
����������
�������

Citation: Zhang, N.; Wang, Y.; Feng,

S. A Lightweight Remote Sensing

Image Super-Resolution Method and

Its Application in Smart Cities.

Electronics 2022, 11, 1050. https://

doi.org/10.3390/electronics11071050

Academic Editor: Mehdi Sookhak

Received: 11 March 2022

Accepted: 25 March 2022

Published: 27 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Lightweight Remote Sensing Image Super-Resolution
Method and Its Application in Smart Cities
Nenghuan Zhang 1,2 , Yongbin Wang 1,2 and Shuang Feng 1,2,3,*

1 State Key Laboratory of Media Convergence and Communication, Communication University of China,
Beijing 100024, China; nhzhang@cuc.edu.cn (N.Z.); ybwang@cuc.edu.cn (Y.W.)

2 Key Laboratory of Convergent Media and Intelligent Technology, Ministry of Education, Communication
University of China, Beijing 100024, China

3 School of Computer and Cyber Sciences, Communication University of China, Beijing 100024, China
* Correspondence: fengshuang@cuc.edu.cn

Abstract: With the growth of urban population, a series of urban problems have emerged, and how
to speed up smart city construction has received extensive attention. Remote sensing images have the
advantages of wide spatial coverage and rich information, and it is suitable for use as research data
for smart cities. However, due to limitations in the imaging sensor conditions and complex weather,
remote sensing images face the problems of insufficient resolution and cloud occlusion, which cannot
meet the resolution requirements of smart city tasks. The remote sensing image super-resolution (SR)
technique can improve the details and texture information without upgrading the imaging sensor
system, which becomes a feasible solution for the above problems. In this paper, we propose a novel
remote sensing image super-resolution method which leverages the texture features from internal and
external references to help with SR reconstruction. We introduce the transformer attention mechanism
to select and extract parts of texture features with high reference values to ensure that the network is
lightweight, effective, and easier to deploy on edge computing devices. In addition, our network can
automatically learn and adjust the alignment angles and scales of texture features for better SR results.
Extensive comparison experiments show that our proposed method achieves superior performance
compared with several state-of-the-art SR methods. In addition, we also evaluate the application
value of our proposed SR method in urban region function recognition in smart cities. The dataset
used in this task is low-quality. The comparative experiment between the original dataset and the SR
dataset generated by our proposed SR method indicates that our method can effectively improve the
recognition accuracy.

Keywords: smart cities; remote sensing image; super-resolution technique; urban region function
recognition

1. Introduction

In recent years, due to the continuous growth of urban population, a series of urban
problems have emerged, such as traffic jams, excessive resource consumption, environ-
mental pollution, and so on, which bring serious challenges to urban management and
planning [1,2]. Smart city construction adopts intelligent technologies such as deep learning
and the Internet of Things (IoT) to realize scientific and intelligent urban development,
which has become an important target [3–5].

Remote sensing technology can capture urban land cover information from high
altitudes, so that the generated remote sensing images have the advantages of wide spatial
coverage and rich information, which have become important for urban big data and
have been widely used in urban analysis, e.g., in urban heat island effect analysis [6],
urban functional region layout [7,8], mapping and monitoring of slums in cities [9], and
urban ecosystem analysis [10]. Recently, amid the increasing popularity of edge computing
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devices, which can collect or receive remote sensing images, such as unmanned aerial
vehicles (UAVs) and vehicle-borne sensors, the application value of remote sensing images
in smart cities has been further improved [11,12].

However, due to the limitations of imaging sensor conditions, weather, illumination,
and so on, remote sensing images face the problems of insufficient resolution and cloud
occlusion, which seriously affect its practical applicability in smart cities. The remote
sensing image super-resolution (SR) technique can generate a clear and reasonable high-
resolution (HR) image according to an input low-resolution (LR) image without upgrading
the imaging sensor system. This has become a hot research topic in recent years.

Traditional SR approaches mainly rely on interpolation, including nearest neighbor
interpolation, bilinear interpolation, and bicubic interpolation, but the performance of these
approaches is poor. With the rapid development of deep learning technology, SR methods
based on deep learning have attracted significant research attention in recent years.

Depending on whether the image degradation is known, existing SR methods can be
divided into two categories: (1) non-blind SR methods, and (2) blind SR methods.

