
����������
�������

Citation: Lam, D.K.; Le, V.T.D.; Tran,

T.H. Efficient Architectures for Full

Hardware Scrypt-Based Block

Hashing System. Electronics 2022, 11,

1068. https://doi.org/10.3390/

electronics11071068

Academic Editors: Sang-Woo Jun,

Yeseong Kim and Jisung Park

Received: 31 January 2022

Accepted: 15 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Architectures for Full Hardware Scrypt-Based Block
Hashing System
Duc Khai Lam 1,2,* , Vu Trung Duong Le 3 and Thi Hong Tran 4

1 Computer Engineering Department, University of Information Technology,
Ho Chi Minh City 700000, Vietnam

2 Vietnam National University, Ho Chi Minh City 700000, Vietnam
3 Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan;

le.vu_trung_duong.lp4@is.naist.jp
4 Graduate School of Enginering, Osaka City University, Osaka 558-8585, Japan; hong@osaka-cu.ac.jp
* Correspondence: khaild@uit.edu.vn

Abstract: The password-based key derivation function Scrypt has been employed for many services
and applications due to its protection ability. It has also been employed as a proof-of-work algorithm
in blockchain implementations. Although this cryptographic hash function provides very high
security, the processing speed and power consumption to generate a hashed block for the blockchain
network are low-performance. In this paper, a high-speed and low-power hardware architecture of
the Scrypt function is proposed to generate blocks for the Scrypt-based blockchain network. This
architecture minimizes the number of main computational blocks to reduce the power consumption
of the system. In addition, the proposed sharing resources and pipelined architectures make the
calculation speed increase significantly while the hardware cost is reduced by half compared to
the parallel non-pipelined architecture. The full hardware system is designed and implemented
on Xilinx Virtex-7 and Aveo U280 FPGA platforms. The hash rate of the proposed system reaches
229.1 kHash/s. Its hash rate, hardware and energy efficiencies are much higher than those of the other
works implemented on FPGA and GPU hardware platforms. The proposed hardware architecture is
also successfully implemented in an ASIC design using ROHM 180 nm CMOS technology.

Keywords: Scrypt hash algorithm; SHA-256 algorithm; PBKDF2; Salsa20; blockchain

1. Introduction

Cryptographic hash functions are security algorithms to parse input data of arbitrary
size to output hash data of fixed length. Currently, these functions are widely applied to
blockchain systems to provide barriers to attackers [1,2]. Depending on the security de-
mand, different blockchain technologies employ different cryptographic hash functions to
protect their networks [3]. There are a variety of hash functions applied for the blockchain
networks, such as Secure Hash Algorithm-1 (SHA1), SHA3 [4], SHA256 and ETHASH [5].
In the Internet of Things (IoT) applications, blockchain technology has recently been con-
sidered to be used to protect the security of data exchanged between the low-end devices.
An SHA-256 accelerator with power-efficient architecture for blockchain-based IoT appli-
cations is proposed in [6]. For evaluating different implementation styles and hardware
architectural schemes of SHA2 hash processing accelerator, Raffaele et al. propose an
easy-to-use workbench [7]. This workbench is a user-configurable parameter framework
to explore the performance, resources and energy consumption of SHA2 designs on dif-
ferent target hardware technologies. More advanced cryptographic hash functions, called
password-based key derivation functions (PBKDF), such as PBKDF2, Bcrypt and Scrypt,
provide more security than others [8–10].

Among password-based key derivation functions, Scrypt is the maximal memory-hard
function [11,12]. It has been created by Colin Percival [13]. It has been employed for many

Electronics 2022, 11, 1068. https://doi.org/10.3390/electronics11071068 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071068
https://doi.org/10.3390/electronics11071068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2711-1408
https://orcid.org/0000-0002-0438-3809
https://doi.org/10.3390/electronics11071068
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071068?type=check_update&version=1

Electronics 2022, 11, 1068 2 of 17

services and applications due to its protection ability [14,15]. It has also been employed
as a proof-of-work algorithm in the blockchain implementations [16]. Although this hash
function provides very high security, it costs an enormous amount of delay and power
to generate a hashed block for the blockchain network which raises concerns from many
researchers [17–19].

There are some related works of implementing the Scrypt function. For the software
platforms, R. Han et al. [20] formulate and implement the Scrypt function on the Graphic
Processing Units (GPUs) to analyze the speed and power. Ntantogian et al. [21] propose
a framework to quantify the delay time for password hashing. In addition, the popular
Content Management Systems (CMS) and web applications are used as inputs of the
proposed framework to evaluate the security of hashing schemes of these applications.
Moreover, a set of solutions is proposed to enhance the security of the hashing schemes
of CMS and Web application frameworks. This framework is also run on GPUs. Two
Scrypt and Bcrypt functions are implemented and their hash rates are compared when
they are implemented on GPUs [22]. Scrypt function execution time is sped up 1.5×
by performing the simple data-intensive computation at near memory, called near-data-
processing (NDP) [12]. In addition, several Litecoin mining systems using the Scrypt
algorithm are implemented on different kinds of GPUs [23]. These GPU-based Scrypt
hashing systems have to run many cores in a parallel manner to increase the hash rate;
therefore, they cost huge amounts of power consumption.

For the hardware platforms, Luca et al. [24] propose a design architecture with
multiple Salsa cores and multiple ROMix cores to exploit parallel instances of the Scrypt
algorithm. This design provides high throughput, but it costs much in hardware resources
and power consumption. An ASIC prototype for multiple Scrypt cores design architecture
is implemented to obtain the high hash rate [25]. Duong et al. [26] propose a hardware
design using two separate ROMix cores and apply the traditional pipelined technique; thus,
the throughput of this design is low. Therefore, these approaches are not sufficient to apply
to a blockchain network.

In this paper, a new Scrypt hardware architecture for hashing the blocks of the
blockchain networks is introduced to increase the hashing speed, hardware and energy
efficiencies. Accordingly, the sharing resources architectures for two PBKDF2 cores are
proposed to reduce the hardware resources. In these PBKDF2 cores, the optimized SHA256
core is used as the main processing unit [27]. In addition, the Mix block and the F_Round
module are proposed for the Salsa 20/8 core to lower the total hardware resource of the
ROMix core. Finally, the sharing PBKDF2 cores and pipelined hardware architecture for
Scrypt core are proposed to improve the hash speed, hardware and energy efficiencies.
This architecture uses a sharing pair of PBKDF2 cores and sixty-four ROMix cores working
together in a pipelined mechanism. When comparing to a parallel non-pipelined Scrypt
architecture, the hash performance of the proposed design is increased up to 64 times.
Meanwhile, it takes only half of the cost of hardware resources. This proposed hardware
architecture is implemented on the Xilinx Virtex-7 field-programmable gate array (FPGA)
and the ASIC ROHM 180nm CMOS technology. The hash rate, hardware efficiency and en-
ergy efficiency of the proposed implementation are evaluated and compared to those of
related works.

