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Abstract: Knowledge graphs are structured representations of real world facts. However, they
typically contain only a small subset of all possible facts. Link prediction is the task of inferring
missing facts based on existing ones. Knowledge graph embedding, representing entities and
relations in the knowledge graphs with high-dimensional vectors, has made significant progress in
link prediction. The tensor decomposition models are an embedding family with good performance
in link prediction. The previous tensor decomposition models do not consider the problem of
attribute separation. These models mainly explore particular regularization to improve performance.
No matter how sophisticated the design of tensor decomposition models is, the performance is
theoretically under the basic tensor decomposition model. Moreover, the unnoticed task of attribute
separation in the traditional models is just handed over to the training. However, the amount of
parameters for this task is tremendous, and the model is prone to overfitting. We investigate the
design approaching the theoretical performance of tensor decomposition models in this paper. The
observation that measuring the rationality of specific triples means comparing the matching degree
of the specific attributes associated with the relations is well-known. Therefore, the comparison
of actual triples needs first to separate specific attribute dimensions, which is ignored by existing
models. Inspired by this observation, we design a novel tensor ecomposition model based on
Separating Attribute space for knowledge graph completion (SeAttE). The major novelty of this paper
is that SeAttE is the first model among the tensor decomposition family to consider the attribute
space separation task. Furthermore, SeAttE transforms the learning of too many parameters for the
attribute space separation task into the structure’s design. This operation allows the model to focus
on learning the semantic equivalence between relations, causing the performance to approach the
theoretical limit. We also prove that RESCAL, DisMult and ComplEx are special cases of SeAttE in
this paper. Furthermore, we classify existing tensor decomposition models for subsequent researchers.
Experiments on the benchmark datasets show that SeAttE has achieved state-of-the-art among tensor
decomposition models.

Keywords: NLP; knowledge graphs; knowledge representation; link prediction; attribute space;
separation

1. Introduction

Knowledge Graphs (KGs) are collections of large-scale triples, such as Freebase [1],
YAGO [2] and DBpedia [3]. KGs play a crucial role in applications such as question
answering services, search engines, and smart medical care. Although there are billions
of triples in KGs, they are still incomplete. These incomplete knowledge bases will bring
limitations to practical applications [4]. For example, over 70% of people included in
Freebase have no known place of birth,and 99% have no known ethnicity, which will
significantly limit our search and answering [5]. Therefore, knowledge graph completion,
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known as link prediction, which automatically predicts missing links between entities
based on given links, has recently attracted growing attention.

Inspired by word embedding [6], researchers recently tried to solve the task of link
prediction through knowledge graph embedding. Knowledge graph embedding models
map entities and relations into low-dimensional vectors (or matrices, tensors), measure
the rationality of triples through specific score functions between entities and relations,
and rank the triples with scores. TransE [1] first proposes to utilize relation vectors as the
geometric distance between entities. Then many variants emerge.

The tensor decomposition models [7–13] are a family of which the inference perfor-
mance is relatively good among these variants. RESCAL [7] is the basic tensor decomposi-
tion model, which is the first tensor decomposition model. Since RESCAL [7] represents
the relations as a matrix, the large number of parameters makes it difficult for the model to
learn effectively. So DisMult [8] directly diagonalizes the matrix, which takes the relations
as vectors. This operation significantly reduces the number of parameters. There are a
large number of complex relation types in the knowledge graphs. However, DisMult is an
over-simplified model, which cannot describe complex relations. Then subsequent variants
are invented to describe more types of relations, such as asymmetric and hierarchical
relations, which are equivalent to designing unique structures for description of specific
types of relations. For example, ComplEx [9], similarly to DistMult [8], forces each relation
embedding to be a diagonal matrix but extends such formulation in the complex space.
Analogy [14] aims at modeling analogical reasoning, which is crucial for any knowledge
induction. It employs the general bilinear scoring function but adds two main constraints
inspired by analogical structures. TuckER [10] relies on the Tucker decomposition [15],
which factorizes a tensor into a set of vectors and a smaller shared core. SimplE [11] forces
relation embeddings to be diagonal matrices, similarly to DistMult [8], but extends it by
associating two separate embeddings with each entity and associating two separate diag-
onal matrices with each relation. These models mainly explore particular regularization
to improve performance. No matter how sophisticated the design of such tensor decom-
position models is, they find it difficult to surpass the basic tensor decomposition model
theoretically. In addition, the previous tensor decomposition models do not consider the
problem of attribute separation. The unnoticed task of attribute separation in the traditional
models is just handed over to the training. However, the amount of parameters for this
task is tremendous, and the model is prone to overfitting.

Considering that none of the variant models under the current research route can ex-
ceed the theoretical tensor decomposition model, we focus on making the tensor decompo-
sition model approach the theoretical performance in this paper. The tensor decomposition
models cannot achieve theoretical performance because too many parameters limit the
dimensional expansion. Inspired by attribute selection in practical comparisons of triples,
we propose a tensor decomposition model based on attribute subspace segmentation in
this paper.

