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Abstract: Control intelligence is a typical field where there is a trade-off between target objectives, and
researchers in this field have longed for artificial intelligence that achieves the target objectives. Multi-
objective deep reinforcement learning was sufficient to satisfy this need. In particular, multi-objective
deep reinforcement learning methods based on policy optimization are leading the optimization of
control intelligence. However, multi-objective reinforcement learning has difficulties when finding
various Pareto optimals of multi-objectives due to the greedy nature of reinforcement learning. We
propose a method of policy assimilation to solve this problem. This method was applied to MO-V-MPO,
one of preference-based multi-objective reinforcement learning, to increase diversity. The performance
of this method has been verified through experiments in a continuous control environment.

Keywords: reinforcement learning; multi-objective optimization; real-time environment

1. Introduction

An intelligent system refers to a type of system that, imitating the human capability to
solve complex problems by means of information processing, learns to self-adapt under
indeterminate and uncertain environments. The main features of an intelligent system
include uncertainty management, self-adaption and self-training, and a proclivity for
optimization. The technique that exploits intelligent systems to prompt machines to
produce optimized results adapted for the given environment is called intelligent control.
Reinforcement learning has been prevailing in the field of intelligent control [1,2]. While
the conventional methods require experts to search for optimized models, reinforcement
learning effectively designs a reward function to resolve the issue [3–5]. Nonetheless, in
spite of its excellency at finding local optima, it suffers from the difficulty of searching for
multi-objective solutions that balance trade-offs for three reasons.

First, designing a reward function for the problems with the trade-offs is highly
complicated [6–8]. In general, the reward function of reinforcement learning is designed by
experts with domain knowledge. Even if an expert has excellent knowledge in the field, it
is almost impossible for him to design a reward function [9–11] that adapts to the growing
complexity as the number of objective increases without spending a lot of resources and
time. This requires a multi-objective reinforcement learning algorithm that can solve the
multi-objective problem.

Second, it is difficult to find solutions in diversity due to the greedy characteristics of
reinforcement learning [12–14]. Reinforcement learning agents generally continue learning
in a way that is easier to obtain rewards, so in the case of multiple objectives, they are more
biased toward specific objectives that tend to return better rewards. As a result, even if the
reward function is distributed evenly in weight, it becomes aligned to a specific objective
compared to the even Pareto distribution.

Third, reinforcement learning suffers from low stability [15–17]. Reinforcement learn-
ing collects data by interacting with the environment instead of relying on pre-built data.
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Therefore, even if learning is performed with the same reward function and parameters,
the agents at the end have differences in their performance. As a result, even with appro-
priate parameters or reward functions, if agents have been trained concurrently to find the
multi-objective parato solutions, some agents might lag behind with respect to the original
performance. As a result, it can be a difficult task to establish a smooth Pareto front.

We propose a method of policy assimilation to solve the addressed problems. This
method divides the learning into four sections, evaluates the performance of each section,
and replaces the policy of dominated agents with those of non-dominated agents. This
method allows each agent to find the closest non-dominated agent with a lower objective
preference and to copy it in order to secure stability in the agent’s diversity and performance
in the multi-objective program. Our method was applied to MO-V-MPO to validate its
performance, which is the latest multi-objective reinforcement learning algorithm proposed
by Google DeepMind, and it currently exhibits excellent performance [18]. We solved the
previously addressed problems by combining the proposed method and MO-V-MPO.

2. Related Works
2.1. Reinforcement Learning

Reinforcement learning is one sort of machine learning, for which the main objective is
to find optimal policy for the agent [15,17,19]. Reinforcement learning is the only technique
among many other machine-learning-oriented methodologies that collects and learns data
by interacting with the environment both directly and indirectly. It is thus qualified for
adapting to uncertain environments where securing a sufficient amount of data is not
guaranteed, which is a big blow, especially to algorithms that require a pre-built set of
data. Reinforcement learning utilizes the Markov decision process (MDP), a crucial step
that shapes its ability to adapt. The MDP consists of four core elements, S ,A,P , and
R [16,20,21]. At each timestamp t, an agent observes a set of states st ∈ S and commences
a set of actions at ∈ A that determines the reward rt ∼ R(st, at) and the subsequent state
s(t+1) ∼ P(st, at). An MDP-defined reinforcement learning algorithm, unlike supervised
learning algorithms, is not explicitly corrected for its undesirable behaviors; its behavioral
tendency is only indirectly influenced by its reward function.