The outline of this paper is shown as follows. The Scrypt algorithm is explained in
Section 2. Then, the proposed hardware design of the Scrypt hashing system is mentioned
in Section 3. Section 4 shows the results of our proposed hardware implementation. Finally,
the conclusion of the paper is presented in Section 5.

2. Background

This section gives the backgrounds of the Scrypt block hashing in blockchain networks
and the Scrypt hashing algorithm.

Electronics 2022, 11, 1068 3 of 17

2.1. Scrypt-Based Block Hashing for the Blockchain Network

Figure 1 shows the Scrypt-based block hashing system in a computer node of the
blockchain network. First, the pending transactions stored in the mempool are selected to
form a candidate block. Then, this block is hashed and validated by the Scrypt function.
Finally, the validated block is added to the blockchain network. Algorithm 1 shows the
detail of the Scrypt block hashing system. Because our system is considered to apply to the
blockchain network, the salt value specified by any blockchain hashing processes [28,29] is
generated from the block header of the blockchain network and the padding.

Version
Prev

Hash

Merkle

Root

Time

Stamp
nBits Nonce = 0

Scrypt

Comparator

Nonce

Increment

Register

Nonce

Register

Nonce

Target

Value

Nonce

Value

Hashed

Value

Mempool

Software

Scrypt-

based

block

hashing

system

MerkleRoot

Calculation

Candidate

Block

DSHA

256

256

valid

v
al

id

640

32 256 256 32 32 32

v
al

id

Block

header

Figure 1. Scrypt-based block hashing for the blockchain networks.

Algorithm 1 (block_hash, nonce) = Scrypt-based_block_hashing(block_header)

1: nonce = 0
2: while nonce < 232 do
3: block_hash = SHA256(SHA256(block_header))
4: scrypt_hash = Scrypt(block_header)
5: if scrypt_hash < target then return (block_hash, nonce)
6: else
7: nonce = nonce + 1
8: end if
9: end while

In the blockchain networks, each block consists of two main fields: header and transac-
tions. The transaction field contains the transactions which need to be executed. The header
field, which is used for the block hashing process, consists of six sub-fields as described in
Table 1.

The primary module of this block hashing system is the Scrypt. It takes the 640-bit
block header to compute a 256-bit Scrypt hash. Then, the Comparator module checks
if the hash output is lower than the target value; in which case, the block header with
the current nonce is considered to be valid. Otherwise, the block header is changed by
increasing its nonce value to re-calculate a new Scrypt hash until a valid block header is

Electronics 2022, 11, 1068 4 of 17

found. Finally, the block, which includes the valid block header and transactions, is hashed
by the double-SHA256 (DSHA256) module before being added to the blockchain network.
Due to its high-security process, the Scrypt module costs an enormous amount of delay
and power to generate a hashed block.

Table 1. Fields of block header. Reprinted with permission from [27], 2020, Lam Duc Khai.

Field Length in Bit Description

Version 32 Block version number

Previous
Block Hash 256 256-bit hash of the

previous block header

Merkle Root 256 256-bit hash based on all of the
transactions in the block

Time Stamp 32 Current block timestamp as seconds
since 1970-01-01T00:00 UTC

nBits 32 Current target in compact format

Nonce 32 32-bit number (starts at 0)

2.2. Scrypt Algorithm

Introduced by Colin Percival [13], the Scrypt algorithm is a password-based key
derivation function. The Scrypt pseudo code is presented in Algorithm 2. The parameters
of the Scrypt algorithm, (r, N, p), are specified by the users depending on their using
purposes. These parameters affect how much memory and computational power are used.
For the block hashing in the Litecoin blockchain application, these parameters used in our
proposed Scrypt hashing system are specified as (1, 1024, 1) for (r, N, p), respectively [28].
This algorithm performs three steps using two functions, PBKDF2 and ROMix, as shown in
Algorithm 2.

Algorithm 2 Out = Scrypt (blockheader)
Scrypt variables and parameters for hashed block mining:
message = blockheader (640 bits)
salt = blockheader, padding (1024 bits)
Block size factor (r) = 1
Number of iterations (c) = 1
Parallelization parameter (p) = 1
CPU/Memory cost parameter (N) = 1024
Length of DK in bits (dklen) = 256
Algorithm’s steps:

1: p_out = PBKDF2(message, salt, c, 1024 × r × p)
2: r_out = ROMix(p_out, N, r)
3: scrypt_out = PBKDF2(message, r_out, c, dklen)
4: return scrypt_out

2.2.1. PBKDF2

Password-Based Key Derivation Function 2 (PBKDF2) is one of the key derivation
functions used to reduce vulnerabilities to brute force attacks with intensive computa-
tions. In the Scrypt algorithm, PBDKF2 uses the Hash-based Message Authentication Code
(HMAC) to input the message along with salt value to produce a derived key [30]. Algo-
rithm 3 depicts more details regarding the PBKDF2 algorithm.

In cryptography, the HMAC is a message authentication code (MAC) using a cryp-
tographic hash function and a secret cryptographic key. It is used for verifying the data
integrity and authenticity of a message. The HMAC pseudo code is shown in Algorithm 4.

Electronics 2022, 11, 1068 5 of 17

The HMAC for PBDKF2 uses the SHA256 as its cryptographic hash function. The SHA256
is a member of the Secure Hash Algorithm 2 (SHA2) family, created by the United States
National Security Agency [31]. The SHA256 shown in Algorithm 5 includes three steps:
Padding, Block Decomposition and Hash Computation. The input message of SHA256
is split into N of 512-bit blocks by the Padding, and then these N blocks are processed
sequentially by the Block Decomposition and Hash Computation. The high-speed and
low-power SHA256 hardware implementation approaches are presented in [27,32].

