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Abstract: Experts in agriculture have conducted considerable work on rice plant protection. However,
in-depth exploration of the plant disease problem has not been performed. In this paper, we find
the trend of rice diseases by using the cascade parallel random forest (CPRF) algorithm on the basis
of relevant data analysis in the recent 20 years. To confront the problems of high dimensions and
imbalanced data distributions in agricultural data. The proposed method diminishes the dimensions
and the negative effect of imbalanced data by cascading several random forests. For experimental
evaluation, we utilize the Spark platform to analyze botanic data from several provinces of China in
the past 20 years. Results for the CPRF model of plant diseases that affect rice yield, as well as results
for samples by using random forest, CRF, and Spark-MLRF are presented, and the accuracy of CPRF
is 96.253%, which is higher than that of the other algorithms. These results indicate that the CPRF
and the utilization of big data analysis are beneficial in solving the problem of plant diseases.

Keywords: predictive accuracy; big data analysis; agricultural plant disease; cascade parallel random
forest algorithm

1. Introduction
1.1. Research Background and Meaning

The yield of agricultural products is considerably important for every country [1].
The Food and Agriculture Organization of the United Nations (FAO) predicted that the
demand for agricultural production will be increased by 70% to sustain the subsistence
of 9 billion people in 2050 [2]. As one of the most important major food sources, rice
sustains more than 50% of worldwide people and significantly contributed to global food
security [3]. Therefore, rice yield has a great impact on the economy and politics. Food
shortages hinder economic development and even lead to social unrest; thus, food security
is very important for developing countries [4]. On the other hand, although developed
countries have abundant agricultural product resources, the agricultural plant protection
should also be taken seriously [5], including crops yield prediction and botany disease
prevention. Therefore, it is significant to predict rice yield and diseases to maintain the
crop yield and ensure food security.

The analysis of the agricultural plant diseases that influence rice yields has motivated
the study of cascade parallel random algorithm based on big data. The search for agricul-
tural botany protection has become one of the widest computational problems in the big
data field. Plant diseases, such as rice planthopper, bacterial leaf blight, brown spot, leaf
smut, and rice leaf roller, are adverse to crop growth. The extent of plant diseases and insect
pests is related to the output of agricultural products, such that data on plant diseases and
insect pests should be efficiently dealt with urgently.
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1.2. Research Gap

The problems of high-dimensional and imbalanced data cannot be solved well in the
agricultural field [6]. On the one hand, the factors which influence the rice yield are discrete
and highly dimensional. The weights of influencing factors are complicated. On the other
hand, class imbalance problems usually exist in agricultural dataset.

1.3. Contribution

In our work, a cascade PRF (CPRF) algorithm is employed and deployed in big data
platform for solving the problems of rice diseases detection and rice yield prediction.

The proposed CPRF algorithm combines the advantages of task parallelism and data
cascade. For high dimensional and imbalanced agricultural data, CPRF achieves better
adaptability and accuracy than the compared algorithms.

On the basis of the aforementioned cascading–parallel optimization, the program-
ming tools Python 3.7.3 and Apache Spark 2.4 are used to develop parallel optimization
algorithms for detecting rice diseases and predicting rice yield. In experimental section,
the performance and accuracy of CPRF are evaluated according to the data collected in
past 20 years.

1.4. Organizations of the Paper

The rest of the paper is organized as follows. Section 2 reviews the background and
related work. Materials and methods are shown in Section 3. Section 4 gives PRF algorithm
optimization in two aspects. Experimental methods, results and evaluations are shown in
Section 5 with respect to the efficiency and accuracy. Finally, Section 6 gives the conclusion
and discusses the future work.

2. Background and Related Work
2.1. Background of Rice Yield Prediction

Rice yield prediction is critical for early warning of food insecurity, agricultural supply
chain management, and economic market [7]. Thus, the research on rice yield prediction
is rather important for ensuring food security. Rice yield depends on interaction between
temperature [8], precipitation [9], and plant diseases [10] as a continuum system [11].
Hence, they are much important inputs for the rice yield prediction system.

Numerous factors such as precipitation and temperature that affect rice yield, and ef-
fective monitoring of pests and diseases can improve rice yield in many provinces [12].
If disease monitoring and yield forecasting of rice is done well, it can bring about an
increase in rice yield by targeting and reducing pest and disease infestation along with
the season. The import and export trade of rice has a positive impact on reducing hunger
among people in poor areas.

On the basis of the CPRF algorithm, a new sequence-based rice yield predictor, named
CPRF-RY, is implemented. It regards the features of position-specific scoring matrixes,
weighted average temperature of the month, and predicted relative rainfall as model
inputs. Our results from a rice yield dataset and 17 validation datasets demonstrate that
CPRF-RY outperforms any other predictors and can be applied as the main predictor in the
agricultural field.