Reinforcement learning performs training via two-fold steps of exploration and ex-
ploitation [22,23]. During exploration in the early stage of training, the agent attempts
actions randomly. As mentioned earlier, since the data must be collected by the algo-
rithm itself, which action produces high expected rewards is unknown at the beginning.
Therefore, the random actions by the agent are intended to provide diversity to the policy
convergence, contributing to discovering the global optima. During exploitation, on the
other hand, it induces the agent to choose actions with the highest expected rewards. It is
mostly conducted in the later stage, when the data have been secured sufficiently, in order
to help the agent suit the optimal policy convergence. Reinforcement learning, overall, is a
proper combination of exploration and exploitation [15,24].

2.2. Multi-Objective Reinforcement Learning (MORL)

MORL is a technique to handle multi-objective (MO) problems using reinforcement
learning (RL). Since many real-world problems have multiple goals to achieve and con-
straints to maintain, it is useful to regard them as MO optimization problems, but in the
field of RL, simple reward scalarization (RS) is dominant. MORL is either single-policy
or multiple-policy-based. The single-policy version finds the optimal policy in a given
RS, in general by scalarizing every reward in the form of a weighted sum. On the other
hand, the multiple-policy version is a method to approximate the Pareto front to find
diverse policy sets. While a simple RS technique tends to be useful in the simple-policy
MORL, it is often difficult to find diverse policies to sufficiently approximate the Pareto
front with it. Carefully adjusting each reward’s weight does not contribute significantly
to searching various policies. However, the recently published studies on multi-objective
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MPO (MO-MPO) and MO-V-MPO show that these techniques overcome the shortcomings
of RS and can thus be trained with diverse policies [18].

2.3. Maximum a Posteriori Policy Optimization (MPO) and V-MPO

MPO [25] is one of the recently released off-policy RL algorithms of the “RL as in-
ference” family. The purpose of the general RL algorithms is to find out which action
to choose to maximize future rewards, but the MPO aims to change its perspective and
estimate which action is likely to be selected when the future reward is maximized. MPO
has the advantage of using expectation-maximization (EM) to increase sample efficiency
and lower the variation of expected returns. E-step estimates the distribution of the action,
and M-step fits the policy.

V-MPO [26] is the on-policy variant of MPO, which was originally an off-policy RL
algorithm. It uses a state-value function instead of an action-value function that uses MPO.
Due to the low variance of the expected return, it shows the relatively stable performance
compared to the precedent algorithms, such as IMPALA [27].

Lπ(θ) = − ∑
s,a∼D̃

ψ(s, a)logπθ(a|s), ψ(s, a) =
exp( Atarget(s,a)

η )

∑s,a∼D̃ exp( Atarget(s,a)
η )

, (1)

Equation (1) shows the policy loss of V-MPO. It is similar to the conventional policy
loss of policy gradient algorithms such as PPO and IMPALA, but there are two differences.
First, it uses only the top 50% of the dataset(D̃) in terms of the advantage. Second, it
augments the advantage (Atarget) by temperature η:

Lη(η) = ηϵeta + ηlog

 1
|D̃| ∑

s,a∼D̃

exp
(

Atarget(s, a)
η

), (2)

η is a trainable parameter, and Equation (2) shows its loss. η augments Atarget, and
ϵη regulates Atarget to maintain a certain range of Atarget. Even in the cases of extremely
low Atarget, often because of rare rewards, regulation of η adjusts the value of Atarget

with respect to ϵη to a sufficient degree to improve the policy. It is comparable to the
advantage standardization (normalization by mean and SD), mostly used in the algorithms
such as PPO [28], but the fact that it does not presuppose a certain distribution makes it
more flexible.