In practice, entities are collections of attributes, and different entities can contain
various semantic attributes. Comparing triples with different relations should only select
specific attributes for comparison. Figure 1 shows the comparison of boxes with the
same shape and different colors. When comparing different attributes such as colors
or shapes, we should first separate the colors or shapes of the entities that need to be
compared and then compare the associations of the corresponding colors or shapes of
the entities. Inspired by this fact, we should first separate the properties that need to be
compared. Measuring the plausibility of a given triple means comparing the matching
degree of the attributes associated with the predicate between the entities. However, the
traditional tensor decomposition model ignores the first operation (attribute separation).
Therefore, we propose a novel model—a tensor decomposition model based on separating
attribute space for knowledge graph completion (SeAttE) in this paper. SeAttE transfers
the large-parameter learning for the attribute space separation task in traditional tensor
decomposition models to the model structure design. This operation effectively reduces the
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number of parameters, allowing the model to focus on learning the semantic equivalence
between relations and better performance.

Shape:   Cube            Cube

Colour:  Blue            Yellow
=

Figure 1. Comparison of boxes with the same shape and different colors.

The actual size of the attribute subspace is related to the complexity of the relations.
Predefined designs cannot accurately model the relations. In order to facilitate the realiza-
tion of the model, we propose the initialization design of the uniform attribute subspace.
Specifically, SeAttE limits the size of each attribute subspace by setting the maximum
attribute subspace dimension. In this paper, the large amount of parameters that need
to be learned for the attribute space separation task is transformed into the design of
the model structure. This design dramatically reduces the need to learn parameters so
that the tensor decomposition model can be extended to higher dimensions, significantly
improving performance.

Overall, inspired by the fact that inference should first perform attribute space filtering,
we propose SeAttE—a tensor factorization model based on separating attribute space for
knowledge graph completion in this paper. Our main contributions are as follows.

• SeAttE is the first model among the tensor decomposition family to consider the
attribute space separation task. SeAttE transforms the learning of too many parameters
for the attribute space separation task into the structure’s design. This operation allows
the model to focus on learning the semantic equivalence between relations, causing the
performance to approach the theoretical limit. Experiments on the benchmark datasets
show that SeAttE achieves state-of-the-art among the tensor factorization models.

• We prove that RESCAL, DisMult, and ComplEx are all special cases of SeAttE in
this paper;

• We classify the tensor factorization models from a new perspective for their better
understanding by subsequent researchers.

The rest of this paper is organized as follows: Section 2 presents a brief overview of
related work. We provide the problem formulation, including definitions, preliminaries
and research questions in Section 3. We analyze the design of SeAttE and prove the relation
to previous tensor factorization models in Section 4. The experiments are conducted and
discussed with the existing KG embedding models in Section 5. Finally, we summarize our
findings along with the future directions in Section 6.

2. Related Work

In this section, we describe related works and the critical differences between them. We
divide knowledge graph embedding models into three leading families [16–19], including
Tensor Decomposition Models, Geometric Models, and Deep Learning Models.

Tensor Decomposition Models. These models implicitly consider triples as tensor de-
composition. DistMult [8] constrains all relation embeddings to be diagonal matrices, which
reduces the space of parameters to access a more accessible model to train. RESCAL [7]
represents each relationship with a total rank matrix. ComplEx [9] extends the KG embed-
dings to the complex space to better model asymmetric and inverse relations. Analogy [14]
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employs the general bilinear scoring function but adds two main constraints inspired by
analogical structures. Based on the Tucker decomposition, TuckER [10] factorizes a tensor
into a set of vectors and a smaller shared core matrix. SimplE [11] is a simple enhancement
of CP to allow the two embeddings of each entity to be learned dependently. HolE [13] is
a multiplicative model that is isomorphic to ComplEx [9]. Inspired by the recent success
of automated machine learning (AutoML), AutoSF [12] proposes to automatically design
scoring functions for distinct KGs by the AutoML techniques. QuatDE [20] captures the
variety of relational patterns and separates different semantic information of the entity,
using transition vectors to adjust the point position of the entity embedding vectors in
the quaternion space via Hamilton product, enhancing the feature interaction capability
between elements of the triplet. DensE [21] develops a novel knowledge graph embedding
method to provide an improved modeling scheme for the complex composition patterns
of relations.

Geometric Models. Geometric Models interpret relations as geometric transforma-
tions in the latent space. TransE [1] is the first translation-based method, which treats
relations as translation operations from the head entities to the tail entities. Along with
TransE [1], multiple variants, including TransH [22], TransR [23] and TransD [24], are pro-
posed to improve the embedding performance of KGs. Recently, RotatE [25] defines each
relation as a rotation from head entities to tail entities. Inspired by the fact that concentric
circles in the polar coordinate system can naturally reflect the hierarchy, HAKE [26] maps
entities into the polar coordinate system. HAKE [26] can effectively model the semantic
hierarchies in knowledge graphs. OTE [27] proposes a distance-based knowledge graph
embedding. First, OTE extends the modeling of RotatE from 2D complex domain to high
dimensional space with orthogonal relation transforms. Second, graph context is proposed
to integrate graph structure information into the distance scoring function to measure the
plausibility of the triples during training and inference.