2.2. Related Work

There are three main models for rice yield prediction: (1) satellite-based models,
(2) statistical machine learning models, and (3) random forest-based models. These meth-
ods have their strengths and weaknesses. Satellite-based models denote AquaCrop pro-
cessing system for rice using crop monitoring [13], two types of vegetation related to crop
yields were collected by using satellite [14], then image processing algorithms were imple-
mented for predicting yield [15]. One study [16] used machine learning to process digital
cameras images of the crops, the research [17] used mathematical functions to present
a rice yield model. The paper [18] used a statistical machine learning model to predict
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both global warming and corn production, and the study [19,20] forecast the crop yield
with improvement by using machine learning techniques. The paper [21,22] enriched the
crop yield prediction by using statistical machine learning models. Although the former
algorithms have got relatively reasonable prediction results, the yield prediction accuracy
is not satisfied in rice field accompanied with many rice leaf diseases [23]. Because these
models depend on empirical knowledge and input parameters, they have difficulty in
adapting to high dimensional data of different regions [24]. Statistical machine learning
models, e.g., regression models and support vector machine regression algorithm [25],
construct models based on the data and use the models to predict crop yield [26]. Generally,
these models need to identify the large-scale and imbalanced features that have a significant
influence on rice yield, which increases the complexity of the prediction task. The random
forest-based model is inspired by efficiently running on large datasets and is a kind of arti-
ficial intelligence to solve feature expressions [27]. In the paper [28], although the authors
investigated the effectiveness of random forest for crop yield prediction, they just used
a simple data-intensive spatial interpolation to execute the prediction task and ignored
the rice leaf disease features. Moreover, compared with traditional satellite-based models
and statistical machine learning models, the cascade random forest method [29] is able to
address the imbalanced data, resolves the negative effect of data imbalance by connecting
multiple random forests in a cascade-like manner, and parallel random forest [30] perform
a dimension-reduction approach in the training process and a weighted voting approach in
the prediction process.

Former data processing algorithms have obtained relatively acceptable performance
for low-dimensional or balanced small-scale datasets [24]. However, when imbalanced or
large-scale data are encountered, these algorithms are always defective [30].

Given that agricultural plants are frequently attacked by several kinds of pests and
diseases [10], data of agricultural diseases, such as rice planthopper, rice leaf roller, bac-
terial leaf blight, brown spot, and leaf smut are large-scale and imbalanced. Under these
circumstances, processing these data with traditional algorithms is rather difficult [31].
For example, regarding the rice planthopper and rice leaf roller in southern provinces’
farmlands, temperature, precipitation, rice planthopper, rice leaf roller, fertilizer, plant-
ing area of agricultural products, and affected area of agricultural products are seven
important data sources. For a long time, the researchers from local institutes have tried
traditional algorithms, and put them into practice for several years [32], but these were
relatively unsatisfactory. Given that southern provinces’ rice dataset is extremely com-
plex, accompanied by the features of cross-regional character, high dimensionality [33],
and large volume, the performance and accuracy of former data processing algorithms are
significantly unsatisfactory.

Through the use of our method and algorithm, the recent result has proved that
they can help in the large-scale, comprehensive wholesale market of agricultural prod-
ucts, as well as in the big data analysis [28] of the extent of temperature, precipitation,
and product yield.

Determining how to decrease the plant diseases and insect pests in the entire country
is a difficult problem because they could be affected by many factors, including climate
changes, the number of beneficial birds, temperature, air, nutrients, soil condition, and rain-
fall and sunshine amount [34]. These influencing factors are collected from data sources
across provinces, forming a massive agricultural plant dataset.

The prediction of plant diseases [10] can be divided into prevalence prediction, oc-
currence period prediction, and loss prediction in accordance with different prediction
content and forecast quantity. The prediction time limit is more than 10 years, called
long-term prediction.

The factors for predicting the prevalence of plant diseases should be selected from the
host plant, pathogen, and environmental factors in accordance with the epidemic law of
the disease [35]. In addition, the cultivation conditions, the number of mediators, and the
growth and fertility status of the host plants ought to be considered [36].
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3. Materials and Methods
3.1. Problem Formulation

According to the above-mentioned actual problem, symbolic variables are defined
below, including input and output variables.

The initial training dataset is composed as Z = {(pi,tj), i = 1; 2; . . . ; P; j = 1; 2; . . . ; J},
where pi represents specific samples and tj represents the feature variable of dataset Z.
In conclusion, the training dataset initially contains P samples, and J feature parameters
exist in every sample, and the output variables are the accuracy of CPRFs.

3.2. Evaluation Indexes and Validation Procedure

Most experts have used six kinds of evaluation parameters, i.e., precision, recall, speci-
ficity, rice yield correlation coefficient (RYCC), F_β measure, and accuracy [29]. Likewise,
these parameters were utilized here to evaluate the performance of predictive models, as
depicted in the equations below. RYCC is a correlation coefficient between the observed
rice yield and predicted classes of samples, and F_β measure is the weighted harmonic
mean of recall and precision [26]. True positives (TPs) are correctly predicted increasing
yield of rice and quantities of insects and pests, and true negatives (TNs) are correctly
predicted decreasing yield of rice and quantities of pests and insects. False positives (FPs)
refer to the number of decreasing yields of rice that were falsely predicted as increasing.

The above six indexes are dependent. F_β and RYCC determine a prediction model’s
overall performance.

3.3. CPRF

CPRF means an ensemble and high-speed method [27] that combines parallel opti-
mization and independent current cascade trained decision trees. When precipitation and
temperature are suitable for rice growth, various pest and disease infestations may disrupt
the normal growth of rice, which in turn may affect the rice harvest.

