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Abstract: Face comparison/face mapping is one of the promising methods in face biometrics which
needs relatively little effort compared with face identification. Various factors may be used to verify
whether two faces are of the same person, among which facial landmarks are one of the most objective
indicators due to the same anatomical definition for every face. This study identified major landmarks
from 2D and 3D facial images of the same Korean individuals and calculated the distance between the
reciprocal landmarks of two images to examine their acceptable range for identifying an individual
to obtain standard values from diverse facial angles and image resolutions. Given that reference
images obtained in the real-world could be from various angles and resolutions, this study created
a 3D face model from multiple 2D images of different angles, and oriented the 3D model to the
angle of the reference image to calculate the distance between reciprocal landmarks. In addition, we
used the super-resolution method of artificial intelligence to address the inaccurate assessments that
low-quality videos can yield. A portion of the process was automated for speed and convenience of
face analysis. We conclude that the results of this study could provide a standard for future studies
regarding face-to-face analysis to determine if different images are of the same person.

Keywords: facial image comparison; identity verification; facial landmark; 3D face reconstruction;
super resolution

1. Introduction

The face is one of the most important physical features of an individual that externally
expresses identity via its own distinctive characteristics. Therefore, the face and face images
are critical data in the identity verification process. Currently, with increasing utilization of
security and surveillance systems, acquired images are commonly used in public safety
and image forgery detection [1–4]. Therefore, numerous studies have attempted to develop
methods to improve the accuracy of identity verification using facial images.

The methods for identity verification using facial images can be categorized into
two major approaches. The first is called automated facial recognition (AFR), which
uses computer algorithms to compare a database of facial images with the target facial
image and identify the most similar database images. Another method is to compare and
analyze facial images of the person side-by-side. The second approach is called facial
comparison/mapping; this method can be relatively easy for people to use as compared
with AFR, which requires a large image database and considerable development cost [5].

In a forensic context, landmark-based face comparison methods can be useful. A
method that uses likelihood ratios (LRs) to assess the grouping of facial images based on
the morphometric indices was presented in [6]. The landmark values, such as averages
and SDs for the reference image, were estimated, and it calculated the probability of these
values from the probability distributions for the suspect as well as the population to acquire
the likelihood ratio. In addition, using the facial ratio from inter-landmark distances, it
performed intra- and inter-sample comparisons using the mean absolute value, Euclidean
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distance and cosine distance between ratios [7]. The statistics of the two frontal-faces
were examined to determine the calculation that best identifies a detectable correlation
difference between faces belonging to the same person. In addition, a series of area triplets
was constructed for geometric invariance including the area ratio and angle, then used as
feature vectors in face identification by the detected landmarks [8].

Some more specific ways of verifying identity are photoanthropometry, morphological
analysis, and facial superimposition [9–12]. When using these methods, many standards
can be used in the analysis, such as facial landmarks, the distance between landmarks,
the ratio and angle of the landmarks, and distinctive facial structures [13–15]. Facial
landmarks have the same anatomical definition for every face. Therefore, such landmarks
could be used as an objective standard if one could place reciprocal landmarks on test and
comparison faces.

The human face has about 80 to 90 nodal points. Facial verification systems measure
important aspects, such as the distance between the eyes, the width of the nose, and the
length of the chin [16,17]. In addition, the reciprocal landmarks in the frontal or profile
face are used directly or defined newly by extending the points [7,18–20]. As already
demonstrated by many studies, deep facial features for face verification perform much
better than the methods that use facial landmarks [18,21,22]. However, the facial landmarks
are not only visually easier to explain than deep facial features, but also objective indicators
that define the appearance of a face. Therefore, the face landmarks can be useful when
forensic cases need to be discussed in court [23–25]. The face mapping/comparison is a task
of finding out if two people are the same person, similar to inferring lookalike. Applications
such as Google’s ‘Art & Culture’ app and Microsoft’s ‘CelebLike’ are famous for their ability
to show the faces of celebrities who resemble the user. Finding a similar face is related to the
face verification that selects one ID that is most likely to match the input in that it infers the
face image that is most perceptually similar to the input [21,26,27]. Humans can identify
two people as different identities, even if their faces are very similar [27]. To estimate
the similarity between two face images, many studies have utilized the distance between
low-level feature descriptors, such as SIFT (Scale-Invariant Feature Transform), facial
shape, facial features, or facial texture [8,28–31]. Recent studies have explored improving
facial verification performance by combining these traditional features and deep-learning
technologies [32–34].