Deep Learning Models. Deep Learning Models use deep neural networks to per-
form knowledge graph completion. ConvE [28] and ConvKB [29] employ convolutional
neural networks to define score functions. CapsE [30] embeds entities and relations into
one-dimensional vectors under the basic assumption that different embeddings encode
homologous aspects in the same positions. CompGCN [31] utilizes graph convolutional
networks to update the knowledge graph embedding. Neural Tensor Network (NTN)
combines E-MLP with several bilinear parts. Nathani [32] proposes a novel attention-based
feature embedding that captures both entity and relation features in any given entity’s
neighborhood. RLH [33] is inspired by the hierarchical structure through which a human
being handles cognitionally ambiguous cases. The whole reasoning process is decomposed
into a hierarchy of two-level Reinforcement Learning policies for encoding historical infor-
mation and learning structured action space. R2D2 [34] is a novel method for automatic
reasoning on knowledge graphs based on debate dynamics. R2D2 is to frame the task of
triple classification as a debate game between two reinforcement learning agents which
extract arguments-paths in the knowledge graph—with the goal to promote the fact being
true (thesis) or the fact being false (antithesis), respectively. RNNLogic [35] is a probabilistic
model. RNNLogic treats logic rules as a latent variable, and simultaneously trains a rule
generator as well as a reasoning predictor with logic rules. MADLINK [36] introduces
an attentive encoder–decoder-based link prediction approach considering both structural
information of the KG and the textual entity descriptions.

There are also other models, such as DURA [37], which are proposed to solve overfit-
ting. RuleGuider [38] leverages high-quality rules generated by symbolic-based methods
to provide reward supervision for walk-based agents. SFBR [39] provides a relation-based
semantic filter to extract the attributes that need to be compared and suppress the irrelevant
attributes of entities. Together, most of the above studies intend to find a more robust
representing approach. Measuring the effectiveness of certain triples is to compare the
matching degree of specific attributes based on relations. Only a few models, such as
TransH [22], TransR [23], and TransD [24], consider that entities in different triples should



Electronics 2022, 11, 1058 5 of 17

have different representation. However, these variants require many resources occupations
and are limited to particular models.

Although there is much research on this task, this paper mainly focuses on the mod-
els based on tensor decomposition. The previous tensor decomposition models mainly
achieved better performance through unique regularization, but these models still could
not reach the theoretical upper limit of the tensor decomposition model. No matter how
sophisticated the design of tensor decomposition models is, the performance is theoretically
under the basic tensor decomposition model. Moreover, the previous tensor decomposition
model did not consider the problem of attribute separation. The unnoticed task of attribute
separation in the traditional models was just handed over to the training. However, the
amount of parameters for this task is tremendous, and the model is prone to overfitting.
Inspired by the actual semantic comparison, this paper proposes an attribute subspace
structure design—SeAttE, which reaches the theoretical upper limit of the tensor decompo-
sition model. We will describe the relationship between SeAttE and other models based on
tensor decomposition in detail in Section 4.3.

3. Background

In this section, we introduce KG embedding, KG completion tasks and the nota-
tions used throughout this paper. Next, we briefly introduce several models involved in
this paper.

3.1. KG Completion and Notations

KGs are collections of factual triples K = {(h, r, t), h, t ∈ E , r ∈ R}, where (h, r, t)
represents a triple in the knowledge graph, h, t, r are head, tail entities and relations,
respectively. We associates the entities h, t and relations r with vectors h, t, r ∈ Rd in
knowledge graph embedding. Then we design an appropriate scoring function dr(h, t):
E ×R× E → R, to map the embedding of the triple to a certain score. For a particular
question (h, r, ?), the task of KG completion is ranking all possible answers and obtain the
preference of prediction.

We use Wr ∈ Rd×d and r ∈ Rd to distinguish matrix representation and vector
representation of the relations, respectively. T, 〈·〉 and ◦ denote the operation of transpose,
the generalized dot product and the Hadamard product, respectively. Especially, we utilize
rSeAttE to represent the matrix of relation in SeAttE. Let ‖‖, diag() and Re() denote the L2
norm, matrix diagonalization and the real part of complex vectors.