2.4. Multi-Objective MPO (MO-MPO) and MO-V-MPO

MO-MPO and MO-V-MPO are the variants of MPO and V-MPO to apply to multi-
objective problems. (V-)MPO trains a parameter η to augment the Q-value for MPO
(advantages for V-MPO), and use ϵη to regulate it. If ϵη is increased, the augmented values
will be increased, and vice versa. MO-(V-)MPO extends this concept to multiple objectives
by letting each objective contain its η and corresponding ϵη . In this setting, each ϵη acts as
a preference. We can assign a higher ϵη for an important objective and a low ϵη for a less
important objective or penalty.

In usual MO environments, simple reward scalarization (RS) can only consider the
amplitude of reward, but it is difficult to consider distributions or frequency of Q (action-
value) and A (advantage). Since it is difficult to consider the changes of reward distributions
throughout the learning progress, it is difficult to train for diverse policies using RS. On the
other hand, MO-(V-)MPO can adjust η with regard to the training environment, allowing
the augmented Q and A to adjust themselves according to each objective’s ϵη . Therefore, it
can train more diverse policies than RS.
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3. Proposed Method

The main idea of proposed policy assimilation is to replace the policy of an agent with
dominated performance with that of an agent with non-dominated performance. To this
end, our method proceeds in three major steps sequentially (Figure 1, Algorithm 1).

Figure 1. Graphical representation of the main processes in policy assimilation. (a) Policy Evaluation.
(b) Policy Transfer. (c) Retraining.

Algorithm 1 Policy assimilation

Require: Set of Agents Π

Require: Maximum training step tmax

Require: Policy transfer rate α = 0.25

1: for t← 1, tmax do

2: if t mod α · tmax == 0 then

3: POLICYEVALUATION(Πt)

4: Πt+1 ← POLICYTRANSFER(Πt)

5: else

6: Πt+1 ← PREFERENCE-BASED MULTI-OBJECTIVE RL(Πt) ▷ e.g., MO-V-MPO

7: end if

8: end for

The first is policy evaluation, which is performed upon all the agents every quarter
of the total learning time. Based on its result, it is determined whether each agent has
been dominated.

The second is policy transfer, which is applied only to dominated agents. If the agent is
dominated, it will comply with the policy of the nearest non-dominated agent. The distance
is determined by the differences in preference of non-dominated agents. For example,
assuming that the preference is two dimensional, suppose there is a dominated agent with
the pair of preferences [10, 90] and non-dominated agents with [20, 80], [70, 30], and [50, 50],
respectively. Then, the dominated agent will abide by the policy of the agent possessing
the preference [20, 80], which has the smallest difference of [10, 90]. If the differences in
pairs of preferences are the same (e.g., [5, 95], [15, 85]), the preference moves closer to
the center, which is [50, 50]. If all the agents are non-dominated, no agent’s policy will
change. These procedures can raise the stability of reinforcement learning performance in
our method. Even if a particular agent has shown incompetent results at the beginning of
learning, it can partially improve. It is worth mentioning that since MO-V-MPO is one sort
of reinforcement learning, it can also be trained toward a somewhat biased direction that
satisfies certain objectives. However, the treatment of moving towards the center under the
situation of identical preference differences will attenuate this tendency (Algorithm 2).



Electronics 2022, 11, 1069 5 of 8

Algorithm 2 Policy transfer

Require: Set of Agents Π

Require: Center Preference c← [50, 50]

Require: Metric Function (e.g., Euclidean distance) DISTANCE

1: P, Q← FAST NON-DOMINATED SORTING(Π) ▷ P: non-dominated agents, Q:

dominated agents

2: for q ∈ Q do

3: dmin ← ∞

4: for p ∈ P do

5: d← DISTANCE(q.pre f erence, p.pre f erence)

6: if dmin > d then

7: dmin ← d

8: po ← p

9: else if dmin == d then

10: d1 ← DISTANCE(c, p.pre f erence)

11: d2 ← DISTANCE(c, po.pre f erence)

12: if d1 < d2 then

13: po ← p

14: end if

15: end if

16: end for

17: q.policy← po.policy

18: end for

19: return Πnew ← P ∪Q

Lastly, the retraining step is the process of training again after the policy is transferred.
Each agent maintains the existing preference regardless of whether or not the policy has
been transferred and repeats the training. The learning direction according to the preference
is then maintained, so the agent performs learning toward each objective, resulting in more
stable performance, while increasing the agent’s diversity.

