is threefold:

• Measure the performance overhead of DRAF on the gateway;
• Validate the workflow capability to detect ongoing risks and apply an appropriate

mitigation strategy in a real smarthome environment; and
• Validate the expert values’ correctness and their independence from the user profile set-

tings, such as acceptable risk levels, automation optimisation and IoT devices’ profiles.

5.1.1. Deployment Setup

A typical installation of the smarthome was composed of the following devices:

• Smarthome gateway (e.g., Raspberry Pi 3 single-board computer, CareLife smart IoT
gateway (https://cordis.europa.eu/project/id/740923, accessed on 27 February 2022));

• Zigbee sensors (e.g., presence detector, door aperture detector);
• Bluetooth enabled medical devices (weight scale, blood pressure meter);
• Z-wave sensors (e.g., motion, door and window opening, smoke and flood sensors); and
• Z-wave devices (e.g., smart plug, smart dimmer).

All IoT devices deployed in the smarthome environment communicated through the
gateway, on which DRAF was deployed.

https://cordis.europa.eu/project/id/740923
https://cordis.europa.eu/project/id/740923
https://cordis.europa.eu/project/id/740923
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The real-life trials were performed in three stages, where different combinations of
the RSs were used. The outline is provided in Table 7. Such consequential inclusion
methodology allowed close monitoring of the performance overhead measurement.

Table 7. Inclusion of RSs in the real-life trials.

Reporting Strategies Trial I Trial II Trial III

AG X X X
AA X X
BD X

Statistically, we have observed a 3.2% Central Processing Unit (CPU) overhead and
61.22 MB of memory consumption when deploying DRAF on the gateways. More details are
depicted in Table 8. Considering that a smarthome gateway has, on average, at least 1.2 GHz
CPU and 1 GB memory, our solution creates minimal overhead, completely acceptable for
real-life deployment environments.

Table 8. DRAF overhead statistics.

Parameter Minimum Average Maximum

CPU 3.2% 3.49% 3.9%
Memory 56.96 MB 61.22 MB 63.32 MB

5.1.2. Ethical Constraints

In order to validate the correctness of the DRAF workflow and perform the necessary
calibration of the expert values, one has to test the solution with cyber attacks. Due to
the ethical approach applied throughout the project, it was agreed with the National Data
Protection Authorities involved in the real-life trials that any form of real attack execu-
tion in the smarthome environments was not possible, and only simulated approaches
in a controlled environment were allowed (https://ec.europa.eu/research/participants/
documents/downloadPublic?documentIds=080166e5ceacdf7d&appId=PPGMS, accessed
on 27 February 2022). Furthermore, dedicated debriefing of the participants after simula-
tions was required, limiting the effectiveness of technological and functional testing of the
framework. Therefore, any validation involving the execution of attacks was constrained
to be performed only in the testbed environments.

5.1.3. Workflow Validation in the Testbed Environments

In alignment with the methodology on risk modelling, as described in Section 3.3.2,
the technical functioning of the proposed framework was validated in the testbeds. The
extract of the tested DRAF components is presented in Table 9. Here, the focus was given
to the validation of the workflow correctness by triggering a specific incoming anomaly
report. Simulation of the attack in isolation primarily ensured the correctness of the
invoked analyser capable of identifying applicable risks and application of the appropriate
automated Decision (D) and Mitigation Action (MA). Secondly, this setting also permitted
the validation of the expert weights’ initialisation values, as different testbeds equipped
with different IoT devices were utilised. As can be observed, only in cases when dealing
with BD RSs the automation of mitigation actions was not possible. This is explained due
to the technical constraint on the nature of the associated risks, where additional feedback
from the end-users was required.

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ceacdf7d&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ceacdf7d&appId=PPGMS
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Table 9. Automation status of DRAF for decision making and mitigation.

Analyser Attack Risk Automated D/MA

BA Physical Damage Physical Damage 3/ 3

PC Sensitive Data Leaking Data 3/ 3

BR Malicious Device
Injection Trigger Fake Events 3/ 3

AP (AA) Sensitive Data Leaking Data 3/ 3

AP (AA) Battery Attack Battery Exhausting 3/ 3

AP (AA) Malware Unauthorised Control 3/ 3

AP (BD) Gateway
Misbehaviour Gateway abnormality 3/ 7

AP (BD) DoS Participation Absence of Service 3/ 7

AP (AG) Malware Unauthorised Control 3/ 3

AP (AG) DoS Participation Absence of Service 3/ 3

AP (AG) Sensitive Data Leaking Data 3/ 3

5.1.4. Alert Fusion and Receptors Verification

The final and most challenging validation experiment was designed as a simultaneous
reporting of various attack scenarios to verify that the DRAF assigned risk Receptor weights
used at the initialisation are adequate and the overall behaviour of risk detection is correct.
For this purpose, we used the GHOST-IoT-dataset, which was replayed in the testbed’s
gateway with several anomaly reporting components running together with DRAF. This
setup simulated, as close as possible, an authentic smarthome but in a controlled manner
and with no real users involved to avoid ethical constraints. The testbed further permitted
simultaneous triggering of the AA and BD Reporting Strategies and invocation of the AP,
BA and BR analysers.