Algorithm 3 Out = PBKDF2(message, salt, c, dklen)

1: Out = ""
2: for i← 1 to (dklen/256) do
3: DKi = HMAC({salt, i}, message)
4: Out = {DK, DKi}
5: end for
6: return Out

Algorithm 4 Out = HMAC(salti, message)

1: IPAD = 36363636...3616 (256 bits)
2: OPAD = 5C5C5C5C...5C16 (256 bits)
3: KHASH = SHA256(message)
4: IXOR = {(KHASH ⊕ IPAD), IPAD}
5: OXOR = {(KHASH ⊕ OPAD), OPAD}
6: IHASH = SHA256({IXOR, salti})
7: OHASH = SHA256({OXOR, IHASH})
8: Out = OHASH
9: return Out

Algorithm 5 digest = SHA256(message_in)

1: M[0:N−1], N = Padding_Splitting (message_in)
2: H(0) = H_Constants
3: for t← 0 to (N-1) do
4: W = BlockDecomposition(M(t))
5: H(t+1) = HashComputation(H(t), K_Constants, W)
6: end for
7: return digest = {H(N)

1 , H(N)
2 , H(N)

3 , H(N)
4 , H(N)

5 , H(N)
6 , H(N)

7 , H(N)
8 }

2.2.2. ROMix

A sequential memory-hard function used in Scrypt is the ROMix. In the ROMix,
the message block is mixed by two main phases: writing memory phase and reading
memory phase. The detail of the ROMix algorithm is depicted in Algorithm 6. In our
proposed Scrypt block hashing system, the memory required for the ROMix core is 128 KB.

The BlockMix algorithm, shown in Algorithm 7, uses the Salsa 20/8 function to mix
data. Salsa20 is an original cipher function developed by Daniel J. Bernstein [33]. Salsa 20/8
is a hash function whose input is a set of sixteen 32- bit strings in little-endian format [34].
The description of Salsa 20/8 is mentioned in Algorithm 8. Salsa 20/8 has a total of eight
rounds: four rounds of ColumnRound and four rounds of RowRound, which are calculated
by Equations (1) and (6), respectively.

(y0, y1, . . . , y15) = ColumnRound(x0, x1, . . . , x15) (1)

Electronics 2022, 11, 1068 6 of 17

where the ColumnRound function is calculated by four QuarterRound blocks in
Equations (2)–(5).

(y0, y4, y8, y12) = QuarterRound(x0, x4, x8, x12) (2)

(y5, y9, y13, y1) = QuarterRound(x5, x9, x13, x1) (3)

(y10, y14, y2, y6) = QuarterRound(x10, x14, x2, x6) (4)

(y15, y3, y7, y11) = QuarterRound(x15, x3, x7, x11) (5)

(x0, x1, . . . , x15) = RowRound(y0, y1, . . . , y15) (6)

where the RowRound function is calculated by four QuarterRound blocks in Equations (7)–(10).

(x0, x1, x2, x3) = QuarterRound(y0, y1, y2, y3) (7)

(x5, x6, x7, x4) = QuarterRound(y5, y6, y7, y4) (8)

(x10, x11, x8, x9) = QuarterRound(y10, y11, y8, y9) (9)

(x15, x12, x13, x14) = QuarterRound(y15, y12, y13, y14) (10)

where the QuarterRound function is calculated by Rotation Left (RotL) operators
in Equations (11)–(15).

(n0, n1, n2, n3) = QuarterRound(m0, m1, m2, m3) (11)

where
n0 = m0 ⊕ RotL[(m3 + m2, 18)] (12)

n1 = m1 ⊕ RotL[(m0 + m3, 7)] (13)

n2 = m2 ⊕ RotL[(m1 + m0, 9)] (14)

n3 = m3 ⊕ RotL[(m2 + m1, 13)] (15)

Algorithm 6 block = ROMix (block, N, r)

1: for i← 0 to (N-1) do
2: Mem i = block
3: block = BlockMix(block, r)
4: end for
5: for j← 0 to (N-1) do
6: j = block[489:480] (block’s 10-bit from 480 to 489)
7: block = BlockMix(block ⊕Memj, r)
8: end for
9: return block

Electronics 2022, 11, 1068 7 of 17

Algorithm 7 block = BlockMix(block, r)

1: X = block[1023:512] (block’s 512 high bits)
2: for i← 0 to (2 × r − 1) do
3: X = X ⊕ block[511:0] (block’s 512 low bits)
4: X = X + Salsa20/8(X)
5: if (i == 0) then
6: OutH = X
7: else
8: OutL = X
9: end if

10: end for
11: block = {OutH, OutL}
12: return block

Algorithm 8 Out = Salsa20/8(message)

1: {x0, x1, . . . , x15} = message
2: for i← 0 to 3 do
3: {y0, . . . , y15} = ColumnRound({x0, . . . , x15})
4: {x0, . . . , x15} = RowRound({y0, . . . , y15})
5: end for
6: Out = {x0, x1, . . . , x15}
7: return Out

3. Proposed Scrypt Hardware Architecture

In this section, the Scrypt hardware architectures for the block hashing system are
proposed to increase the hashing speed, hardware resources and energy efficiencies.

3.1. Low-Resource and High-Throughput Non-Pipelined Scrypt Architecture

As mentioned in Algorithm 2, the Scrypt function includes two PBKDF2 cores and
one ROMix core. The first arguments, message, of two PBKDF2 cores are similar. Then,
we can see from the Algorithms 3 and 4 that outputs IXOR and OXOR at step 4 and step
5 of Algorithm 4 are not changed for both PBKDF2 cores. Thus, these outputs should
be generated once to reduce the latency and hardware resources. Our proposed non-
pipelined Scrypt architecture is shown in Figure 2. In this architecture, two PBKDF2 cores
are implemented in a different manner. PBKDF2_1 core and PBKDF2_2 are implemented
for step 1 and step 3 in Algorithm 2, respectively. The values IXOR and OXOR are generated
once from PBKDF2_1 core, and then they are stored to use for PBKDF2_2 core. Therefore,
the PBKDF2_2 core is not only faster in processing time but smaller in hardware resource
use than those of the PBKDF2_1 core.

Electronics 2022, 11, 1068 8 of 17

PBKDF2_1 ROMix

PBKDF2_2

salt

={blockheader, padding}

scrypt

_out

1024

256

1024

1024 r_out

message

=blockheader

640640block

header
p_out

IXOR
OXOR

256256

Figure 2. Proposed non-pipelined Scrypt architecture.