However, there can exist differences between identifiable features based on the image
resolution or angle of the face. To handle the pose problem, a promising method is
to use 3D facial information because the restored 3D face model is available to render
target facial poses. It is an ill-posed problem to generate 3D information from a single
image [35], therefore, prior-model based methods have been proposed, which require 3D
scan data of a large number of people to reproduce various face shapes of the input [36–38].
In addition, a 3D geometry can be directly estimated from images using the SfM (Structure
from Motion)—methods for estimating camera movements from image sequences with
various viewpoints [39,40]. In addition, if there are several photos of the object illuminated
in different directions, the depth can be estimated more accurately by combining this
information. These photometric stereo techniques have been traditionally applied for
3D reconstruction [41,42]. Recently, deep-learning-based super-resolution studies have
brought great progress in image quality improvement. There are many methods for super
resolution that are based on deep-learning technology, such as super resolution using deep
convolutional network (SRCNN), coupled deep convolutional auto-encoder (CDCA), and
very deep convolutional network-based super resolution (VDSR) [43–45].

Theoretically, the distance between reciprocal landmarks would be close to zero if the
facial pose of two images obtained from an individual were aligned perfectly. However,
it is impossible for the calculated distance to be zero due to the bias that occurs when a
professional analyst identifies landmarks or due to inaccuracies that occur when images
of different resolutions are compared. Nevertheless, if one could minimize such potential
errors and accurately locate landmarks on both images, then the distance between reciprocal
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landmarks would approach zero if the images being compared were of the same individual.
Therefore, it might be possible to use the distance between reciprocal landmarks of images
of the same individual as a standard for identity verification.

In general, large-scale datasets, such as MS-Celeb-1M [46] with 10 million face images,
are required for face identification, and complex algorithms and deep-learning architectures
need to be designed to process them. Our study has the novelty in that it provides effective
landmarks for face identification by analyzing traditional facial landmarks that represent
the structure of a face, as a way to determine whether it is the same person by comparing
two input images. This can provide visual clues for identification in that it is simpler
and contains more interpretable morphometric features than the deep-learning features.
In addition, the images of suspects acquired from security cameras contain variations
in facial pose and expression, low-image resolution, and occlusion of the face by hair or
accessories. These factors can degrade the comparison performance of experts such as
investigators [47,48].

This study aimed to resolve issues caused by different poses and image resolutions.
First, to solve the problems caused by pose variation between reference and comparison
images, we created a 3D face model of a subject via multiple images acquired from multiple
cameras with various angles, then rotated the model pose to match that of the comparison
image. Second, the comparison image obtained from CCTV (Closed-Circuit Television)
generally has low resolution, which can degrade the performance of the face analyst who
must manually locate facial landmarks. Thus, image enhancement could improve the
accuracy of the location of landmarks. In this paper, a super-resolution method via deep
learning is applied to solve this problem. In addition, to improve speed, convenience, and
accuracy of face analysis, we utilized a machine learning-based facial landmark detector,
which is widely used in computer vision. Further, we provide an index for identity
verification based on facial landmarks and an associated threshold from which to determine
whether different images have the same identity.

The contributions of this study can be summarized as follows:

• We present a landmark-based face mapping method which can represent the morphol-
ogy of the face and easier provide visual and interpretable cues than deep features.

• We provide the landmark indices and associated thresholds by which to determine
whether input images have the same identity.

• To cope with the images of low resolution and various poses, this study extracts more
accurate facial landmarks from the input faces through restoring the 3D model to
correct the poses and improving the image quality.

2. Materials and Methods

The overall flow of the identity verification method described in this paper, which uses
the distance between reciprocal landmarks of a reference image and comparison image, is
as follows.