Using CPRF, we can perform dimensionality reduction and de-imbalance operations
with little impact on the accuracy of the analysis, and use historical data to analyze and
predict the yield of rice, which in turn can guide the agricultural sector to formulate policies.
Besides, CPRF algorithm integrates the advantages of a hybrid approach combining data
parallel and task-parallel optimization by connecting multiple random forests in a cascade-
like manner.

CPRF’s architecture is made up of four parts: original training, random under sam-
pling, balanced training, and obtaining the majority and minority classes. Its architecture is
shown in Figure 1.

Figure 1. Architecture of CPRF.
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The application of CPRF consists of three stages: small random forest convergence
into integration forest, a prediction stage, and a training stage. In Figure 1, all dotted
arrows represent the workflows in the later training stage, and the solid arrows represent
the workflows in the prediction stage.

4. CPRF Algorithm Optimization

With the continual improvement in agricultural prediction accuracy for complicated
and large-volume data, an optimization method for the CPRF algorithm is proposed. First,
imbalance and dimension reduction approaches [20] are performed in the training process.
Second, random under sampling and balanced training are implemented. Then, several
minority classes are obtained. For example, pest’s activity scope is a kind of minority
class, which affects the harvest of agricultural plants. After regression and classification
optimizations, the prediction accuracy of the algorithm is evidently improved.

The CPRF algorithm is a hybrid ensemble random forest algorithm and a former
decision tree model. Original agricultural datasets are generated from j different training
data subsets by utilizing a bootstrap sampling approach, and j decision trees should be
built parallelly after the above subsets are trained [21].

Cascade Random Forest Algorithm

The construction steps of the CPRF algorithm are as follows.
Step 0. Preparation and initialization
For initialization, parameters CPRF←Ø; l←1 are set.
An empty string array Zj is created.
Step 1. Deciding whether to train CPRF and sampling j training subsets
j training subsets are sampled and classified, then whether to train CPRF is decided.

From the original training dataset Z, the algorithm samples out j training subsets in a
bootstrap sampling manner.

Step 2. Cascading each random forest and starting training
When the PRF is suitable for cascading [21], the training process can be started.

In every node’s splitting process, the gain ratio of each feature parameter is computed,
and the optimal one is chosen as the splitting node.

Step 3. Converging k trees into the PRF model, then calculating entropy(Zj) for the
target feature variable

The k-th trained trees are formed into a PRF algorithm defined as

H(P, θ j) = ∑k
i=1 hi(p, θ j); (i = 1; 2; . . . ; k), (1)

where hi(p; θj) represents a classical decision tree classifier, P stands for the input feature vec-
tors of the training dataset, and θj stands for an identically and independently distributed
random vector [23] that determines the growth direction and the process.

Step 4. Returning the accuracy of CPRFs
The algorithm returns the accuracy value of CPRF, which we can compare with

other algorithms.
The definition of the target variable’s entropy in the training subset Sa(a = 1, 2, . . . , cl)

is shown below.
Entropy(Sa) = ∑dv

b=1−pblog pb, (2)

In the upper equation, pb means b type value’s probability, and dv means every value
of variable in Sa.

Entropy(Zab) =
1
n ∑n

a=1 ∑v∈V(Zab)

∣∣∣S(v,a)

∣∣∣
|Sa|

Entropy(v(zab)), (3)

Zab means the b-th feature variable of Sab, b is a positive integer, and V(Zab) is the set
of feasible values of Zab. |S(v,a)| means the number of selected sample subsets S(v,a).
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Then, the information of self-split I(Zab) is calculated as follows.

I(Zab) =
1
n ∑n

a=1 ∑d2
b=1(−p(b, j) logp(b,j)

2 ), (4)

In the above formula, d2 means the quantity of different values of Zab, and p(b,j) means
the probability of the type of value b within all variables Zb. We can generate the second
averaging result through dividing by quantity n and then using entropy(Sa) to divide the
averaging result.

G(Zab) = Entropy(Sa)−
1
n ∑n

a=1 ∑v∈V(Zab)

∣∣∣S(v,a)

∣∣∣
|Sa|

Entropy(v(zab)), (5)

As most research has depicted, the gain ratio of the feature parameter is shown
as follows.

GR(Zab) =
G(Zab)

I(Zab)
, (6)

Given that the dimension of the training dataset is reduced to an adaptive scale, the
importance of each feature is computed in accordance with the parameters’ gain ratio value.
The importance of feature parameter Zab is shown as follows.

VI(Zab) =
1
n ∑n

a=1
GR(Zab)

∑b=1 GR(Zab)
, (7)

The detailed training processing procedures are shown in Algorithm 1.