We replayed seven attack scenarios:

• Attack 1: The battery of the living room sensor was removed;
• Attack 2: A total of 10 consecutive wrong blood pressure measurements were made;
• Attack 3: The emergency button was activated 20 times in a row;
• Attack 4: The door opening sensor of the entrance was uninstalled, and several

detection triggers were forced;
• Attack 5: The battery of the door opening sensor of the entrance was removed;
• Attack 6: The bedroom sensor was moved to a nearer position; and
• Attack 7: A connection from an unknown device to the WiFi network.

The DRAF outcomes are outlined in Table 10 for each attack (Nr). As one can note,
the verification of the DRAF behaviour was not possible in all cases due to the missing
underlying anomaly reporting for Attacks 2, 4 and 6. In all other cases, the risks were
identified in an acceptable time-frame, ranging from 56 to 295 ms. In the cases of Attacks
1 and 5, two Artefacts were observed, both triggering the Receptors for the same risk of
Physical Damage, which finally was flagged as ‘over-passed the threshold’. For Attack
3, three distinct Artefacts were observed, where weight adjustments were applied due to
the underlying RSs. More specifically, the risk of Physical Damage was lowered down
for the BEHAVIOUR_DEVIATION Artefact, coming from AP:BD RSs. However, the
same risk was enhanced by the BEHAVIOUR_ANOMALY Artefact processed by BA and
UNKNOWN_TRAFFIC processed by AP, resulting in the final risk of Physical Damage
being detected in the shortest time-frame observed during the experiment. Finally, Attack 7
caused the creation of two Artefacts, both triggering the Sniff Traffic risk. However, despite
the fact that initial risk weights did not surpass the set threshold, the prioritisation of the
BR analysers permitted propagation of the risk estimation to finally be triggered with a
minor delay of less than 0.3 s.



Electronics 2022, 11, 1123 26 of 31

Table 10. Detection of attacks, receptors, and risks.

Nr Analyser/Observed Artefacts Expert Weight (Adjusted) Triggered Risk Time D/MA

1

AP: BEHAVIOUR_DEVIATION AC 0.3 (0.26)

Physical Damage 157 ms 3/3

PD 0.8 (0.68)

BA: BEHAVIOUR_ANOMALY
UC 0.8
PD 0.2
TFE 0.2

2 No reports n/a n/a n/a n/a

3

AP: BEHAVIOUR_DEVIATION AC 0.3 (0.24)

Physical Damage 56 ms 3/3

PD 0.8 (0.64)

BA: BEHAVIOUR_ANOMALY
UC 0.8
PD 0.2
TFE 0.2

AP: UNKNOWN_TRAFFIC
UC 0.2 (0.12)
PD 0.2 (0.12)

FNFE 0.2 (0.12)

4 No reports n/a n/a n/a n/a

5

AP: BEHAVIOUR_DEVIATION AC 0.3 (0.26)

Physical Damage 123 ms 3/3

PD 0.8 (0.72)

BA: BEHAVIOUR_ANOMALY
UC 0.8
PD 0.2
TFE 0.2

6 No reports n/a n/a n/a n/a

7
BR: NEW_EXTERNAL_IP_ADDRESS

TFE 0.4

Sniff Traffic 295 ms 3/3

ST 0.4
UC 0.4
PD 0.2

AP: TCP_CONNECTION ST 0.2 (0.18)
LD 0.1

In conclusion, this experiment also showcased that Receptors’ weight initialisation
based on expert’s opinion and their further run-time adjustment presents an accurate
approach, as the risk detection was executed in a required time. Furthermore, the applied
weight adjustment enables faster detection time, as shown in the case of Attack 3.