First, to estimate a 3D geometry of the comparison face, we used photogrammetric
range imaging technique from a sequence of facial images. The facial pose of the recon-
structed 3D face model is rotated into the same pose as the comparison image obtained by
security cameras such as CCTV. In addition, super-resolution technology is applied to the
comparison image with low resolution to accurately extract facial landmarks. Next, the
facial landmarks within each image are detected by an elastic model-based facial landmark
detector; a professional facial analyst may adjust the detected landmarks for increased
accuracy. Based on these facial landmarks, size normalization is performed to generate
two images of same size and enable comparison of the locations of landmarks. The size of
the facial image is adjusted by setting the interpupillary distance (IPD) to 100 pixels for a
frontal presentation of the image. For other views, the distance between the nasion (midline
depth of the nasal root) and gnathion (lowest median landmark on the lower border of
the chin) are set to 100 pixels. Finally, we analyze the distribution of distances for the
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same individual and different individuals by calculating the distance between reciprocal
landmarks of normalized facial images. The whole process is described in Figure 1.

Figure 1. Overall framework of the proposed method.

To perform an identity verification experiment, we first constructed a Korean face
dataset that consisted of over 2500 images (the K-Face DB [49]. https://github.com/k-
face/k-face_2019, accessed on 21 December 2019). The dataset was collected from 50
Koreans (25 males and 25 females) who ranged in age from 20 to 50 years. By using a
multiple-camera system with various angles and a light controller, over 50 images of each
person were captured. Specifically, 40 images were collected as comparison images with
5 different facial angles, 2 different lighting conditions under 400 lux and 200 lux, and 4
different resolutions which include the ones higher than WQXGA (Wide Quad Extended
Graphics Array) and WVGA (Wide Video Graphics Array) and lower than WVGA. The
obtained image resolutions are 2592 × 1728, 864 × 576, 346 × 230, 173 × 115, respectively.
Here, we assume the image with higher resolution than WQXGA and WVGA as high-
resolution and mid-resolution image, respectively, and the rest as low-resolution image.
Additionally, 12–14 images from each camera angle under uniform lighting were acquired
to generate the 3D face models. The 3D face reconstruction process extracted 2D feature
points from images, calculated their correspondences, extracted a mesh, and restored the
facial textures based on the SfM technique [39]. We applied GPU (Graphics Processing
Unit) acceleration such that the total execution time was less than one minute. Generally,
there exists a problem of fixing the model’s scale and rotation coordinate system when
restoring 3D data from photos. To address this issue, we post-processed all models to have
physical dimensions and coordinate system based on measured distances and locations of
some of the cameras of the multi-camera system. With these steps, we created a dataset
that consisted of a 3D face model and 40 2D facial images per person, which we used to
conduct the distance-calculation experiment for identity verification. Before collecting
data, we informed the research participants about the general purpose of the research
and allowed them to sign a consent form if they wished to participate. An example of a
constructed dataset, which included obtained images and reconstructed 3D face models,
is shown in Figure 2. The resolutions of images collected by real-world security cameras
vary. If an image is low-definition, there are limitations in accurately determining facial
landmarks. To address this issue, we utilized a VDSR network [45] which has simple and
good performance by learning the mapping between low-resolution and high-resolution
images based on residual learning. The overall structure is that it passes an input image
through several convolutional layers and acquires an enhanced image as a result. To train
the architecture, the CelebA and BERC databases were used [50,51]. Figure 3 shows an
example of the result of super resolution based on deep learning.

https://github.com/k-face/k-face_2019
https://github.com/k-face/k-face_2019
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(a)

(b)

Figure 2. Example of dataset construction: (a) obtained images; (b) 3D face model based on 3D image
reconstruction.

(a) (b)

Figure 3. Example of the result of super resolution: (a) low-resolution input images; (b) result of
super resolution.