3.2. Basic Models

Tensor Factorization Models. Models in this family interpret link prediction as a
task of tensor decomposition, where triples are decomposed into a combination (e.g.,
a multi-linear product) of low-dimensional vectors for entities and relations. CP [40]
represents triples with canonical decomposition. Note that the same entity has different
representations at the head and tail of the triplet. The score function can be expressed as:

dr(h, t) =
∥∥∥hTrt

∥∥∥ (1)

where h, r, t ∈ Rk.
RESCAL [7] represents a relation as a matrix Wr ∈ Rd×d that describes the interactions

between latent representations of entities. The score function is defined as:

dr(h, t) =
∥∥∥hTWrt

∥∥∥ (2)

DistMult [8] forces all relations to be diagonal matrices, which consistently reduces
the space of parameters to be learned, resulting in a much easier model to train. On the
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other hand, this makes the scoring function commutative, which amounts to treating all
relations as symmetric.

dr(h, t) =
∥∥∥hTWrt

∥∥∥ (3)

where Wr = diag(w1, w2, . . . , wn).
ComplEx [9] extends the real space to complex spaces and constrains the embeddings

for relation to be a diagonal matrix. The bilinear product becomes a Hermitian product in
complex spaces. The score function can be expressed as:

dr(h, t) = Re
(

hTdiag(r)t
)

(4)

where h, r, t ∈ Ck.

4. SeAttE Model

This section introduces a novel model—an Embedding model based on Separating
Attribute space for knowledge graph completion. We first introduce the motivation and the
specific design of SeAttE in Section 4.1 and the relation to previous models in Section 4.2.
Finally, we classify the current tensor factorization models in Section 4.3.

4.1. Motivation and Design of SeAttE

We first analyze the design route of the current models and then introduce the moti-
vation of SeAttE in the Section 4.1.1, Then we introduce the specific design of SeAttE in
Section 4.1.2.

4.1.1. Motivation

As shown in Figure 2, RESCAL is the basic tensor decomposition model. Since
RESCAL represents the relations as a matrix, the large number of parameters makes it
difficult for the model to learn effectively. So DisMult directly diagonalizes the matrix,
significantly reducing the number of parameters. However, over-simplified models limit
the performance. Subsequently, variants are invented for describing specific types of
relations, such as asymmetric and hierarchical relations, which are equivalent to designing
unique structures for describing specific types of relationships. Such models need to look
for special functions to precisely fit different relations categories. Some relations can be
well characterized in models, while some are not. This design from a specific relationship
type is challenging to cover all relations. No matter how sophisticated the design of such
models is, it is difficult to surpass the RESCAL model theoretically. Moreover, the previous
tensor decomposition model did not consider the problem of attribute separation. The
unnoticed task of attribute separation in the traditional models is just handed over to the
training. However, the amount of parameters for this task is tremendous, and the model is
prone to overfitting.

It is widely accepted that each entity contains different attributes, and the relations
describe the association of entities on specific attributes. When comparing the plausibility
of triples, the first step is to pick out the semantic dimension that the relation compares
and filter out irrelevant dimensions. In the second step, we compare the correlation of the
attributes of heads and tails under specific attributes, whether it satisfies the triples. It is
essential to separate the dimensions that need to be compared from those unrelated di-
mensions. However, existing tensor decomposition models ignore the isolation of attribute
dimensions, and these models combine these two steps for training. These models simul-
taneously complete the separation of attributes and the learning of semantic equivalence.
This combination will result in too many parameters for learning. Therefore, we make a
unique design for the relation matrix based on the subspace theory so that the different
semantic spaces will not overlap. The model implements the isolation of different attributes
in the structural design.
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Figure 2. The research routes of current tensor decomposition models.

As shown in Figure 3, the left is the traditional entity vector and relation matrix; the
right is the entity vector and the relation matrix with the separation of attribute spaces. We
perform vector subspace separation on the relation matrix of tensor decomposition models.
As shown in Equation (5), the task of attribute isolation is transferred to the model structure
design. This operation allows the model to focus on learning the semantic equivalence
between relations, resulting in better performance. Since the model is a new embedding
model that separates attribute space for knowledge graph completion, we name the model
SeAttE in this paper.

dr(h, t) = ‖h× r× t‖
⇒ dr(h, t) = ‖h× rSeAttE × t‖ (5)

Figure 3. The left is the traditional entity vector and relation matrix, the right is the entity vector and
the relation matrix with the separation of attribute spaces.

4.1.2. Design

In theory, the subspace separation should be related to the actual relations, which cannot
be designed in advance. We design the structure of attribute subspace segmentation to reduce
the model’s workload in learning segmentation tasks of different semantic dimensions.

In order to facilitate the design and implementation of the model, SeAttE adopts
the exact size of attribute subspace design. Assuming that the dimension of each entity
vector is d and the dimension of each attribute subspace is k, each entity contains d/k
attribute spaces.
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rSeAttE =

∣∣∣∣∣∣∣∣
W1 0 0 0
0 W2 0 0
0 0 · · · 0
0 0 0 Wk

∣∣∣∣∣∣∣∣ (6)

where rSeAttE ∈ Rd, Wk ∈ Rk and h = d/k.
As shown in the left part of Figure 4, the dimension of each entity vector d is eight,

and the dimension of each attribute subspace k is two, then the entity contains four at-
tributes subspaces. As shown in the right part of Figure 4, when the dimension of each
attribute subspace d is two and the dimension of each subspace k is four, the entity contains
two attributes subspaces.