3.2. Low-Resource and High-Throughput PBKDF2 Core Architectures

In this sub-section, new hardware architectures for two PBKDF2 cores are proposed to
reduce the number of processing modules and unnecessary calculations by sharing the data
and hardware resource between two PBKDF2 cores. In the PBKDF2 function, the SHA256
core is used as the key processing unit. Duong et al. [26] use three SHA256 cores for the
PBKDF2_1 core and two SHA256 cores for the PBKDF2_2 core. Because these SHA256
modules must be performed sequentially, the hardware resource is used inefficiently if one
module performs whereas the others are idle. In addition, this design has a lack of sharing
resource and data between two PBKDF2 cores. Therefore, our proposed architecture uses
only one SHA256 core for the PBKDF2_1 core and one SHA256 core for the PBKDF2_2 core.
The hardware resources are reduced considerably. Although a SHA256 core can be shared
to both PBKDF2_1 and PBKDF2_2 cores, two SHA256 cores are still necessary to perform
the pipelined technique, as discussed in Section 3.4. In our design, the architecture of the
high-speed and low-power SHA256 is used [27,32].

Figure 3 shows the high throughput architecture for the PBKDF2_1 core described in
Algorithm 3. Since the input argument dklen of PBKDF2_1 core is 1024, the HMAC core is
operated iteratively 4 times when the factor i changes from 1 to 4. From Algorithms 3 and 4,
the values IXOR and OXOR do not change while the HMAC core is being operated itera-
tively, and then the IOXOR instance, which performs steps 1 to 5 of Algorithm 4, only needs
to operate once at the first iteration. Then, these outputs of IOXOR are stored in registers to
use for three next iterations; thus, the total throughput of PBKDF2_1 core is increased.

Electronics 2022, 11, 1068 9 of 17

SHA256

IOXOR

mess_in
{IXOR,salt,i}

{OXOR,IHASH}

message
KHASH

IHASH

OHASH

IXOR

OXOR

IXOR REG

OXOR REG

Concat_Out

dklen/256 Counter

message

salt

dklen

i

IXOR

p_out

OXOR

PBKDF2_1

HMAC

DKi

digest

message

salt

MUX DEMUX

Figure 3. Proposed PBKDF2_1 core.

In addition, as mentioned in Section 3.1, the values IXOR and OXOR are also reused
for PBKDF2_2 core; thus, the PBKDF2_2 core and its HMAC core have less complexity and
higher throughput as shown in Figure 4. Since the input argument dklen of PBKDF2_2 core
is 256, the HMAC core in the PBKDF2_2 core is operated only once.

SHA256
mess_in

{IXOR,salt,i}

{OXOR,IHASH}

IHASH

OHASH

r_out

scrypt_out

PBKDF2_2

HMAC

DK

digestOXOR

IXOR

salt
MUX DEMUX

Figure 4. Proposed PBKDF2_2 core.

3.3. Proposed Architecture for ROMix Core

As mentioned in Algorithm 6, the ROMix is divided into two phases: writing memory
phase and reading memory phase. Each phase consists of 1024 loops. Its hardware
architecture is presented in Figure 5. There are two main parts in the ROMix core: one
128 KB BRAM and one BlockMix core. In the writing phase, 1024 loops are performed to
write the outputs from the BlockMix core into BRAM with the write addresses generated
from a UP-COUNTER. Then, in the reading phase, 1024 loops are performed to read data
from the BRAM with the read address generated from the BlockMix core. In BlockMix core,
the Salsa20/8 instance is the key processing unit.

Electronics 2022, 11, 1068 10 of 17

128 KB BRAM

BlockMix core

Sel_BMin

(2)

(1)

data_in

data_out

RomixIn[1023:0]

RomixOut[1023:0]

10-BITS

UP-COUNTER

a
d
d
re

ss

BmixOut

BmixIn

addr_read

addr_write

ROMix core

Sel_Din

S
e
l_

A
d

r

in

out

128 KB BRAM

BlockMix core

Sel_BMin

(2)

(1)

data_in

data_out

RomixIn[1023:0]

RomixOut[1023:0]

10-BITS

UP-COUNTER

a
d
d
re

ss

BmixOut

BmixIn

addr_read

addr_write

ROMix core

Sel_Din

S
e
l_

A
d

r

in

out

Figure 5. ROMix core.

Figure 6 shows the hardware architecture of the BlockMix core. BlockMix performs
two loops of Salsa20/8 operation, and each Salsa20/8 performs four loops of ColumnRound
and RowRound alternatively. If a Salsa20/8 core uses both ColumnRound and RowRound
modules, the total area is large. It can be realized that the outputs of ColumnRound and
RowRound modules depend on each other; therefore, these modules cannot be performed in
parallel. In addition, the functions of ColumnRound and RowRound are similar. Therefore,
in our design, only one module, named F_Round, is needed for both ColumnRound and
RowRound to reduce half of the hardware resources without any latency loss compared
to the conventional design. F_Round module includes four QR modules that perform the
QuarterRound function as mentioned in Section 2.

QR

QR

QR

QR

[1023:512]

BM_out[1023:0]

Salsa20/8 core

BlockMix core

Reg

512b
I O

Mix

block

F_Round
[512:0]

BM_in[1023:0]

DReg

512b

S
el_

S
S

_
in

S
el_

F
R

_
in

SS_done

Done

H/L

b

a

Figure 6. BlockMix core.

The function of the Mix block is to mix 512-bit signal a to 512-bit signal b. This function
is shown in Equation (16).

(b0, b1, . . . , b15) = Mix(a0, a1, . . . , a15) (16)

where
b0 = a6 ; b1 = a9 ; b2 = a12 ; b3 = a3;
b4 = a10 ; b5 = a13 ; b6 = a0 ; b7 = a7;
b8 = a4 ; b9 = a1 ; b10 = a14 ; b11 = a11;

Electronics 2022, 11, 1068 11 of 17

b12 = a2 ; b13 = a5 ; b14 = a8 ; b15 = a15.
where ai and bi are 32-bit signals.

3.4. Shared Resources—Pipelined Scrypt Architecture

In this section, a shared resource and pipelined architecture for the Scrypt core is
proposed to increase the hashing speed while reducing the hardware resources and power
consumption. This pipelined architecture is proposed to make sure that all processing
modules such as PBKDF2 cores and ROMix cores have no free time and are utilized with
the highest efficiency.

The non-pipelined Scypt architecture includes one PBKDF2_1 core, one ROMix core
and one PBKDF2_2 core. The latencies of these cores are shown in Table 2. Thus, the total
processing latency of the non-pipelined Scrypt core is 57,012 cycles.