5.1.5. Risk Coverage Analysis

Finally, we performed an analysis on the coverage of the risks in relation to the attack
association and reported Artefacts. Table 11 shows an extract of the generated distribution
of the Artefacts utilised in the validation setup, grouped by the RSs. For each risk shown
in the table, we can see the overall number of Artefacts potentially capable of triggering
the risks and their distribution per RS. Furthermore, for each risk shown in the table, a
specific RS appears to be more reliable for the risk-triggering mechanisms, e.g., for the
risk of Physical Damage, the BD RS provided 29 potential Artefacts, while the AA and
AG RSs provided only 2 potential Artefacts. This can be explained by the technological
nature of the risk in question. The risk of physical damage implies an actual change in
the behaviour of the IoT object, and therefore, reports containing data on the behavioural
aspects will be of greater relevance. Some of the risks exhibit a very low coverage by RSs,
such as Malicious Destination and Behaviour Deviation. This can be explained by the actual
setup of the experiment executions. DRAF heavily relies on the external anomaly reporting
inputs. These two reports were integrated in the deployed testbed environment, providing
additional inputs for the DRAF for very specific cases, which were requested in the final
iteration of the projects’ development cycle to support the integration of externalised
threat intelligence.
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Table 11. Risks and Artefacts per RS distribution.

Risk Name Artefacts Total Reporting Strategies
AA AG BD

Physical Damage 33 2 2 29
Trigger Fake Events 13 2 10 1
Flood Network with Fake Events 5 1 4 0
Absence of Service 123 21 3 99
Sniff Traffic 10 3 6 1
Battery Exhausting 3 2 0 1
Unauthorised Control 38 3 33 2
Leaking Data 25 3 22 0
Gateway abnormality 104 0 0 104
Malicious Destination 1 1 0 0
Behaviour Deviation 1 1 0 0
Overall 356 39 80 237

6. Discussion

Our research goal was threefold: study the identified research questions, set the
foundation for the generalised dynamic RA framework and provide validation on the
implementation of our solution.

6.1. RQ1: Generic Ontology

RQ1 was the prime motivation of our study. The main goal was to develop a gener-
alised ontology to encapsulate fine-granular descriptors of vulnerabilities, threat vectors,
risk mitigation strategies, impact evaluation, and cascading effects. This was successfully
demonstrated through the development of the IoT Stack concept, which was included
in the core of the DRAF (see Section 3.1.1). This enabled efficient bi-directional linking
from the IoT device to the potential attack attribution and associated risks. Furthermore,
such modelling permits the generalisation of the concept being applied to any IoT domain,
ranging from smarthomes and connected vehicles to industrial smart factories and smart
city infrastructures. The same concept comprises the notion of the granular slicing of
the system into atomic components, identified as IoT objects. This approach grants the
possibility of the identification of the cascading effects due to the inter-dependencies of
object properties and their communications and coexistence in the same environment.

6.2. RQ2: Risk Calculation and Context Dependency

Quantification is the most crucial aspect in any RA system. Our methodology, applied
throughout various risk modelling steps (see Section 3.2), eliminated most common prob-
lems for quantification of the risk weight values, namely high dependency on the available
historical and current data. By utilising the initial expert values for risk weight allocation,
we could advance the development of the framework from a prototyping environment into
the real-life environment. The dynamic adaptation of the risk weights for the Receptors,
based on the individual and collective decision making feedback, permitted the fine-tuning
and validation of the DRAF in the real-life deployments (see Section 5.1). Furthermore, it
was observed that the expert values are context independent, as no calibration was required
for the utilised values in different smarthomes, where the actual smarthome setup was
different from one place to another.

6.3. RQ3: Limitations on Dynamic Risk Assessment

The automated decision making in the context of the RA is bound to the limitation of
the available data granularity of the underlying anomaly reporting, addressing entirely
RQ3. DRAF was proven to be efficient in the automation of the decision making when
quality reports were provided (see Section 5.1.4). For example, in cases when external
reports being fed into the system did not have granular data on the affected device, no



Electronics 2022, 11, 1123 28 of 31

automation of mitigation actions was achieved. This was due to the technical limitation
of attributing a specific device causing the anomaly observed throughout various RSs.
Another important factor is the risk perception of the actual end-users. The less the users
cared for cyber security and privacy risks, the more they were willing to compromise the
decision-making efficiency towards smarthome functionality features.

6.4. Challenges and Limitations

Any theoretical solution can only be validated with technical implementation and the
data quality. The original plan of this study was based on the availability of the IoT data to
be generated and collected directly from the real smarthome installations. Unfortunately,
this approach faced several obstacles, most importantly the ethical and privacy related re-
strictions when monitoring and analysing the network data. As a result, we had to readjust
the scope of our experiments and rely mostly on testbed environments to mitigate the im-
posed delays. We have faced the same source of another challenge regarding the validation
of expert values, originally planned to be performed during real-life trials by simulating
attacks. However, due to the ethical constraints (see Section 5.1.2), these experiments had
to be substituted by testbed simulations and voluntary IoT dataset collection.