Next, the facial landmarks are detected in the reference image and comparison im-
age via the above steps. For the automatic landmark detection process, we utilized the
wild-feature detector [52] for feature detection tasks. This assumes that the face shape
is a tree structure, and uses a part-based model for face detection, pose estimation, and
facial feature detection. In the current approach, the landmark detector extracts the facial
region, facial pose angle, and facial landmarks concurrently, using 3D face structure and
an elastic model. In particular, the facial landmarks considered in this paper are shown in
Tables 1 and 2. These landmarks were chosen with reference to previous studies of identity
verification, and include 4 positions on eyebrows to utilize this part of the face in identity
verification [2,7,20,53] as described in Figure 4.
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Table 1. Frontal pose facial landmark index numbers and definitions [2,7,20,53].

Landmark Abbreviation Definition

Index Title

Midline

1 Gnathion gn The lowest median landmark on
the lower border of the chin

2 Labiale inferius li The midpoint of the lower
vermilion line

5 Labiale superius ls The midpoint of the upper
vermilion line

6 Subnasale sn
The point at which the columella
merges with the upper lip in the

midsagittal plane

9 Pronasale prn The most protruded point of the
nasal tip

10 Nasion n The midline depth of the
nasal root

Bilateral

3,4 Cheilion ch The point located at each
labial commissure

7,8 Alare al The most lateral point of the
alar contour

11,15 Endocanthion en
The point at the inner

commissure of the palpebral
fissure

12,16 Exocanthion ex
The point at the outer

commissure of the palpebral
fissure

13,17 Outer Eyebrow oe The point at the outer eyebrow
14,18 Inner Eyebrow ie The point at the inner eyebrow

19,21 Otobasion inferius obi The lowest point of attachment
of the external ear to the head

20,22 Otobasion superius obs The highest point of attachment
of the external ear to the head

(a) (b)

Figure 4. The location of facial landmarks: (a) frontal pose; (b) side pose.

To train the facial landmark detector, the Multi-PIE database was used [54]. The Multi-
PIE database is a large-scale facial database that consists of different poses, illumination
conditions, and facial expressions of 337 of a variety of races, with a male-to-female ratio of
7 to 3. Figure 5 is a sample from the Multi-PIE database.
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Table 2. Side pose facial landmark index numbers and definition [2,7,20,53].

Landmark Abbreviation Definition

Index Title

Midline

1 Gnathion gn The lowest median landmark on
the lower border of the chin

2 Labiale inferius li The midpoint of the lower
vermilion line

3 Cheilion ch The point located at each labial
commissure

4 Labiale superius ls The midpoint of the upper
vermilion line

5 Subnasale sn
The point at which the columella
merges with the upper lip in the

midsagittal plane

6 Pronasale prn The most protruded point of the
nasal tip

7 Nasion n The midline depth of the
nasal root

8 Exocanthion ex
The point at the outer

commissure of the palpebral
fissure

9 Endocanthion en
The point at the inner

commissure of the palpebral
fissure

10 Inner Eyebrow ie The point at the inner eyebrow
11 Outer Eyebrow oe The point at the outer eyebrow

12 Otobasion inferius obi The lowest point of attachment
of the external ear to the head

13 Otobasion superius obs The highest point of attachment
of the external ear to the head

Figure 5. Example face images from the Multi-PIE database [54].

After detecting the 22 facial landmarks and 13 facial landmarks for the frontal pose
and side pose, respectively, professional facial analysts manually adjusted the detected
facial landmarks. Before calculating the distance between reciprocal landmarks, image
size normalization was performed. This procedure normalized the face sizes within a
comparison pair of images with different face sizes. Different images of the same individual
could differ in size because of the characteristics of the respective cameras, the distance
between camera and subject, and so on. Here, we set the IPD to 100 pixels for frontal poses
and the distance between the nasion and gnathion to 100 pixels for other poses. Figure 6
describes the examples of facial region size differences for two images of the same person
and Figure 7 illustrates the example of size normalization, respectively.
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Figure 6. Example of facial region size differences for two images of the same person obtained using
different cameras.

(a) (b)

Figure 7. Example of size normalization: (a) frontal pose; (b) side pose.

3. Results

Using the materials and data described above, we experimentally assessed identity
verification in 3 ways. First, we calculated the distance between each reciprocal landmarks.
The nasion and gnathion were excluded when calculating the distances because they were
used to normalize image size. Thus, 22 distances for frontal poses and 11 distances for
side poses were calculated. Euclidean Distance (ED) was used as the distance measure,
according to Equation (1).