From the results, the latency of the ROMix core is 64 times longer than that of the
PBKDF2_1 core. In addition, the ROMix core cannot be split into smaller pieces to divide
its latency into 64 times for applying pipeline as the traditional way. Thus, the latency to
perform one hash input of the Scrypt function equals the total latencies of the PBKDF2_1,
ROMix and PBKDF2_2 cores. In other words, this Scrypt core needs 64 times this latency to
perform 64 hash inputs of Scrypt function. This latency number can be reduced if several
Scrypt cores perform parallel; however, the hardware cost is correspondingly increased.

The hardware resources (HR) of the instances in our implementation in Xilinx Virtex-7
and Aveo U280 FPGA platforms are also shown in Table 2. For both platforms, the total
resources of two PBKDF2 cores approximately are equal to those of the ROMix instance.
Therefore, a new pipelined Scrypt core architecture is implemented as Figure 7 to speed
up the throughput while saving the hardware resources when compared to the 64 parallel
non-pipelined Scrypt cores. In this architecture, one PBKDF2_1 core, 64 ROMix cores
and one PBKDF2_2 core are used. Using this core, after the PBKDF2_1 core finishes
processing the first hash input to make the output for the first ROMix core, it continues
processing the second hash input to output for the corresponding ROMix core without
any waiting. When all 64 inputs are already given to PBKDF2_1 core, the first ROMix
core also finishes its work for the first hash input to produce the output to PBKDF2_2
core. Applying this technique, the hashing speed of our proposed pipelined Scrypt core
is increased approximately 64 times compared to that of the single non-pipelined Scrypt
core. In addition, the hardware resources are saved when compared to the 64 parallel
non-pipelined cores because only one PBKDF2_1 core and one PBKDF2_2 core are used in
the proposed pipelined core, instead of 64 PBKDF2_1 cores and 64 PBKDF2_2 cores when
64 non-pipelined cores are used for processing in parallel.

Table 2. Instances hardware resources.

Instances Latency
(No. Clocks)

HR Vertex 7
(No. Slices)

HR Aveo U280
(No. Slices)

PBKDF2_1 (P1) 873 509 519

PBKDF2_2 (P2) 267 451 452

ROMix 55,872 965 949

Electronics 2022, 11, 1068 12 of 17

PBKDF2

_1

ROMix_

2
rd

D
ec

o
d

er
6

-6
4

ROMix_

1
rd

ROMix

_64
rd

F
ir

st

c
o
u

n
te

r
en

o
u
t

en

en

en

in

in

in

S
el

 R
M

 r
d

d
at
a_
in

en

sel

Second

counter
en out

S
el o

u
t

outin

out

PBKDF2

_2
outin

valid
en

out

out

valid valid

valid

valid

en

st
ar
t

re
a
d
y

d
ata_

o
u
t
v
alid

R

e

g

R

e

g

Figure 7. Proposed pipelined Scrypt architecture.

Figure 8 shows the timing schedule of the pipelined Scrypt core. Each hash input is
processed by three modules: PBKDF2_1 (P1), ROMix and PBKDF2_2 (P2). In our design,
the P1 takes 873 cycles, the ROMix takes 55,872 cycles which is 64 times of P1, and the P2
takes 267 cycles. The proposed Scrypt core works pipeline for a sequence of hash inputs as
follows: the 1st hash input is processed by P1 core, then the output is continued to process
by ROMix_1 core, and finally the output hash of the 1st hash input is conducted by P2
core. Since there are 64 ROMix cores in the Scrypt core and the latency of each ROMix core
is 64 times that of P1 core, the 2nd to the 64th hash inputs can be processed pipeline as
indicated in Figure 8. After the 64th hash input is processed by P1, the pipeline processing
is continued for the 65th hash input. The 1st hash input is conducted by ROMix_1 core,
and at the same time the 65th hash input is also conducted by P1 core; thus, the 65th
hash input is continued to be processed by ROMix_1 core without any waiting time. This
pipelined procedure is the same for the next hash inputs. The n th input is processed by the
core ROMix_m, which m is (n mod 64).

P1 ROMix_1

P1 ROMix_2

1
st

2
nd

P13
rd

 ROMix_3

873 55,872

P2

267

65th ROMix_1

P2

Hash

input

P2

P1

...

Figure 8. Pipelined Scrypt timing chart.

In the blockchain network, the Scrypt-based block hashing system has to compute
a huge number of hash inputs until the satisfying output is found, and then if those
inputs are performed by the proposed pipelined Scrypt core, the processing latency reaches
873 cycles per hash input. Therefore, its hash performance is increased approximately 64
times compared to the single non-pipelined Scypt core.

4. Results
4.1. Function Verification Results

The Scrypt-based block hashing system is designed by the Verilog Hardware Descrip-
tion Language (HDL), and then it is implemented and verified on FPGA Xilinx Virtex 7.

Electronics 2022, 11, 1068 13 of 17

The verification flow is presented in Figure 9. To verify the implemented system, the real
data of the hashed blocks are collected from the Litecoin blockchain network [35]. These
data include the block header, target, nonce and block hash values. The block header
and the target value are input to our Scrypt-based block hashing system to be computed.
The outputs of our system are the nonce and block hash values. Then, these outputs are
compared to the expected values collected from the blockchain network. The system is
verified by 10,000 different input values.

==?

Block header

Target value

Hashed value

Nonce value

Collect hashed block

information from Script-

based Litecoin blockchain

Script-based block

hashing system

Success

Hashed value

Nonce value
==?

Block header

Target value

Hashed value

Nonce value

Collect hashed block

information from Script-

based Litecoin blockchain

Script-based block

hashing system

Success

Hashed value

Nonce value

Figure 9. Verification flow.

4.2. Implementation Performance Results

To prove our proposed designs obtain higher performance than [25,26] on the same
platform, the proposed designs are implemented in the Xilinx Virtex 7 FPGA platform.
However, if this FPGA does not have enough Block RAM (BRAM) resources to implement
our proposed pipelined design with 64 ROMix instances, then the proposed pipelined
design with 32 ROMix instances is implemented on this FPGA. To achieve the best perfor-
mance as explained in Section 3.4, our proposed pipelined design with 64 ROMix instances
is implemented in the Xilinx Aveo U280 FPGA platform, which has enough BRAM re-
sources for our design. The BRAM resources used on the targeted FPGA devices are shown
in Table 3. In this section, all results, including the hardware resource cost (HW), processing
frequency (Freq.) and power consumption (Power), are collected after our design pass the
place and route process on the Xilinx Vivado Design Suite.