Several technological challenges were also confronted, including, for instance, the
integration of the external threat intelligence and decentralised resistance directly into the
enhancement of the automated decision making of DRAF. The first technology targeted the
inclusion of the openly available data from the Internet to contribute to the identification of
risks and attribution to the known attacks. This was achieved by means of the development
of the sub-component responsible for feeding DRAF the external data and incorporating
known threats reporting into the BR decision making logic. On the same note, we have also
anticipated the decentralised resilience of the DRAF through reputation scoring integration,
enabling other instances of the system running in other smarthomes to share zero-day
threats and identify the misbehaviour of the IoT devices [33].

While the methodology utilised in our study already had a dedicated research question
on the limitations of DRAF’s application in the smarthome environment (Section 6.3), we
have also observed direct restrictions related to the study’s execution. More specifically, the
input data type and its granularity affects the quality of the automation aspects of the RA.
More granular reporting on the potential threats and anomalies is required for higher intel-
ligence and automation in the decision-making process. We have addressed this limitation
by developing various RS (described in detail in Section 4.2.2) as an attempt to normalise
incoming reports for DRAF. However, it remains subject to external technical factors.

7. Conclusions and Future Work

The presented solution is a complete framework that successfully demonstrates the
feasibility of decision-making automation in the RA domain in a dynamic environment,
such as a smarthome. As a background, the domain of RA has been introduced, highlight-
ing the five stages for its definition, followed up by traditional approaches on asset-centric
and threat-centric models, with newer models taking the hybrid approach and also includ-
ing user-centric concepts. Our framework leverages the RA by focusing on the attacks
and risk association through the addition of an ontology and a unique methodology on
binding elementary attacks or anomaly properties to risks. The full RA model has been
illustrated from several angles, including the ORM outlining the conceptual objects with
their relations and attributes, a technical flow diagram addressing each of the elements on
their utility, and describing their actual implementation from the development viewpoint.
The framework emphasises the interoperability with external reporting by proposing a
structured Application Programming Interface (API) for anomaly reports, which thereafter
are handled by DRAF’s own internal analysers. This provides flexibility to the types of
smarthome monitoring and its locality (e.g., monitoring on IoT devices themselves, whereas
our solution runs on the home gateway). Our approach has demonstrated that a unique
risk scoring can be developed to eliminate context dependency. While initial expert weight
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values are required, by introducing weight adjustment strategies to calibrate the values
to a given environment, we have shown that they are transferable to other environments
without per-site modifications. Thus, we can conclude that the approach utilised is context-
independent and generally applicable to any standard installation on a home gateway.
Furthermore, our theoretical model was implemented and tested in smarthome testbeds
and real-life environments in several European countries, demonstrating its potential for
technological adoption.

An analysis of the presented research questions was provided, evaluating correspond-
ing achievements and shortcomings. Our scientific contribution is notable in terms of the
successful illustration of the IoT Stack model, the dynamic adaptations of risk scores and
the automated decision making in RA for the smarthome environment. It is of the utmost
priority not only in academic research, but also for regular citizens to be provided with
the tools enabling them to understand and to have control over the IoT objects’ activities
in privacy-crucial environments, such as smarthomes. Furthermore, we generalised the
initialisation process of the DRAF deployment in the IoT-enabled ecosystem by advancing
the formation of the CTI system based on the risk scoring model. The demonstration and
validation of the automation aspects of our framework in real-life deployments indirectly
pushes forward the frontier of the general awareness of the citizens regarding cybersecurity
and privacy problems.

As a future work, we are currently working on an extension of the risk coverage
mapping, as already indicated in Section 5.1.5, by integrating a greater variety of external
reports, more specifically in the domain of the connected and automated vehicles. Future
work will put more emphasis on the privacy compliance aspects for the refinement of the
currently used risk model. This will also be achieved through already ongoing efforts in the
certification domain with the purpose of developing a standardised interfacing for easier
integration of any external anomaly reporting in the DRAF.
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Abbreviations
The following abbreviations are used in this manuscript:

AA Attack Attribution
AcP Active Profile
AG Aggregated Prioritisation
AP Alert Processor
API Application Programming Interface
BA Behaviour Analyser
BD Behaviour Deviation
BR Block Rules
CC Contextual Checker
CPU Central Processing Unit
CRL Current Risk Level
CTI Cyber Threat Intelligence
DH Decision Handler
DNS Domain Name System
DRAF Dynamic Risk Assessment Framework
GC Garbage Collector
HHM Hierarchical Holographic Modelling
ICT Information Communication Technology
IoT Internet of Things
IP Internet Protocol address
IRL Immediate Risk Level
JVM Java virtual machine
MA Mitigation Advisor
MAC Media Access Control address
ORM Object Role Modelling
OS Operating System
PB Profile Building
PC Payload Check
PD Personal Data
PH Profile Handler
RA Risk Assessment
RLE Risk Level Estimator
RS Reporting Strategy
SSL Secure Socket Layer
SWRL Semantic Web Rule Language
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