Algorithm 1: Balanced dimension reduction in the cascading process

Smaj—The majority class sample set; Smin—The minority class sample set;
Input: z* stands for imbalance coefficient;
TPR*: Using the threshold of each trained PRF as the true positive rate;
iTree: the number of trees for growing;
minNode: represents the minimum node size to split.
Output: CPRF =

{
(PRF1, T1), (PRF2, T2), . . . ,

(
PRFj, Tj

)}
Steps:
Step 0: Initialization, assigned to initial value
CPRF←Ø; l←1;
Step 1: Create an empty string array Zj
Step 2: Decide whether the training array is a CPRF.
IF |Zmaj|< = z*×|Zmin|
Train a PRF, denoted as PRF1, on Zmaj∪Zmin with prescribed training parameters iTree and
|minNode|; assign an initial threshold T1; go to Step 10
END IF
Step 3: Train CPRFs.
While TRUE IF |Zmaj|>z*×|Zmin|, randomly sample a subset Zl from Zmaj such that
|Zl|=|Zmin|
else if |Zmaj|>(1/z*)×|Zmin|
then set |Zl|←|Zmaj|
else Go to Step 2
end if

Expand the formula
Step 4: Train a PRF on the balanced training subset Fl∪Fmin with parameters iTree

and minNode.
The decision function of the random forest classifier at n-th layer is as follows:

Hn(x) = sgn(
1
n∑n

i=1 PRFi(x)− Tn);
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Step 5: Construct Tn such that the TP rate of predictions of Hn(x) on Zmin
if all of the majority samples are zoomed out, which can be correctly predicted from

the current arrays Zmaj
then return CPRF←CPRF∪{(PRFn,Tn)}
n←n + 1
return CPRF = {(PRF1,T1), (PRF2,T2), . . . , (PRFj,Tj)}
end if
Step 6: After the upper training program, the classification accuracy of the algorithm

is described as follows.

CAb =
1
n ∑n

a=1
I(ha(x) = z)

I(ha(x) = z) + ∑ I(ha(x) = w)
, (8)

In the upper derivation, z means the value of correct class, and w means that is a value
of the error class. (w! = z).

After preliminary CPRF datasets are generated, the next step is training the agricultural
data. The detailed procedures are shown in Algorithm 2.

Algorithm 2: Using the CPRF algorithm to train the agricultural data in a cascading way

Input: Dj: the jth training dataset;
Tyield: the yield table of CPRF;
k: the number of important factors or variables selected by VI;
m: the number of the selected feature variables.

Output: Zj: a set of m important feature variables of Dj.
CPRFtrained: the trained CPRF model.

CPRF algorithm’s Accuracy—The accuracy of the ensemble cascade parallel random forests
algorithm
Steps:
Step 1: for each feature variable tij in Dj do
Calculate Entropy (tij) for each input feature factor
Calculate gain G(tij)←Entropy(Dj) – Entropy(tij);
Calculate split information

I(tij)← ∑
c2

a = 1
− p(a, j) log2(p(a,j))

obtain the gain ratio GR(tij)← G(tij)/I(tij)
end for
Step 2: Arithmetic and get the value of variable importance

VI(tij)←
GR(tij)

∑
M

a = 1
GR(t(i,a))

for feature variable tij

Step 3: Sort M feature variables in descending order by VI(tij)
put top n feature variables to Fj [0; . . . ; n − 1]
define c←0;
for j = n to M − 1 do

While c < (M – n) do
select tij from (M – n) randomly;

put tij to Fj[n + c];
c←c+1;

end while
end for
return Fj Return CPRFtrained
Step 4: Determine the accuracy of the CPRF algorithm in comparison with other algorithms.

Compared with the traditional RF algorithm, this concatenating and parallel dimen-
sion reduction algorithm guarantees that the J selected feature variables are optimal when
maintaining the same arithmetic complexity as the former algorithm.
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5. Experiments Results and Analysis

In this section, the experimental analysis and accuracy of the CPRF algorithm are
presented. We first show the selected datasets and discuss the experimental design. Next,
on the basis of several factors that influence the yield of agricultural products, the original
agricultural data are obtained from real-world farmland, and several algorithms are used.
Meanwhile, we compare CPRF with other methods. Lastly, the classification accuracy
of different algorithms is discussed. From the accuracy, we conclude that CPRF is the
optimal algorithm.

Plant diseases and insect pests have a great impact on crop yields, and a land severely
affected by diseases often faces no harvest or a small harvest. Therefore, we first conduct
research on three common diseases of rice. Through the collection and analysis of data,
such as pictures of diseased leaves, four random forest algorithms are used to predict,
analyze, and compare the affected area data. Graphs are utilized to present the results.

5.1. Selected Datasets

To verify the proposed algorithm and compare it with a previous decision tree predic-
tor, datasets collected by agricultural researchers from every year’s official statistician were
used as basic datasets. Eighteen datasets were collected. Among these datasets, the first
17 were utilized as test or training datasets, and the last one was utilized as an independent
validation dataset.

The independent validation dataset was collected and sorted by a local agricultural
department, namely, HuNan Province in China.

To confirm the accuracy and performance of the CPRF algorithm, two aspects of
validation dataset were used. The first one mainly documented the temperature of rice
fields in more than 15 years, and the second one mainly recorded the precipitation and
insects that have affected rice yield for more than 15 years.

Table 1 lists the statistics of the agricultural datasets.

Table 1. Compositions of training datasets and aspects of the validation dataset.

Training Dataset Agricultural Validation Dataset

Name No. of Diseases (numMin, numMaj) Name No. of Sequences (numMin, numMaj)

Train-dxs 19,550 (5619, 30,709)
Ytest95 95 (1938, 16,319)

RYtestset219 219 (6098, 21,996)

numMin is number of minority samples (pest and insect, manual intervention); numMaj is the number of majority
samples (temperature and precipitation).