Table 3. BRAM utilization comparison (Parameter (N, r, p) = (1024, 1, 1)).

Design Devices No.
Cores

No.
BRAM

BRAM
Utilization (%)

Proposed
Non-pipelined Virtex-7 VX485T 1 28.5 28.5/1030 (2.8%)

Proposed
Non-pipelined Virtex-7 VX485T 32 912 912/1030 (88.5%)

Proposed
Pipelined
32 ROMix

Virtex-7 VX485T 1 912 912/1030 (88.5%)

Proposed
Pipelined
64 ROMix

Alveo U280 1 1824 1824/2016 (90.5%)

Electronics 2022, 11, 1068 14 of 17

The implementation results of the pipelined Scrypt core with 32 ROMix instances
and 64 ROMix instances, single non-pipelined Scrypt core and 32 parallel non-pipelined
Scrypt cores are shown in Table 4. In addition, these results are also compared to the
previous designs. All designs utilize the on-chip memory for the BRAM of ROMix cores.
The configuration parameters (N, r, p) of these designs are (1024, 1, 1). The implementation
results are shown in Tables 4 and 5. As explained in Section 3.4, the processing latency
of the non-pipelined core is 57,012 cycles, and the processing latency of the pipelined
Scrypt core is 1746 cycles for 32 ROMix instances or 873 cycles for 64 ROMix instances,
respectively. The frequencies of the single non-pipelined Scrypt core, 32 parallel non-
pipelined Scrypt cores and the proposed pipelined Scrypt core with 32 ROMix instances are
the same (156.05 Mhz) because their critical paths implemented on the same Virtex 7 FPGA
platform are the same. The Hashrate, hardware efficiency (HW.E f f) and energy efficiency
(Ener.E f f) are calculated by Equations (17)–(19), respectively.

Hashrate =
Frequency

Number of latency cycles
(Hash/s) (17)

HW.E f f =
Hashrate

Number of HW.slices
(Hash/s/slice) (18)

Ener.E f f =
Powerconsumption

Hash rate
(Joule/Hash) (19)

The proposed single non-pipelined Scrypt core includes one PBKDF2_1 instance, one
ROMix instance and one PBKDF2_2 instance. The hardware architectures of these instances
are proposed in Sections 3.2 and 3.3 to reduce hardware resources.

From the results in Table 4, hardware efficiency of our design (1.17 Hs/Slice) is much
higher than that of [25,26]. Our hardware efficiency is slightly slower than that of [24],
but our power consumption (0.55 W) is four times lower than that of [24].

Table 4. Hardware implementation comparison results (Parameter (N, r, p) = (1024, 1, 1)).

Design Devices No.
Cores

HW.
(Slice)

Freq.
(MHz)

Hash Rate
(kHash/s)

HW. Eff.
(Hash/s/Slice)

Power
(W)

[24] Spartan-6 LX45 1 5859 50.00 6.90 1.18 2.25

[25] Virtex-6 LX240T 1 4670 200.00 1.33 0.28 NA

[26] Virtex-7 VX485T 1 52,298 355.05 5.33 0.10 NA

Proposed
Non-pipelined Virtex-7 VX485T 1 2347 156.05 2.74 1.17 0.55

Proposed
Non-pipelined Virtex-7 VX485T 32 75,104 156.05 87.68 1.17 17.6

Proposed
Pipelined
32 ROMix

Virtex-7 VX485T 1 35,041 156.05 89.38 2.34 7.03

Proposed
Pipelined
64 ROMix

Alveo U280 1 68,431 259.94 229.1 3.35 14.45

Electronics 2022, 11, 1068 15 of 17

Table 5. Other platform implementation comparison results.

Design Devices No.
Cores

Parameter
(N, r, p)

Freq.
(MHz)

Hash Rate
(kHash/s)

Power
(W)

Ener. Eff.
(J/kHash)

[20] NVDIA-CUDA 9.1 1 (1024, 1, 1) 2600.00 41.33 NA NA

[21] NVIDIA-GTX 1070 1 (8192, 1, 1) 1683.00 0.12 NA NA

[22] NVIDIA-GTX 480 1 (4096, 1, 1) 701.00 27.75 NA NA

[12] ARMv7-Cortex A15 1 (16,384, 8, 1) 2500.00 0.01 NA NA

[23] NVIDIA-GX TITAN 1 (1024, 1, 1) 797.00 6.06 2.04 0.336

[23] AMD-AX 7990 1 (1024, 1, 1) 950.00 17.04 6.13 0.360

Proposed
Pipelined
64 ROMix

Alveo U280 1 (1024, 1, 1) 259.94 229.1 14.45 0.063

Proposed
Pipelined
64 ROMix

ROHM 180 nm ASIC 1 (1024, 1, 1) 136.30 156.13 0.82 0.005

The implementation results of the 32 parallel non-pipelined Scrypt cores are also
shown in Table 4. From the results of the single core, the results of 32 parallel cores are
scaled up 32× in terms of all parameters. The hash rate is increased by using multiple
parallel cores (175.36 kHash/s), and the hardware resource and power consumption are
also increased by the same factor. Moreover, the hash rate of our proposed pipelined Scrypt
core with 32 ROMix instances (89.38 kHash/s) is not only higher than that of the 32 parallel
cores, but the hardware resource of the proposed pipeline implementation (35,041 Slices) is
only half of that of the implementation of 32 parallel cores (75,104 Slices). The reason is that
half the resources go into ROMix core (965 slices on Virtex 7 or 949 slices on Aveo U280)
and half into PBKDF core (960 slices on Virtex 7 or 971 slices on Aveo U280) as shown in
Table 2. In the 32 parallel non-pipelined Scrypt cores, both ROMix and PBKDF cores have
to multiplied by 32, while in the proposed pipelined Scrypt core with 32 ROMix instances,
only the ROMix core has to be multiplied by 32. Our hash rate is 13 times higher than that
of [24]. The great increase in the hardware efficiency by our proposed pipeline Scrypt core
architecture (2.34 Hs/Slice) compared to that of previous works is highlighted.

Our proposed pipelined Scrypt core with 64 ROMix instances achieves highest per-
formance when it is implemented on the Aveo U280 FPGA platform. The design not only
speeds up the hash rate to 229.1 kHash/s but also achieves a hardware efficiency (3.35)
much higher that of previous designs.