Figure 4. Different attribute subspace sizes under the same entity dimension. The dimension of each
attribute subspace is set to 2 in the left and 3 in the right.

SeAttE realizes the division of knowledge graph attribute space by setting the max
dimension of the attribute subspace. The model avoids a large number of parameter
learning for attribute separations by setting the parameter of the maximum semantic
space dimension.

4.2. Relation to Previous Tensor Factorization Models

This subsection mainly analyzes the relationship between SeAttE and traditional
tensor decomposition models.

RESCAL is the basic tensor decomposition model. Due to the tremendous amount
of parameters of this model, the dimension of the entity cannot be well expanded. When
the dimension of the attribute subspace of SeAttE satisfies k = d, SeAttE is equivalent
to RESCAL.

rSeAttE = |W1| (7)

where k = d and h = 1.
DisMult is the simplest tensor decomposition model, which diagonalizes all relation

matrices. When the max dimension of the attribute subspace of SeAttE k is set to 1, then Wk
is a 1-dimensional matrix, that is, a numerical value. The relationship matrix is equivalent
to the diagonal. Under these circumstances, SeAttE is equivalent to DisMult.

rSeAttE =

∣∣∣∣∣∣∣∣
W1 0 0 0
0 W2 0 0
0 0 · · · 0
0 0 0 Wh

∣∣∣∣∣∣∣∣
= diag(W1, W2, · · · , Wh)

(8)
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where Wk ∈ R.
ComplEx imports complex representations to characterize symmetric and antisym-

metric relations.

dr(s, o) = Re(〈wr, es, eo〉)

= Re

(
K

∑
k=1

wrkesk ēok

)
= Re(wr)Re(es)ReT(eo) + Re(wr)Im(es)ImT(eo)

+ Im(wr)Re(es)ImT(eo)− Im(wr)Im(es)ReT(eo)

= [Re(es)||Im(es)]Wr[Re(eo)||Im(eo)]
T

= e′sWr
(
e′o
)T

(9)

Wr=

[
diag(Re(wr)) diag(Im(wr))

diag(−Im(wr)) diag(Re(wr))

]
(10)

where e′s, eo
′ ∈ R2K and Wr ∈ R2K×2K.

From the above formula, we can find that ComplEx is equivalent to RESCAL with
d = 2k. The model performs a particular regularization for each relation matrix, which only
retains the diagonal elements of the four sub-matrices of the matrix, and the remaining
elements are set to 0.

When the dimension of the attribute subspace of the SeAttE model k is set to 2, the
relation matrix can also be expressed as the following.

rSeAttE =

∣∣∣∣∣∣∣∣
W1 O O O
O W2 O O
O O · · · O
O O O Wh

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W11 W12 0 0
W13 W14 0 0

0 0 W21 W22
0 0 W23 W24

O

O
· · · 0 0

0 0
0 0
0 0

Wh1 Wh2
Wh3 Wh4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= H ∗

∣∣∣∣ diag(W11, W21, · · · , Wh1) diag(W12, W22, · · · , Wh2)
diag(W13, W23, · · · , Wh3) diag(W14, W24, · · · , Wh4)

∣∣∣∣ ∗ G

(11)

where H = h2_n+1× h3_n+2× · · · × hn_2n−1, hi_k is obtained by exchanging the i-th row and
the k-th row of the identity matrix, that is, performing elementary row transformation on
the matrix W. Where G = g2_n+1 × g3_n+2 × · · · × gn_2n−1, gi_k is obtained by exchanging
the i-th column and the k-th column of the identity matrix, that is, performing elementary
column transformation on the matrix W.

When a regularization term is applied to the relation matrix of SeAttE, namely
Wi1 = Wi4 and Wi2 = −Wi3, SeAttE is equivalent to ComplEx. In summary, when each
subspace matrix of SeAttE satisfies A and B, SeAttE is equivalent to ComplEx.

4.3. Classification of Tensor Decomposition Models

The current tensor decomposition models are variants based on RESCAL [7]. Further-
more, the design of all models can be understood as the regularization of the relational
matrix. We classify the current tensor decomposition models from a new angle so that
subsequent researchers can better understand these tensor decomposition models. Ac-
cording to regularization, we divide the models into three families: models based on
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separating attribute space, models based on symmetric regularization and models based
on an orthonormal basis.

The first family realizes the semantic space separation by the subspace segmentation
of relation matrix. Such models mainly include RESCAL [7], DisMult [8], and SeAttE.
RESCAL [7] and DisMult [8] are special cases of SeAttE. When the max dimension of the
attribute subspace satisfies k = d, SeAttE is equivalent to RESCAL [7], and when the max
dimension of the attribute subspace satisfies k = 1, SeAttE is equivalent to DisMult [8].