5.2. Precipitation and Temperature

Precipitation and temperature are two important aspects affecting the yield of rice.
In dealing with these indicators that affect plant growth, the correlation between rice yield
with precipitation and temperature can be expressed by the following equation.

Y(i, j) =

√
Γ

2
((1− e−

−|x1(i)|
β )

α

+

(
1− e−

−|m∗x2(j)−k|
β )α

)
, (9)

The precipitation and temperature values of the town in nearly 15 years were compre-
hensively considered. These data were collected and stored by local agricultural researchers
yearly. The relationship between precipitation and temperature is depicted in Figure 2,
where X1 denotes the data of observed precipitation, X2 denotes the data of observed
temperature, and the z-axis represents the rice yield.
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Figure 2. Precipitation and temperature relations.

In the above formulas, X1 and X2 represent the key factors that affect the yield of
agricultural plants. Parameters m and k are variables that will change constantly in
accordance with local conditions.

In Figure 2, the zero position of X1-axis and X2-axis represent extreme weather con-
ditions, such as extreme drought and freezing conditions. Under such environmental
conditions, the rice yield is close to zero, although the probability that the rice yield equals
zero rarely occurs. The positive value of the X1-axis represents the rainfall in spring and
summer, and the negative value represents the rainfall in autumn and winter in one of the
county-level observations. The positive and negative values of the X2-axis approximately
represent the cycle of rice lifespans. The surface soil temperature of different county-level
observation points usually increases or decrease within the growth period. Suppose the
theoretical maximum yield of rice is regarded as 100%, in the season with good weather
conditions [12], due to the influence of plant diseases and insect pests, the maximum
obtainable harvest only accounts for approximately 70%. Therefore, to increase the rice
yield, the impact of various diseases and insect pests on plant growth should be studied
and predicted.

5.3. Experimental Design of Rice Diseases

CPRF algorithm variants by using different parameters have been computationally
studied. The algorithm follows the general yield of modern agriculture discussed above.

The collected data of relevant rice diseases and insect pests for at least 20 years are
from a southern province of China. Three kinds of common rice diseases and insect pests
are regarded as examples. Figure 3a–c are pictures of the three kinds of diseases, which are
bacterial leaf blight, brown spot, and leaf smut, respectively. A good rice harvest is difficult
to achieve if the leaves are affected by these diseases.
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Figure 3. (a) Rice leaves affected by bacterial leaf blight; (b) Brown spot; (c) Leaf smut.

The pictorial data above and other numerical data are integrated into structured and
unstructured databases.
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5.4. Advantages of CPRF Algorithm

The data of the rice field for the recent 20 years are trained with four kinds of algo-
rithms, namely, CPRF, CRF, Spark-MLRF, and random forest.

In CPRF, data communication operations exist in the process of allocating data and
training process. From the entire parallel training process of CPRF in the Spark cluster,
this cascade parallel optimization approach achieves a larger storage and better workload
balance than former algorithms.

Combining the abovementioned data of several historical rice diseases, at least four
algorithms are used to analyze and then compare with one another, aiming to find the best
algorithm. The comparison result is shown in Figure 4.

Figure 4. Comparison of four algorithms by using data of an affected area in 20 years.

The planting area of the province has been approximately 14 million to 16 million
hectares in the recent 20 years. Apart from policy influence and natural disasters, the farm-
land area has grown slowly in the past 20 years. The algorithm is used to analyze the
planting area and compare the result with the actual data. The comparison of 20 sets is
shown in Figure 5.

In the rice cultivation aspect, the percentage of the area affected by several diseases to
the entire area of farmland has been less than 3% in recent years. However, every percent
multiplied by the total rice yield is a large number, which also can save many people from
hunger. A comparison of the actual rate with the four algorithms’ prediction rates is shown
in Figure 6. The result indicates that the CPRF algorithm’s prediction is the closest to the
actual rate.
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Figure 5. Planting area comparison of actual value and CPRF prediction in 20 years.

Figure 6. Comparison of four algorithms by using the proportion of affected area.

5.5. Efficiency Comparison for Different Algorithms

The algorithms’ efficiency is very important, because the data of rice or wheat crops
is huge, and the farmers want the proper advice in a short time, they must work for a
long time in farmland and they usually spend little patience on waiting the computing
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results, so the efficiency is quite important. CPRF algorithm has several features as follows
1. Reliability and high fault tolerance. The system crash on one server will not affect
other servers. In the CPRF distributed computing system, more machines can be added
if needed. 2. Scalability, In the CPRF distributed computing system, more machines can
be added as needed. 3. Flexibility. CPRF system can easily install, implement, and debug
new services. 4. Fast calculation speed. CPRF distributed computer system can have the
computing power of multiple computers, making it faster than other systems. 5. Openness.
Since CPRF is an open system, the service can be accessed locally and remotely. 6. High
performance, compared with a centralized computer network cluster, CPRF system can
provide higher performance and better performance.

The parameter “n_job” refers to the number of processes that can be used. When
n_job equals two, the prediction time, which can also be named train_time, is 44.76 s. As
n_job increases, the train_time of other algorithms may decrease at first and then increase,
as shown in Figure 7.

Figure 7. Train_time along with the job quantity of CPRF and other algorithms.