4. Experiment and Results

We used a continuous control environment to prove the performance of the proposed
method: Lunar Lander. The main goal of an agent in this environment is to land quickly
and safely on the destination point of the moon. If the agent is alive until the end of the
episode, it receives 100 points, and if it perishes, it receives −100. When the agent arrives
at the destination with the speed of zero, it receives an additional 100 to 140 points, the
difference being that an extra 10 points are given per leg that has made a contact with the
ground. In addition, a penalty of −0.3 points per frame is given if the center engine runs at
50% of the maximum thrust, −0.03 points for the left and right engines. The engines are
only active when they run at above 50% of the maximum thrust, and the penalty points
increase exponentially with respect to the engine thrust until 100%, where they double. The
hyper parameters of MO-V-MPO for our experiments are described in Table 1.
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Table 1. Hyper parameters for MO-V-MPO.

Hyper Parameter Contents

Optimizer Adam
Learning rate 10−4

batch size 256
λ 0.99
γ 0.99

Initial η 0.01

The configuration of Lunar Lander promotes the strategy of starting with a slow initial
speed and arriving at the destination as safely as possible in order to earn the highest score
possible. However, we added the time penalty to convert it to a multi-objective problem.
The time penalty point was −0.1 per step, and the maximum number of steps was 300.
Therefore, the agent had to consider energy and time efficiencies at the same time. We
set the preference to change from [0, 1] to [1, 0] with steps of 0.02 and rounded up and
converted to whole numbers all the resulting rewards to manifest the outcome more clearly.
Since the environment is a continuous control problem, we formed each group of proximal
values into single value to determine the sectional densities. This processing allowed the
result from each agent to be transcribed to a specific discrete value to demonstrate how
well the agents were distributed (Figure 2).

Figure 2. The black dots form the Pareto front we located throughout the experiment, and the blue
circles portray by their sizes the numbers of solutions in proximity, indicating that larger circles
contain more solutions. (a) is the conventional MO-V-MPO distribution, and (b) is the proposed
method’s distribution.

Figure 2 shows that our method had more evenly distributed results than the conven-
tional methods. In particular, it prevailed over the precedent reinforcement learning-based
multi-purpose algorithms in securing diversity. This difference is particularly observable
in the range of −50 to −40 for the time penalty and −30 to −25 for the energy penalty.
Similarly to other reinforcement learning algorithms, the training was not processed well in
the sectors where the preferences of the two objectives overlapped, although MO-V-MPO
found a few solutions in that case. While the solutions biased toward energy and time
appeared mostly for both algorithms, ours produced more evenly distributed results. We
repeated the same experiment 10, 50, and 100 times for the sake of fairness and compared
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the numbers of sets that reached the time penalty in the range of−50 to−40 and the energy
penalty in the range of −30 to −25. The overall results are in Table 2.

Table 2. Comparison on the number of agents that reached the contact point.

MO-V-MPO MO-V-MPO with Policy
Assimilation

10 times 1 1
50 times 1 4

100 times 2 7

5. Conclusions

In this paper, we proposed a method of policy assimilation, and showed that it resolves
the problems of biased learning for objectives in multi-objective reinforcement learning and
trains appropriately for various objectives. Our method is exceptional, since, unlike most
previous reinforcement learning studies that focus on improving the overall performance,
it concentrates mainly on the diversity of agents. The performance of our proposed method
has been validated via single, limited environment, Lunar Lander. From this fact we admit
that the experiment did not consider diverse environments. However, we would also like
to emphasize that there were virtually no other continuous control problems we could find
that well manifest the contrast between energy and time. Furthermore, the environment
we conducted the experiment in can be said to be an abstract version of the real-world
trade-offs in solving problems, such as heating and cooling systems, which are regarded
as the most challenging control problems. Therefore, we anticipate that our study can be
used as a cornerstone for future challenges in real-world problems with complex energy
and time trade-offs. Lastly, the provision of diversity in our study is eligible for providing
various policies adjusted for numerous users of reinforcement learning AIs to solve the
trade-off problems, thereby better reflecting their intended objectives.
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