Models based on symmetric constraints are created by imposing symmetric or anti-
symmetric constraints on the relational matrix. It mainly includes ANALOGY [14] and
SimplE [11].

The model based on orthonormal basis representation is TuckER. This model is ex-
ceptional. It represents the relationship matrix through the linear combination of the
orthonormal basis and realizes the reduction in the parameters of the relationship matrix.
This model achieves link prediction by reducing the parameters of the relationship matrix
through a linear combination.

Some other models combine subspace division and symmetric regularization, includ-
ing ComplEx [9] and AutoSF [12].

5. Experiments and Discussion

This section is organized as follows. First, we introduce the experimental settings
in Section 5.1. Then, we show the effectiveness of SeAttE on three benchmark datasets
in Section 5.2. Finally, we visualize and analyze the embeddings generated by SeAttE in
Section 5.3.

5.1. Experimental Settings

Dataset. In order to evaluate the proposed module, we consider three common
knowledge graph datasets—WN18RR [41], FB15k-237 [28] and YAGO3-10 [42]. Details of
these datasets are listed in Table 1.

Table 1. The number of entities, relations and observed triples in each split for four benchmarks.

Dataset #Entity #Relation #Training #Validation #Test

WN18RR 40,943 11 86,835 3034 3134
FB15K-237 14,505 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5000 5000

FB15k-237 is obtained by eliminating the inverse and equal relations in FB15K, making
it more difficult for simple models to do well. WN18RR is achieved by excluding inverse
and equal relations in WN18. The main relation patterns are symmetry/antisymmetry and
composition. YAGO3-10 is a subset of YAGO3, which is produced to alleviate the test set
leakage problem.

Evaluation Protocol and Settings. For evaluation, we use the same ranking procedure
as in the literature [43]. For each test triple, the head is removed and replaced by each
of the entities of the dictionary in turn. Dissimilarities (or energies) of those corrupted
triplets are first computed by the models and then sorted by ascending order; the rank of
the correct entity is finally stored. This whole procedure is repeated while removing the
tail instead of the head. We use evaluation metrics standard across the link prediction
literature: mean reciprocal rank (MRR) and Hits@k, k = 1,3,10. Mean reciprocal rank is the
average of the inverse of the mean rank assigned to the true triple over all candidate triples.
Hits@k measures the percentage of times a true triple is ranked within the top k candidate
triples. We evaluate the performance of link prediction in the filtered setting [1], i.e., all
known true triples are removed from the candidate set except for the current test triple. In
both settings, higher MRR or higher Hits@1/3/10 indicate better performance.
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Baselines and Training Protocol. In this section, we compare the performance of
SeAttE against two categories of KGC models: (1) geometric models including TransE [1],
TransH [22], TransR [23], RotatE [25], TucKer [10], AutoERTR [44]and HAKE [26]; (2) models
based on tensor decomposition including CP [40], SimplE [11], DisMult [8], RESCAL [7],
ANALOGY [14], ComplEx [9], DURA [37], SFBR [39] and AutoSF [12]. (3) deep learning
models including ConvE [28], RAN [45] ConvKB [29], CapsE [30] and Nathani [32].

Because ComplEx is a particular case of SeAttE, the parameters of our experiments are
consistent with those in DURA [37]. SeAttE only introduces the parameter of the attribute sub-
space dimension based on DURA, which will be marked in the specific experimental results.

5.2. Comparison with Existing Link Prediction Models

In this section, we compare the results of SeAttE and other state-of-the-art models on
three benchmark datasets.

Table 2 shows the comparison between SeAttE and geometric models. The table
shows that SeAttE outperforms all the compared geometric models in MRR, Hit@1 and
Hit@1. Compared with the best geometric model—HAKE, SeAttE still has significant
improvements: on YAGO3-10, MRR increases by 4%; on FB15k-237, MRR increases by 2.5%.

Table 2. This is the comparison between SeAttE and geometric models on WN18RR, FB15K-237 and
YAGO3-10. The best results of each metric for each dataset are marked in bold.

WN18RR FB15K-237 YAGO3-10

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE 0.223 0.028 0.510 0.298 0.217 0.475 0.501 0.406 0.674
TransH 0.224 - 0.504 0.290 - 0.490 - - -
TransR 0.235 - 0.510 0.314 - 0.510 - - -
RotatE 0.476 0.428 0.571 0.338 0.241 0.533 0.498 0.405 0.671
CrossE 0.405 0.381 0.450 0.298 0.212 0.471 0.446 0.331 0.655
TorusE 0.463 0.427 0.534 0.281 0.196 0.447 0.342 0.274 0.474
HAKE 0.497 0.452 0.582 0.346 0.250 0.542 0.545 0.462 0.694

SeAttE 0.499 0.457 0.584 0.371 0.274 0.562 0.585 0.513 0.714

Table 3 shows the comparison between SeAttE and deep learning models. The ta-
ble shows that SeAttE also achieves the best performance on WN18RR and YAGO3-10.
Compared with the best deep learning model, SeAttE still has significant improvements:
on YAGO3-10, MRR increases by 5.8%; on WN18RR, MRR increases by 3.2%. Nathani’s
model still keeps the best performance on FB15K-237, because it applies a novel attention-
based feature embedding that captures both entity and relation features in any given
entity’s neighborhood. Utilizing graph neural network techniques for link prediction is our
ongoing research.