The CPRF algorithm copes with the same agricultural condition. The train_time of
the prediction process decreases as n_job increases. However, when n_job is more than 12,
train_time is basically consistent, as demonstrated in Figure 7. From the above experiment,
the advantages of the CPRF algorithm can be clearly depicted.

5.6. Average Train_Time Comparison for Different Algorithms

To verify the accuracy of CPRF, several experiments are performed for the random
forest, CRF, Spark-MLRF, and CPRF algorithms. With the different data volumes and
qualitative running times, Figure 8 elucidates the comparison of the four algorithms.
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Figure 8. Average running time of the different algorithms.

Agricultural big data server clusters in a certain area are used for calculations [14], and the
pros and cons of the algorithms can be judged by average running time and accuracy.

As depicted in Figure 8, by using the agricultural datasets for numerous experiments,
which are performed to compare the time consumption of CPRF with those of random
forest, CRF, and Spark-MLRF, the results show that the CPRF algorithm uses the least
average running time.

In traditional classification learning methods, classification accuracy is often used as
an evaluation index, but this index is unsuitable for unbalanced datasets. The unbalanced
dataset uses F_β measure and RYCC as evaluation indicators. These two indicators come
from the confusion matrix, as shown in Table 2. As explained in Section 5.2, TP represents
the number of positive samples, TN represents the number of negative samples, and FN and
FP represent the samples whose judgment errors are positive and negative, respectively.

Table 2. Confusion matrix.

Classification Predict Positives Predict Negatives

Actual positives True Positives (TP) False Negatives (FN)
Actual negatives False Positives (FP) True Negatives (TN)

F_βmeasure is a classification evaluation index that comprehensively considers recall
and precision, and (+) means that the larger, the better:

F_β measure=
n
(
1 + β2) ∗ recall ∗ precision
β2 ∗ recall + precision

, (10)

In the above formula, precision is the accuracy of the search, recall is the ratio of the
total search, and β takes the value [0, ∞].

F_β measure can be used to investigate the trade-off between recall and accuracy.
When β < 1, the role of precision is emphasized; when β > 1, the role of recall is emphasized.
The definition of precision and recall is as follows:

precision = (TP)/(TP + TP), recall = TP/(TP + FN).
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The RYCC value represents the geometric mean of the classification accuracy of the
positive class and the classification accuracy of the negative class. (+) means that bigger is
better, and its definition is as follows:

RYCC(+) =

√
TP

TP + FP
∗ TN

TN + FP
, (11)

The metric RYCC is employed to evaluate the classification accuracy according to the
observed classes and predicted classes in test dataset, while maintaining the classification
accuracies of the negative and positive classes. That is, the value of RYCC is the largest
only when the classification accuracies of the negative and positive classes are both high.
This study uses RYCC and F_β measure to deal with the overall imbalanced classification
performance of the dataset.

5.7. Average Execution Time of Different Datasets

More kinds of pests and diseases are acquired for different plant diseases and insect
pests’ datasets by using the CPRF algorithm in the case of different numbers of computing
nodes to discover the pattern by using related experiments. The results show that the
speedup data decrease with the increase in the number of slave nodes, as illustrated
in Figure 9.

Figure 9. Average execution time of CPRF with different scales of agricultural plant diseases.

Figure 9 depicts the calculation results of the datasets of seven common plant diseases
and insect pests, namely, bacterial leaf blight, brown spot, leaf smut, rice leaf roller, rice
planthopper, and other plant diseases. Given the benefits of cluster environment and
cascade parallel algorithm, the computational speed of CPRF tends to increase in the exper-
iments. At the same time, with the increase in computing slave nodes (physical machine or
virtual machine) in the server cluster, the average calculation time decreases slowly.

5.8. Accuracy Comparison of Different Algorithms

Most of the experiments are performed on Python and Spark environments, which are
built of a master node and more than 200 slave nodes. Every node is executed in Centos 7.3
and has one Core (i7) Quarter-Core 2.50 GHz CPU and 32 GB memory.
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Plant growth data in several regions are used. Under the same precipitation and
temperature, the four algorithms are used to predict the occurrence of six different pests
and diseases. The runtime of various algorithms is determined in the calculation process.
The four prediction results are compared with actual data to determine the accuracy of the
algorithms. We evaluate the computation accuracy of CPRF via comparison with random
forest, CRF, and Spark-MLRF.

The accuracy value equals to prediction value of the algorithms dividing the actual
value, the prediction accuracy of different algorithms is described as follows.

Accuracyprediction = 1−
∣∣∣∣∣1− Value(trained CPRF)

Value(actual yield)

∣∣∣∣∣, (12)

The proportion of the correct prediction is the accuracy. Table 3 presents the accuracy
comparison of these algorithms.

Table 3. Comparison of CPRF with other algorithms.

The Algorithms Accuracy Value

CPRF 96.253%

CRF 92.321%

Spark-MLRF 86.159%

Random Forest 75.072%
Non-Linear 63.084%

Table 3 demonstrates that the highest accuracy value among the different random
forest algorithms, which is highlighted in bold face, comes from the CPRF algorithm.
The second highest value is obtained by the PRF algorithm, which also uses distribution
algorithms. The third one is generated by Spark-MLRF, which uses machine learning
methods. The lowest value is from the RF algorithm, which exhibits the largest forecast
error.

The paper also compares the prediction accuracy with that of the cited references, and
the comparison results are shown in the following Table 4.