Dist =

√
∑n

i=1((xin − xjn)2 + (yin − yjn)2)

n
(1)

The dissimilarity of each landmark position was subject to pixel error. IPD is generally
63.36 mm [55]. Thus, a 1-pixel error was equivalent to 0.63 mm of distance because we
set the IPD to 100 pixels. Accordingly, we analyzed the pixel error distribution for the
same individual and for two different individuals to obtain standard values for identity
verification. Before the experiment, we compared the average distance between reciprocal
landmarks of each image resolution. Figure 8 shows the result of such comparison among
high/mid-resolution, low-resolution, and enhanced low-resolution based on the super-
resolution method. As mentioned in Section 1, low-image resolution can degrade the
comparison performance of investigators. Thus, low-resolution images cause a problem
of making the EDs larger, even if two images are identical. As shown in Figure 8, the EDs
of low-resolution images (red bar) are more than double the distance of EDs of high/mid-
resolution images (blue bar). By applying the super-resolution to low-resolution image
(green bar), we could reduce the EDs for the same identity. Based on this result, we
constructed a comparison image dataset which consists of high/mid-resolution images and
enhanced low-resolution images obtained via super resolution. By using the constructed
comparison dataset, we measured the EDs between each reciprocal landmarks according
to 5 facial pose angles. The results are shown in Figure 8 and Table 3. In Figure 8, the
X-axis, Y-axis, blue bars, and red bars refer to the landmark indexes defined in Table 1,
calculated ED, distances for different images of the same individual, and distance for
images of different individuals, respectively.
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(a) (b)

(c) (d)

(e)

Figure 8. The comparison of average ED of same identity between high/mid-resolution, low-
resolution, and enhanced low-resolution based on super-resolution method: (a) Left 90◦; (b) Left 45◦;
(c) Front; (d) Right 45◦; (e) Right 90◦.

As shown in Figure 9 and Table 3, the distance between reciprocal landmarks tended
to decrease as the pose angle approached that of a frontal pose. In particular, the landmarks
near the eyes for the frontal pose had small values due to the size normalization based on
the center of the two eyes; this decreased the distance between landmarks for different
individuals. Thus, it was difficult to distinguish individuals using the landmarks near
the eyes for frontal poses. For example, the right exocanthion (index number 16) had an
average pixel ED of 2.96 for the same identity and 3.05 for different identities. If these
distances are converted into mm, the values are 1.86 mm and 1.92 mm, respectively. Thus,
if the facial analyst even slightly mis-positioned the landmark, two images obtained from
different persons might be diagnosed as the same identity. In the case of landmarks, except
the eye area, the distance between landmarks for the same identity was about half as small
as that for different persons, and the average EDs of different identity near the ear area
was almost three times larger than that of the same identity. Among the landmarks in the
ear area, we could confirm that both otobasion inferius (index number 19, 21) are the most
discriminable based on the average distance between same and different individual in case
of frontal facial pose. For side poses, the ED between landmarks near the eye and ear were
significantly different for the same identity versus different identities, which validates the
importance of landmarks near the eye and ear for identity verification.

Based on the mean and standard deviation of ED of the landmark, we measured the d′

value to select the reliability of the facial landmark [56]. The d′ measurement is statistically
used to calculate the distance between two distributions based on both mean and standard
deviation. The equation of d′ is as follows.

d′ =
µimposter − µgenuine√

σ2
genuine+σ2

imposter
2

(2)

In Equation (2), µgenuine and µimposter denote the mean of ED for same identity and
different identity, respectively. In addition, σ-genuine and σ-imposter are the standard
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deviations of them. As the distance between the two distributions increases, the value of d′

also becomes greater. Based on this, it is possible to select the reliable landmarks that can
distinguish the identity of the same and different individuals. As shown in Table 3, we can
confirm that the landmarks in the eye and ear region have the reliability to verify the same
identity compared to other landmarks.