Table 3. This is the comparison between SeAttE and deep learning models on WN18RR, FB15K-237
and YAGO3-10. The best results of each metric for each dataset are marked in bold.

WN18RR FB15K-237 YAGO3-10

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

ConvE 0.427 0.390 0.508 0.305 0.219 0.476 0.488 0.399 0.658
ConvKB 0.249 0.056 0.525 0.230 0.140 0.415 0.420 0.322 0.605
ConvR 0.467 0.437 0.527 0.346 0.256 0.526 0.527 0.446 0.673
CapsE 0.415 0.337 0.560 0.160 0.073 0.356 0.000 0.00 0.00
RSN 0.280 0.198 0.444 0.395 0.346 0.483 0.511 0.427 0.664

Nathani’s 0.440 0.361 0.581 0.518 0.460 0.626 - - -

SeAttE 0.499 0.457 0.584 0.371 0.278 0.562 0.585 0.513 0.714
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Table 4 shows the comparison between SeAttE and tensor decomposition models.
The table shows that SeAttE also achieves the best performance among all datasets. On
WN18RR, RESCAL-DURA initially achieved the best performance. SeAttE achieves the
same inference performance as the RESCAL-DURA model. On FB15K-237 and YAGO3-10,
ComplEx-DURA initially performed the best inference. SeAttE achieves the same inference
performance as ComplEx-DURA. This experiment also verifies the novelty of SeAttE and
the proof in Section 4.2.

Table 4. This is the results of tensor decomposition models on WN18RR, FB15K-237 and YAGO3-10.
The best results of each metric for each dataset are marked in bold.

WN18RR FB15K-237 YAGO3-10

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

CP 0.438 0.414 0.485 0.333 0.247 0.508 0.567 0.494 0.698
RESCAL 0.455 0.419 0.493 0.353 0.264 0.528 0.566 0.490 0.701
ComplEx 0.460 0.428 0.522 0.346 0.256 0.525 0.573 0.500 0.703
DisMult 0.433 0.397 0.502 0.313 0.224 0.490 0.501 0.413 0.661
SimplE 0.398 0.383 0.427 0.179 0.100 0.344 0.453 0.358 0.632

ANALOGY 0.366 0.358 0.380 0.202 0.126 0.354 0.283 0.192 0.457
HolE 0.432 0.403 0.488 0.303 0.214 0.476 0.502 0.418 0.652

TuckER 0.459 0.430 0.510 0.352 0.259 0.536 0.544 0.466 0.681
AutoSF 0.490 0.451 0.567 0.360 0.267 0.552 0.571 0.501 0.715

CP-DURA 0.478 0.441 0.552 0.367 0.272 0.555 0.579 0.506 0.709
RESCAL-DURA 0.498 0.455 0.577 0.368 0.276 0.550 0.579 0.505 0.712
ComplEx-DURA 0.491 0.449 0.571 0.371 0.276 0.560 0.584 0.511 0.713

SeAttE 0.499 0.457 0.584 0.372 0.276 0.562 0.585 0.513 0.714

In summary, SeAttE belongs to the family of tensor decomposition models. Compared
to other tensor models, SeAttE reaches the upper-performance limit of this family of models.
SeAttE achieves the best performance as a tensor decomposition model compared with
geometric models. SeAttE achieves the best performance on some datasets compared
with deep learning models. Since Nathani’s model utilizes a novel attention-based feature
embedding that captures neighborhood features, it achieves the best performance in FB15K-
237. Comparative experiments show that this operation of separating attribute space allows
the model to focus on learning the semantic equivalence between relations, resulting in
better performance approaching the theoretical limit.

5.3. Visualization and Analysis

In this part, we analyze the performance of SeAttE from three aspects. First, we
visualize the embedding through T-SNE; then, we randomly select a pair of samples to
analyze the function of SFBR and show the additional resources occupied by SFBR.

Visualization. We use T-SNE to visualize embeddings of tails. Suppose the link
prediction task is (h, r, ?), where h and r are head entities and relations, respectively. We
randomly select ten queries in FB15k-237, each of which has more than 50 answers. Then
we use T-SNE to visualize the embeddings generated by RESCAL and SeAttE. For each
question, we convert the answers into two-dimensional points with T-SNE and display
them on the graph with the same color.