The hash rate and power consumption comparisons between our proposed implemen-
tation and other GPU platforms are also shown in Table 5. For a fair comparison between
FPGA and GPA platforms, in our FPGA platform, the top SoC module including the Scrypt
proposed design IP, embedded MicroBlaze soft CPU and transmission module (UART-Lite)
is implemented. The hash rate of our proposed FPGA implementation is much higher than
that of the GPU platforms. Moreover, the energy efficiency, defined as Joule per hash (J/H),
of our Aveo U280 FPGA implementation is approximately five times higher than that of
the NVIDIA and AMD GPU implementations [23].

Besides FPGA implementation, the proposed pipelined Scrypt core is also successfully
implemented in ASIC using the Synopsis electronic design automation (EDA) tool suite.
The design methodology is defined by Synopsis design flow [36]. This proposed core
is implemented in ROHM 180 nm CMOS technology. This ASIC is an energy-saving
technology producing low frequencies with super low power consumption. From Table 5,
the ASIC implementation provides a maximum frequency of 136.30 MHz; thus, its hash
rate reaches 156.13 kHash/s. These results are worse than those of FPGA implementation
because there are two reasons: (1) the FPGA Xilinx Virtex 7 is using 28- nm high-speed

Electronics 2022, 11, 1068 16 of 17

technology; (2) implementing on different technology platforms generates different critical
paths. However, the ASIC implementation result reaches the power consumption of 0.82 W
that helps the energy efficiency (0.005 J/kHash) be 12 times higher than that of Aveo U280
FPGA implementation.

5. Conclusions

In this paper, the new pipelined hardware architecture for hashing the Scrypt-based
blocks of the blockchain network is presented. This system is implemented on both
Xilinx Virtex-7 FPGA and ROHM 180 nm ASIC. The proposed individual PBKDF2 and
ROMix cores help to reduce the hardware resources and improve the latency. In addition,
the approached pipelined Scrypt core architecture helps to improve not only the hash rate
but also the hardware and energy efficiencies. Compared to the related works implemented
on the FPGA platform, the hash rate of our pipelined design implementation is more than
40 times greater and the hardware efficiency is more than 30 times greater. The hash speed
and energy efficiency of our implementation are also much higher than those of the related
works implemented on the GPU platform.

Author Contributions: Investigation, V.T.D.L.; Methodology, D.K.L. and T.H.T.; Project administra-
tion, D.K.L.; Supervision, D.K.L. and T.H.T.; Writing—original draft, V.T.D.L.; Writing—review
and editing, D.K.L. and T.H.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by Vietnam National University, HoChiMinh City (VNU-HCM)
under grant number DSC2021-26-01.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leible, S.; Schlager, S.; Schubotz, M.; Gipp, B. A Review on Blockchain Technology and Blockchain Projects Fostering Open

Science. Front. Blockchain 2019, 2, 16. [CrossRef]
2. Kshetri, N. Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 2017, 41, 1027–1038.

[CrossRef]
3. Zhai, S.; Yang, Y.; Li, J.; Qiu, C.; Zhao, J. Research on the Application of Cryptography on the Blockchain. J. Phys. Conf. Ser. 2019,

1168, 32–77. [CrossRef]
4. Fu, J.; Qiao, S.; Huang, Y.; Si, X.; Li, B.; Yuan, C. A Study on the Optimization of Blockchain Hashing Algorithm Based on PRCA.

Secur. Commun. Netw. 2020, 2020, 8876317. [CrossRef]
5. Wang, L.; Shen, X.; Li, J.; Shao, J.; Yang, Y. Cryptographic primitives in blockchains. J. Netw. Comput. Appl. 2019, 127, 43–58.

[CrossRef]
6. Martino, R.; Cilardo, A. Designing a SHA-256 processor for blockchain-based IoT applications. Internet Things 2020, 11, 100254.

[CrossRef]
7. Martino, R.; Cilardo, A. A Flexible Framework for Exploring, Evaluating, and Comparing SHA-2 Designs. IEEE Access 2019,

7, 72443–72456. [CrossRef]
8. Wiemer, F.; Zimmermann, R. High-speed implementation of bcrypt password search using special-purpose hardware. In

Proceedings of the 2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14), Cancun, Mexico,
8–10 December 2014; pp. 1–6. [CrossRef]

9. Ertaul, L.; Kaur, M.; Gudise, V.A.K.R. Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms. In
Proceedings of the 2016 International Conference on Wireless Network (ICWN’2016), Las Vegas, NV, USA, 25–28 July 2016;
pp. 66–72.

10. Hatzivasilis, G. Password-Hashing Status. Cryptography 2017, 1, 10. [CrossRef]
11. Alwen, J.; Chen, B.; Pietrzak, K.; Reyzin, L.; Tessaro, S. Scrypt Is Maximally Memory-Hard. In Proceedings of the Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 30 April–4 May 2017;
Springer: Cham, Switzerland, 2017; pp. 33–62. [CrossRef]

12. Jiwon, C.; Tali, M.; Iris, B.R.; Maurice, H. Attacking Memory-Hard Scrypt with near-Data-Processing. In Proceedings of the
International Symposium on Memory Systems, MEMSYS ’19, Washington, DC, USA, 30 September–3 October 2019; Association
for Computing Machinery: New York, NY, USA, 2019; pp. 33–37. [CrossRef]

13. Percival, C.; Josefsson, S. The Scrypt Password-Based Key Derivation Function; Technical Report RFC 7914. Available online:
https://doi.org/10.17487/RFC7914 (accessed on 8 March 2022). [CrossRef]

http://doi.org/10.3389/fbloc.2019.00016
http://dx.doi.org/10.1016/j.telpol.2017.09.003
http://dx.doi.org/10.1088/1742-6596/1168/3/032077
http://dx.doi.org/10.1155/2020/8876317
http://dx.doi.org/10.1016/j.jnca.2018.11.003
http://dx.doi.org/10.1016/j.iot.2020.100254
http://dx.doi.org/10.1109/ACCESS.2019.2920089
http://dx.doi.org/10.1109/ReConFig.2014.7032529
http://dx.doi.org/10.3390/cryptography1020010
http://dx.doi.org/10.1007/978-3-319-56617-7_2
http://dx.doi.org/10.1145/3357526.3357570
https://doi.org/10.17487/RFC7914
http://dx.doi.org/10.17487/RFC7914

Electronics 2022, 11, 1068 17 of 17

14. Hatzivasilis, G.; Papaefstathiou, I.; Manifavas, C. Password Hashing Competition—Survey and Benchmark. IACR Cryptol. ePrint
Arch. 2015, 2015, 265.