(a) (b)

(c) (d)

(e)

Figure 9. Average ED between each reciprocal landmark with different facial poses: (a) Left 90◦;
(b) Left 45◦; (c) Front; (d) Right 45◦; (e) Right 90◦.

In addition, we calculated the confidence interval of the population mean to be 95%
confidence. In case of this experiment, the number of samples for the same identity
was 400, so the confidence interval of the population of right otobasion inferius (index
number 19) ranged from 5.261 to 5.938. From this result, we set the maximum value of the
confidence interval as standard value for identity verification. Thus, we are confident that
the probability of two images having the same identity is high if the ED from otobasion
inferius is smaller than 5.938. The threshold for identity verification of all the landmarks
are shown in the rightmost column in Table 3.

Table 3. Mean and Standard deviation of ED between each reciprocal landmark.

Pose Landmark Same Identity Different Identity d′ Standard Value

Index Mean Std. Mean Std. for Identity
Verification

Left 90◦

2 2.488 1.529 5.099 2.734 1.179 2.638
3 2.413 1.485 5.269 2.701 1.310 2.559
4 2.096 1.407 4.811 2.640 1.283 2.234
5 2.395 2.134 4.808 2.615 1.011 2.605
6 2.074 1.421 4.646 2.601 1.227 2.213
8 11.030 8.582 32.078 18.404 1.466 11.871
9 10.062 7.810 31.255 17.862 1.537 10.828

10 9.241 7.044 31.508 17.684 1.654 9.931
11 11.992 9.037 34.779 19.964 1.471 12.877
12 13.438 10.393 35.322 20.461 1.349 14.456
13 12.745 10.175 34.776 19.921 1.393 13.742
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Table 3. Cont.

Pose Landmark Same Identity Different Identity d′ Standard Value

Index Mean Std. Mean Std. for Identity
Verification

Left 45◦

2 2.122 1.569 3.758 2.049 0.897 2.275
3 2.565 1.833 4.978 2.558 1.084 2.745
4 2.148 1.396 3.867 2.255 0.916 2.285
5 2.679 1.645 4.003 2.169 0.688 2.840
6 2.923 2.351 4.339 2.427 0.593 3.153
8 10.920 8.989 32.345 20.319 1.364 11.801
9 10.046 8.225 31.044 19.573 1.399 10.852

10 9.828 7.765 31.769 19.726 1.464 10.589
11 13.215 10.590 35.143 21.664 1.286 14.253
12 13.501 10.516 33.153 20.810 1.192 14.531
13 13.183 10.611 33.142 20.809 1.208 14.223

Front

1 7.158 4.325 13.977 8.871 0.977 7.582
2 5.010 2.926 10.407 6.278 1.102 5.297
3 5.739 3.375 10.816 6.519 0.978 6.070
4 5.316 3.000 9.746 5.758 0.965 5.610
5 4.612 3.040 9.285 5.985 0.984 4.910
6 3.759 2.375 7.534 4.534 1.043 3.991
7 4.288 2.360 7.731 4.439 0.968 4.520
8 4.475 2.285 7.757 4.219 0.967 4.699
9 5.056 2.884 7.641 4.565 0.677 5.338
10 4.184 2.716 5.11 2.872 0.335 4.451
11 2.772 1.878 3.048 1.725 0.153 2.956
12 2.768 1.874 3.048 1.725 0.155 2.952
13 10.955 7.253 11.996 6.908 0.147 11.666
14 5.939 2.970 8.497 4.455 0.676 6.230
15 2.969 1.840 3.049 1.741 0.045 3.149
16 2.961 1.830 3.049 1.740 0.049 3.141
17 10.586 6.525 11.593 6.542 0.154 11.225
18 5.333 2.958 8.640 4.447 0.876 5.623
19 5.600 3.453 16.809 9.272 1.602 5.938
20 6.633 4.279 15.328 8.443 1.299 7.053
21 5.090 3.152 17.843 9.812 1.750 5.399
22 5.679 4.135 14.780 8.162 1.407 6.084