As shown in Figures 5 and 6, it is a visualization of the distribution of answers to
10 questions. SeAttE makes the answers to the same question more similar, indicating
that SeAttE effectively separates the needed semantics of each entity and suppresses the
attributes of other dimensions, which verifies the claim in Section 4.1.

Resource occupation. As shown in Tables 5–7, we compare the parameter size of dif-
ferent models under the identical dimension of entities. When the entity vector dimension
d is fixed, the number of parameters in SeAttE increases slightly as the dimension k of
each subspace increases. First, we compare the parameters of ComplEx and SeAttE. When
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the subspace dimension k is set to two, the parameters of SeAttE and ComplEx are the
same, which is consistent with the proof in Section 4.2. We find that the parameter amount
of SeAttE is slightly higher than that of ComplEx as the subspace dimension k increases.
Then we compare the parameters of RESCAL and SeAttE in the three tables. We find that
the parameter amount of SeAttE is much lower than that of RESCAL at the same entity
dimension. In summary, the experiments show that learning too many parameters for the
attribute space separation task in traditional tensor decomposition models is transformed
into the structure’s design in SeAttE. SeAttE achieves good performance while significantly
reducing the number of parameters, verifying the statement in Section 4.1.

query 1
query 2
query 3
query 4
query 5
query 6
query 7
query 8
query 9
query 10
query 11

Figure 5. Visualization of tail entities in RESCAL using T-SNE. A point represents a tail entity. Points

in the same color represent tail entities that have the same context
(

hr, rj

)
.

query 1
query 2
query 3
query 4
query 5
query 6
query 7
query 8
query 9
query 10
query 11

Figure 6. Visualization of tail entities in SeAttE using T-SNE.
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Table 5. This is the comparison of parameters between ComplEx, RESCAL and SeAttE, when entities
have the same dimension (d = 1500). k denotes the dimension of each attribute subspace in SeAttE.

Model WN18RR FB15K-237 YAGO3-10

ComplEx 61.48 M 23.23 M 185.00 M
RESCAL 110.98 M 1089.73 M 351.50 M

SeAttE (k = 1) 61.45 M 22.52 M 184.89 M
SeAttE (k = 2) 61.48 M 23.23 M 185.00 M
SeAttE (k = 4) 61.54 M 24.65 M 185.23 M
SeAttE (k = 8) 61.61 M 27.43 M 185.37 M

Table 6. This is the comparison of parameters between ComplEx, RESCAL and SeAttE, when entities
have the same dimension (d = 1000).

Model WN18RR FB15K-237 YAGO3-10

ComplEx 40.99 M 15.49 M 123.33 M
RESCAL 62.99 M 489.49 M 197.33 M

SeAttE (k = 1) 40.97 M 15.02 M 123.26 M
SeAttE (k = 2) 40.99 M 15.49 M 123.34 M
SeAttE (k = 4) 41.03 M 16.44 M 123.48 M
SeAttE (k = 8) 41.11 M 18.33 M 123.78 M

Table 7. This is the comparison of parameters between ComplEx, RESCAL and SeAttE, when entities
have the same dimension (d = 500).

Model WN18RR FB15K-237 YAGO3-10

ComplEx 20.49 M 7.74 M 61.67 M
RESCAL 25.99 M 126.24 M 80.17 M

SeAttE (k = 1) 20.48 M 7.50 M 61.63 M
SeAttE (k = 2) 20.49 M 7.74 M 61.66 M
SeAttE (k = 4) 20.51 M 8.22 M 61.74 M
SeAttE (k = 8) 20.59 M 9.09 M 61.88 M

6. Conclusions and Future Work

We investigate the design approaching the theoretical performance of tensor decompo-
sition models in this paper. SeAttE is based on the observation that judging the rationality
of a particular triple is to compare specific attributes between the entities, ignoring other
unrelated dimensions. The comparison of triples should first separate the properties that
need to be compared. Therefore, we provide SeAttE—a tensor decomposition model based
on separating attribute space for knowledge graph completion in this paper. SeAttE is
the first model among the tensor decomposition family to consider the attribute space
separation task. Furthermore, SeAttE transforms the learning of too many parameters
for the attribute space separation task to the structure’s design. This operation allows the
model to focus on learning the semantic equivalence between relations, causing the perfor-
mance to approach the theoretical limit. Experiments show that SeAttE can achieve the best
performance among the traditional tensor decomposition models. The visualization shows
that SeAttE can effectively extract the relevant dimensions and distinguish the comparisons
among different attributes. Compared with the RESCAL, the resource occupation of SeAttE
is much lower than that of RESCAL. Compared with the ComplEx, SeAttE only has a slight
growth in resource occupation.

Recently, graph neural networks have achieved good performance on link prediction.
In the future, we plan to evaluate SeAttE on more datasets and leverage the graph attention
framework to capture higher-order relations between entities.
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