Table 4. Comparison of paper with cited literatures.

The Algorithms Accuracy Value Cited Reference

CPRF 96.253% —-

Quad-Pol RadarSAT-2 and
Random Forest 95.94% [37]

CNN Optimization 94.27% [38]

BORO Rice Yield Estimation 94.2% [39]
Rice Production using

Improvised NDVI Threshold 93.72% [40]

6. Conclusions

Predicting and increasing agricultural plant yield are difficult problems for many
organizations nowadays. The use of big data technology and CPRF algorithm to analyze
plant diseases and insect pests is relatively correct and suitable. This paper proposes a
CPRF algorithm to analyze the agricultural yield problems.

We believe that this study provides suitable algorithms and tools to explore the
enormous amount of plant influencing factors in complex networks. In this dissertation,
the CPRF algorithm was implemented in an agricultural area with big data. The accuracy of
the algorithm was improved by adopting key dimensions and parallel methods. A cascade
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and weighted voting approach was constructed to find the least rice disease and highest
yield in the agricultural field, which was effective. From the experiment, different results
could be obtained by adjusting various parameters. The CPRF algorithm was more accurate
than several other algorithms, which were utilized to solve the problems.

The limitation of this paper is that its model training process relies on offline data
training, and the data needs to be collected and pre-processed manually. The original
data collection may be optimized with semi-supervised learning. According to the present
experiment, the method in this paper is better suited for the local application in agricultural
field. With the CPRF technology optimized and increasing accumulation data, the CPRF
algorithm based on big data is gradually formed.
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Abbreviations
The nomenclature and abbreviation list.

Num Abbreviation Full Name
1 RF Random Forest
2 PRF Parallel Random Forest
3 CPRF Cascade Parallel Random Forest
4 MLRF Machine Learning Random Forest
5 kNN K-Nearest Neighbor
6 RYCC Rice Yield Correlation Coefficient
7 CPRF-RY Cascade Parallel Random Forest-Rice Yield

References
1. Abbaspour-Gilandeh, Y.; Molaee, A.; Sabzi, S.; Nabipur, N.; Shamshirband, S.; Mosavi, A. A combined method of image

processing and artificial neural network for the identification of 13 Iranian rice cultivars-agronomy. Agronomy 2020, 10, 117.
[CrossRef]

2. Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm.
Agron. Sustain. Dev. 2016, 36, 27. [CrossRef]

3. Chu, Z.; Yu, J. An end-to-end model for rice yield prediction using deep learning fusion. Comput. Electron. Agric. 2020, 174,
105471. [CrossRef]

4. Tian, L.; Wang, C.; Li, H.; Sun, H. Yield prediction model of rice and wheat crops based on ecological distance algorithm. Environ.
Technol. Innov. 2020, 20, 101132. [CrossRef]

5. Barzin, R.; Pathak, R.; Lotfi, H.; Varco, J.; Bora, G.C. Use of UAS Multispectral Imagery at Different Physiological Stages for Yield
Prediction and Input Resource Optimization in Corn. Remote Sens. 2020, 12, 2392. [CrossRef]

6. Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A Comprehensive Review of Crop Yield Prediction Using Machine
Learning Approaches With Special Emphasis on Palm Oil Yield Prediction. IEEE Access 2021, 9, 63406–63439. [CrossRef]

7. Peng, B.; Guan, K.; Zhou, W.; Jiang, C.; Frankenberg, C.; Sun, Y.; He, L.; Köhler, P. Assessing the benefit of satellite-based
Solar-Induced Chlorophyll Fluorescence in crop yield prediction. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102126. [CrossRef]

8. Shin, J.-Y.; Kim, K.R.; Ha, J.-C. Seasonal forecasting of daily mean air temperatures using a coupled global climate model and
machine learning algorithm for field-scale agricultural management. Agric. For. Meteorol. 2020, 281, 107858. [CrossRef]

9. Khosla, E.; Dharavath, R.; Priya, R. Crop yield prediction using aggregated rainfall-based modular artificial neural networks and
support vector regression. Environ. Dev. Sustain. 2020, 22, 5687–5708. [CrossRef]

10. Vimala, S.; Merlin, N.R.G.; Ramanathan, L.; Cristin, R. Optimal Routing and Deep Regression Neural Network for Rice Leaf
Disease Prediction in IoT. Int. J. Comput. Methods 2021, 18. [CrossRef]

11. van Kloppenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review.
Comput. Electron. Agric. 2020, 177, 105709. [CrossRef]

http://doi.org/10.3390/agronomy10010117
http://doi.org/10.1007/s13593-016-0364-z
http://doi.org/10.1016/j.compag.2020.105471
http://doi.org/10.1016/j.eti.2020.101132
http://doi.org/10.3390/rs12152392
http://doi.org/10.1109/ACCESS.2021.3075159
http://doi.org/10.1016/j.jag.2020.102126
http://doi.org/10.1016/j.agrformet.2019.107858
http://doi.org/10.1007/s10668-019-00445-x
http://doi.org/10.1142/S0219876221500146
http://doi.org/10.1016/j.compag.2020.105709