Right 45◦

2 2.217 1.356 3.795 2.084 0.898 2.349
3 2.655 1.916 5.414 2.828 1.142 2.843
4 2.147 1.323 4.168 2.165 1.127 2.276
5 2.500 1.471 4.109 2.226 0.853 2.644
6 3.157 2.213 4.663 2.445 0.646 3.374
8 8.245 7.020 29.181 17.338 1.583 8.933
9 8.796 6.704 29.506 17.885 1.533 9.453
10 8.768 5.929 29.004 17.363 1.560 9.349
11 10.452 6.199 29.312 16.675 1.499 11.059
12 8.189 7.216 29.471 17.168 1.616 8.897
13 8.891 7.135 29.128 16.519 1.590 9.590

Right 90◦

2 2.313 1.446 5.151 2.728 1.300 2.455
3 2.464 1.612 5.621 2.950 1.328 2.622
4 2.531 1.840 5.071 2.780 1.077 2.712
5 2.658 2.205 4.924 2.625 0.935 2.874
6 2.379 1.737 4.403 2.454 0.952 2.549
8 9.587 7.266 34.803 21.469 1.573 10.299
9 10.563 7.855 34.619 21.609 1.480 11.333
10 10.010 7.380 34.026 21.604 1.488 10.734
11 10.198 6.680 34.733 20.673 1.597 10.853
12 9.720 7.383 35.084 21.022 1.610 10.444
13 9.363 6.956 35.033 20.315 1.691 10.045
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In the second experiment, we divided the face into 4 regions (eye, nose, lip, and ear)
and calculated EDs using the landmarks in each region. This experiment enabled us to
determine which facial regions were more effective for identity verification. The facial
landmarks and index numbers in each region are shown in Table 4.

Table 4. Facial landmarks and index numbers of each facial region.

Facial Region Frontal Pose Side Pose

Landmarks Landmark Index Landmarks Landmark Index

Eye

Endocanthion, Exocanthion,

4Exocanthion, Outer 11,12,13,14, Endocanthion, Inner
Eyebrow, Inner 15,16,17,18 Eyebrow, Outer

Eyebrow Eyebrow

Nose Subnasale, Alare, 6,7,8,9,10 Subnasale, Pronasale, 5,6,7Pronasale, Nasion Nasion

Lip
Labiale inferius,

2,3,4,5
Labiale inferius,

2,3,4Labiale superius, Labiale superius,
Cheilion Cheilion

Ear Otobasion inferius, 19,20,21,22 Otobasion inferius, 12,13Otobasion superius Otobasion superius

In this experiment, the landmarks used for size normalization were excluded, as in
the previous experiment. From the result, the d′ in the eye region of the frontal face has a
very low value as in the previous experiment, which means that it could not be utilized for
same identity verification. Based on the d′, the eye region, except the frontal pose and ear
region, are the important facial parts to verify same identity which have more reliability
than other regions. The results are shown in Table 5.

Table 5. Mean and Std. of EDs between reciprocal landmarks in each region.

Facial
Region Pose Angle Same Identity Different Identity d′ Standard Value

Mean Std. Mean Std. for Identity
Verification

Eye

Left 90◦ 5.431 3.917 16.316 9.075 1.557 5.815
Left 45◦ 5.732 4.228 16.445 9.942 1.402 6.146

Front 2.445 1.058 2.907 0.996 0.450 2.549
Right 45◦ 4.694 3.023 14.757 8.435 1.588 4.990
Right 90◦ 5.143 3.512 17.389 10.480 1.567 5.487

Nose

Left 90◦ 1.099 0.797 2.288 1.115 1.227 1.177
Left 45◦ 1.388 0.855 2.050 0.921 0.745 1.472

Front 2.117 0.786 3.43 1.463 1.122 2.194
Right 45◦ 1.410 0.772 2.150 0.940 0.860 1.486
Right 90◦ 1.234 0.874 2.261 1.081 1.046 1.319

Lip

Left 90◦ 1.421 0.825 3.033 1.326 1.509 1.492
Left 45◦ 1.390 0.820 2.592 1.013 1.304 1.470

Front 2.747 1.240 5.272 2.654 1.219 2.869
Right 45◦ 1.432 0.771 2.741 1.080 1.395 1.508
Right 90◦ 1.496 0.798 3.174 1.377 1.491 1.575