15. Hatzivasilis, G. Password Management: How Secure Is Your Login Process? In Model-Driven Simulation and Training Environments
for Cybersecurity; Hatzivasilis, G., Ioannidis, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 157–177.

16. Padmavathi, M.; Suresh, R.M. Secure P2P Intelligent Network Transaction using Litecoin. Mob. Netw. Appl. 2019, 24, 318–326.
[CrossRef]

17. Ling, R.; Srinivas, D. Bandwidth Hard Functions for ASIC Resistance. In Theory of Cryptography; Yael, K., Leonid, R., Eds.;
Springer International Publishing: Cham, Switzerland, 2017; pp. 466–492.

18. Almeida, L.C.; Andrade, E.R.; Barreto, P.S.L.M.; Simplicio, M.A., Jr. Lyra: Password-based key derivation with tunable memory
and processing costs. J. Cryptogr. Eng. 2014, 4, 75–89. [CrossRef]

19. Alwen, J.; Chen, B.; Kamath, C.; Kolmogorov, V.; Pietrzak, K.; Tessaro, S. On the Complexity of Scrypt and Proofs of Space
in the Parallel Random Oracle Model. In Advances in Cryptology—EUROCRYPT 2016; Fischlin, M., Coron, J.S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 358–387.

20. Han, R.; Foutris, N.; Kotselidis, C. Demystifying Crypto-Mining: Analysis and Optimizations of Memory-Hard PoW Algorithms.
In Proceedings of the 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Madison,
WI, USA, 24–26 March 2019; pp. 22–33. [CrossRef]

21. Ntantogian, C.; Malliaros, S.; Xenakis, C. Evaluation of password hashing schemes in open source web platforms. Comput. Secur.
2019, 84, 206–224. [CrossRef]

22. Dürmuth, M.; Kranz, T. On Password Guessing with GPUs and FPGAs. In Technology and Practice of Passwords; Mjølsnes, S.F., Ed.;
Springer International Publishing: Cham, Switzerland, 2015; pp. 19–38.

23. Litecoin Foundation. Litecoin Wiki, “Mining Hardware Comparision”. 2018. Available online: https://litecoin.info/index.php/
Mining_hardware_comparison (accessed on 8 March 2022).

24. Luca, P. Master Thesis: Hardware Implementation for Litecoin Mining; Technical Report; University in Leuven: Leuven, Belgium, 2015.
25. Alpha Technology (INT) LTD. Scrypt ASIC Prototyping Preliminary Design Document; Technical Report; Alpha Technology (INT)

LTD: Manchester, UK; London, UK, 2013.
26. Duong, L.V.T.; Hieu, D.V.; Luan, P.H.; Hong, T.T.; Khai, L.D. Hardware Implementation For Fast Block Generator Of Litecoin

Blockchain System. In Proceedings of the 2021 IEEE International Symposium on Electrical and Electronics Engineering (ISSE),
Ho Chi Minh, Vietnam, 15–16 April 2021; pp. 1–6. [CrossRef]

27. Duong, L.V.T.; Thuy, N.T.T.; Khai, L.D. A fast approach for bitcoin blockchain cryptocurrency mining system. Integration 2020,
74, 107–114. [CrossRef]

28. Litecoin. Block Hashing Algorithm. 2018. Available online: https://litecoin.info/index.php/Block_hashing_algorithm (accessed
on 8 March 2022).

29. Bitcoin. Block Hashing Algorithm. 2018. Available online: https://en.bitcoin.it/wiki/Block_hashing_algorithm (accessed on 8
March 2022).

30. Kaliski, B. PKCS #5: Password-Based Cryptography Specification Version 2.0; Technical Report RFC 2898; The Internet Research
Task Force Organization: USA, 2000. Available online: https://www.rfc-editor.org/info/rfc2898 (accessed on 8 March 2022).
[CrossRef]

31. Dang, Q.H. Secure Hash Standard; National Institute of Standards and Technology. Available online: https://doi.org/10.6028/nist.
fips.180-4 (accessed on 8 March 2022). [CrossRef]

32. Pham, H.L.; Tran, T.H.; Phan, T.D.; Le, V.T.D.; Lam, D.K.; Nakashima, Y. Double SHA-256 Hardware Architecture With Compact
Message Expander for Bitcoin Mining. IEEE Access 2020, 8, 139634–139646. [CrossRef]

33. Bernstein, D.J. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 84–97. [CrossRef]

34. Cohen, D. On Holy Wars and a Plea for Peace. Computer 1981, 14, 48–54. [CrossRef]
35. Litecoin Explorer. Available online: https://live.blockcypher.com/ltc/ (accessed on 8 March 2022).
36. Bhatnagar, H. Advanced ASIC Chip Synthesis: Using Synopsys Design Compiler Physical Compiler and Prime Time; Kluwer Academic

Publishers: New York, NY, USA, 2002. [CrossRef]

http://dx.doi.org/10.1007/s11036-018-1044-9
http://dx.doi.org/10.1007/s13389-013-0063-5
http://dx.doi.org/10.1109/ISPASS.2019.00011
http://dx.doi.org/10.1016/j.cose.2019.03.011
https://litecoin.info/index.php/Mining_hardware_comparison
https://litecoin.info/index.php/Mining_hardware_comparison
http://dx.doi.org/10.1109/ISEE51682.2021.9418691
http://dx.doi.org/10.1016/j.vlsi.2020.05.003
https://litecoin.info/index.php/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://www.rfc-editor.org/info/rfc2898
http://dx.doi.org/10.17487/rfc2898
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.180-4
http://dx.doi.org/10.6028/nist.fips.
http://dx.doi.org/10.1109/ACCESS.2020.3012581
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.1109/C-M.1981.220208
https://live.blockcypher.com/ltc/
http://dx.doi.org/10.1007/b117024

	Introduction
	Background
	Scrypt-Based Block Hashing for the Blockchain Network
	Scrypt Algorithm
	PBKDF2
	ROMix

	Proposed Scrypt Hardware Architecture
	Low-Resource and High-Throughput Non-Pipelined Scrypt Architecture
	Low-Resource and High-Throughput PBKDF2 Core Architectures
	Proposed Architecture for ROMix Core
	Shared Resources—Pipelined Scrypt Architecture

	Results
	Function Verification Results
	Implementation Performance Results

	Conclusions
	References