Electronics 2022, 11, 1079 18 of 19

12. Chen, S.; Jiang, T.; Ma, H.; He, C.; Xu, F.; Malone, R.W.; Feng, H.; Yu, Q.; Siddique, K.H.; Dong, Q.; et al. Dynamic within-season
irrigation scheduling for maize production in Northwest China A Method Based on Weather Data Fusion and yield prediction by
DSSAT. Agric. For. Meteorol. 2020, 285, 107928. [CrossRef]

13. Veerakachen, W.; Raksapatcharawong, M. RiceSAP: An Efficient Satellite-Based AquaCrop Platform for Rice Crop Monitoring
and Yield Prediction on a Farm- to Regional-Scale. Agronomy 2020, 10, 858. [CrossRef]

14. Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2020, 101, 891–896. [CrossRef]
15. Sun, S.; Li, C.; Paterson, A.H.; Chee, P.W.; Robertson, J.S. Image processing algorithms for infield single cotton boll counting and

yield prediction. Comput. Electron. Agric. 2019, 166, 104976. [CrossRef]
16. Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. Evaluation of water status of

genotypes to aid prediction of yield on sodic soils using UAV-thermal imaging and machine learning. Agric. For. Meteorol. 2021,
307, 108477. [CrossRef]

17. Esfandiarpour-Boroujeni, I.; Karimi, E.; Shirani, H.; Esmaeilizadeh, M.; Mosleh, Z. Yield prediction of apricot using a hybrid
particle swarm optimization-imperialist competitive algorithm- support vector regression (PSO-ICA-SVR) method. Sci. Hortic.
2019, 257, 108756. [CrossRef]

18. Aylak, B.L. Artificial Intelligence and Machine Learning Applications in Agricultural Supply Chain: A Critical Commentary.
Fresenius Environ. Bull. 2021, 30, 8905–8916.

19. Mariano, C.; Mónica, B. A random forest-based algorithm for data-intensive spatial interpolation in crop yield mapping. Comput.
Electron. Agric. 2021, 184, 106094. [CrossRef]

20. Wei, Z.-S.; Yang, J.-Y.; Shen, H.-B.; Yu, D.-J. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.
IEEE Trans. Nanobiosci. 2015, 14, 746–760. [CrossRef]

21. Chen, J.; Li, K.; Tang, Z.; Bilal, K.; Yu, S.; Weng, C.; Li, K. A Parallel Random Forest Algorithm for Big Data in a Spark Cloud
Computing Environment. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 919–933. [CrossRef]

22. da Silva, J.C.; Medeiros, V.; Garrozi, C.; Montenegro, A.; Gonçalves, G.E. Random forest techniques for spatial interpolation of
evapotranspiration data from Brazilian’s Northeast. Comput. Electron. Agric. 2019, 166, 105017. [CrossRef]

23. Shabani, S.; Samadianfard, S.; Sattari, M.T.; Mosavi, A.; Shamshirband, S.; Kmet, T.; Várkonyi-Kóczy, A.R. Modeling pan
evaporation using Gaussian process regression K-nearest neighbors random forest and support vector machines. Atmosphere
2020, 11, 66. [CrossRef]

24. Lulli, A.; Oneto, L.; Anguita, D. ReForeSt: Random Forests in Apache Spark. Artif. Neural Netw. Mach. Learn. 2017, PT II 10614,
331–339.

25. Ahmed, A.M.; Deo, R.C.; Feng, Q.; Ghahramani, A.; Raj, N.; Yin, Z.; Yang, L. Deep learning hybrid model with Boruta-Random
forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. J. Hydrol. 2021, 599,
126350. [CrossRef]

26. Lin, W.; Wu, Z.; Lin, L.; Wen, A.; Li, J. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis. IEEE Access 2017,
5, 16568–16575. [CrossRef]

27. Xu, M.; Chen, H.; Varshney, P.K. Dimensionality reduction for registration of high-dimensional data sets. IEEE Trans. Image
Process. 2013, 22, 3041–3049.

28. Wang, H.; Zhu, Y.; Li, W.; Cao, W.; Tian, Y. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with
RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens. 2014, 8,
83674. [CrossRef]

29. Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine learning for large-scale
crop yield forecasting. Agric. Syst. 2020, 187, 103016. [CrossRef]

30. Romeiko, X.X.; Guo, Z.; Pang, Y.; Lee, E.K.; Zhang, X. Comparing Machine Learning Approaches for Predicting Spatially Explicit
Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability 2020, 12, 1481. [CrossRef]

31. Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z. Comparative assessment of environmental variables and machine learning algorithms for
maize yield prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [CrossRef]

32. Feng, P.; Wang, B.; Liu, D.L.; Waters, C.; Xiao, D.; Shi, L.; Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid approach
using a biophysical model and machine learning technique. Agric. For. Meteorol. 2020, 285–286, 107922. [CrossRef]

33. Grace, R.K.; Induja, K.; Lincy, M. Enrichment of Crop Yield Prophecy Using Machine Learning Algorithms. Intell. Autom. Soft
Comput. 2022, 31, 279–296. [CrossRef]

34. Wen, G.; Ma, B.-L.; Vanasse, A.; Caldwell, C.D.; Earl, H.J.; Smith, D.L. Machine learning-based canola yield prediction for
site-specific nitrogen recommendations. Nutr. Cycl. Agroecosyst. 2021, 121, 241–256. [CrossRef]
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