Ear

Left 90◦ 9.338 7.158 24.982 13.927 1.413 10.040
Left 45◦ 9.502 7.369 23.584 14.480 1.226 10.224

Front 3.122 1.467 8.528 3.629 1.953 3.266
Right 45◦ 6.172 4.907 20.885 11.617 1.650 6.653
Right 90◦ 6.887 4.870 24.956 14.330 1.688 7.364
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In the last experiment, we calculated the ED based on entire facial landmarks, as
shown in Table 6. The d′ between two distributions of the overall pose angle were similar or
higher than that of the previous experiment. In other words, as the use of overall landmarks,
the probability of distinction between the same person and different person would increase,
which means that it can be used more reliably in identity verification. All of the standard
values for identity verification in each facial pose were 2.879, 3.002, 1.406, 2.307, 2.507,
respectively. All proposed methods are described in Algorithm 1.

Table 6. Mean and Std. of EDs between reciprocal landmarks in each region.

Pose Angle Same Identity Different Identity d′ Standard
Value for

Mean Std. Mean Std. Identity
Verification

Left 90◦ 2.694 1.891 7.639 4.010 1.577 2.879
Left 45◦ 2.806 2.002 7.488 4.363 1.379 3.002

Front 1.364 0.422 2.448 0.732 1.814 1.406
Right 45◦ 2.174 1.355 6.738 3.570 1.690 2.307
Right 90◦ 2.359 1.517 7.966 4.448 1.687 2.507

Algorithm 1 Proposed Method for Selecting Reliable Landmark Indices.
Input: Multi-view references images, comparison image
Output: ED and landmark indices

1: Repeat:
2: Apply SfM [41] on multi-view images, generate a 3D face mesh
3: Rotate the 3D mesh to a comparison facial pose and acquire rendered image
4: Conduct VDSR [47] on the comparison image, acquire high-definition image
5: Conduct wild-feature detector [54] on the rendered and comparison image, obtain

landmark points
6: Select the landmark indices for frontal and profile face images following [2,20,21,55]
7: Normalize the images by IPD and distance between the nasion and gnathion, both

100 pixels
8: Calculate distances between the selected landmarks following Equation (1).
9: Calculate d′ measure following Equation (2)

10: Continue Until: Paired (genuine and imposter) images ended
11: Analyze the distribution for the same and different individuals
12: Select reliable landmark indices

4. Discussion and Conclusions

In this paper, by creating a 3D face model from multiple images taken from multiple
angles and reorienting it to match the angle of a comparison image, we resolved the issues
associated with comparisons of different face angles and poses. Inaccuracies caused by low-
resolution images typical of security cameras frequently occurred. To resolve this problem,
we applied the super-resolution method based on deep learning, which converted the
input into a high definition image, and proved the effect of super resolution by comparing
the average distance with that from a low-resolution image. In addition, we applied an
automatic facial landmark detector to improve speed, convenience, and accuracy for face
analysts who typically must manually indicate facial landmarks on each image.

Finally, we provided a standard ED value and more reliable facial landmarks for
identity verification. By using the d′ measurement between two distributions, which
are from same identity and different identity, we could confirm the reliable landmarks
according to each facial pose. As mentioned in the experimental results, the landmarks near
the eyes and ears had a higher distinguish ability than others. The most reliable landmarks
were otobasion inferius and otobasin superius in overall facial pose, and exocanthion,
endocanthion, inner eyebrow, outer eyebrow were also reliability ones in the case of side
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pose. In addition, we proved that eyes and ears are significant facial components for
identity verification by analyzing the distributions from landmark grouping comparison
experiment. In addition, the standard threshold for identity verification was determined
with 95% confidence by statistical analysis based on mean and standard deviation.

In future work, we plan to study standard measures by applying the proposed methods
from various face datasets and, further, identity verification based on image comparisons
that are robust to different facial expressions and occlusion of facial areas by hair or
accessories. We also aim to improve on the reliability of our identity verification method by
analyzing the relationships between lines and angles that define landmarks.
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