Non-blind means that the image has a fixed degradation type, such as Gaussian
blur or bicubic down-sampling. In recent years, many methods have been proposed.
Dong et al. [13] propose a pioneering method, SRCNN, which is aimed at bicubic degra-
dation. The SRCNN method adopts a three-layer convolutional network to generate a
realistic image. Then, an improved model based on SRCNN was proposed, named FSR-
CNN [14], greatly improved in speed and restoration quality. In addition, SRGAN [15] and
ESRGAN [16] both adopt the idea of a generative adversarial network, and both improve
the design of loss functions, and thus are able to yield more realistic results. For other
degradation types, Zhang et al. [17] propose a dimensionality strategy, which explicitly
takes the LR image and its degradation factors, i.e., blur kernel and noise level, as input,
and can handle multiple and even spatially variant degradation. Considering that an image
may have more than one degradation type and that the noise intensity of different degrada-
tion types is also different, Xu et al. [18] incorporate dynamic convolution, which is a far
more flexible alternative for handling different degradations, with the result being superior
performance. Other typical methods include EDSR [19], DRRN [20], RCAN [21], RDN [22],
etc. These methods can only achieve good performance under specific degradation types.
When the real degradation is different from the specific degradation, the performance will
drop severely.

Another category of blind SR investigates how to reconstruct realistic results when
the degradation type is unknown. The reason for image degradation is various, and it is
difficult to predict in advance. Blind SR method is therefore more challenging. In recent
years, many innovative blind SR methods have been proposed, which can be divided into
two types. One is to estimate the degradation first, and then perform image reconstruction
according to the estimated degradation type. Gu et al. [23] propose an iterative kernel
correction method to gradually correct the blur kernel to approximate the real kernel
as closely as possible, because only when the blur kernel matches can the SR results be
realistic. Huang et al. [24] propose an iterative end-to-end trainable model combining a blur
kernel estimator and an SR restorer, then repeat these two modules alternately, which can
make the SR results more effective. The other is to directly perform image reconstruction
without degradation estimation first. Wang et al. [25] propose an unsupervised degradation
representation learning method which does not need to estimate the degradation explicitly,
but instead learns abstract representations to distinguish various degradations in the
representation space. They then introduce a degradation-aware SR (DASR) network to
generate the SR results adaptively based on the learned degradation representations.

However, due to different image degradations and texture distributions, SR methods
designed for natural images cannot obtain a good performance when applied to remote
sensing images. At present, the SR method based on remote sensing images has attracted the
attention of many researchers. For example, Lei et al. [26] proposed an SR method named
local-global combined networks (LGCNet) to learn the multi-level representations between
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LR image and HR image. Haut et al. [27] proposed a new convolutional generator model
to reconstruct the HR image without supervision. Xu et al. [28] proposed a deep memory
connected network, which builds local and global memory connections to combine image
detail with environmental information. Gu et al. [29] proposed a deep residual squeeze
and excitation network. The network improved the feature representation effectively and
reduced the parameters, and thereby achieved better accuracy and visual performance
on two public remote sensing datasets. Wang et al. [30] proposed an adaptive multi-scale
feature fusion network which can extract dense features from the original LR images
directly without any interpolation operations. They then used several adaptive multi-scale
feature extraction modules and adaptive gating mechanisms to extract and fuse the features.

However, these methods are usually estimated from input LR images. They always
require a large amount of training samples and computing resources to efficiently learn
rich prior knowledge, and are thus difficult to deploy on edge computing devices. Recently,
reference-based approaches [31–33] have shown great potential in SR image synthesis.
Most existing works implement SR in either internal reference or external reference, and
few do so in both; the result is that they have limited prior information, leading to a lack of
diversity and richness of image details.

In this paper, we leverage textural similarity and transferability to help in the restora-
tion of remote sensing images. We propose a multi-scale texture transfer SR network
(MSTT-SRNet) that combines internal reference and external reference to yield outstanding
results. This reference information can provide rich and diverse prior knowledge, such as
knowledge of colors, texture, and geometry, making it possible to generate realistic images.
However, this reference information is redundant, and some even irrelevant. We intro-
duce transformer attention mechanism [34] to effectively learn the similarity relationship
between the LR texture features and Ref texture features so as to select the partly similar
reference texture features and transfer them into LR images. This process can thus reduce
the parameters and computation of the network and make it easier to deploy on edge
computing devices. In addition, we design a multi-scale texture feature fusion module
which can automatically learn and adjust the alignment angles and scales of the Ref texture
feature for better results. In addition, we introduce a texture transfer loss to further enhance
the effectiveness of multi-scale texture transfer.

In summary, the main contributions are as follows:
(1) We propose a novel remote sensing image SR method which leverages internal

reference and external reference to jointly guide accurate restoration. Those references
provide rich and diverse prior knowledge of colors, texture, and geometry, making it
possible to generate realistic images. At the same time, we introduce the transformer
attention mechanism to reduce the parameters and computation of the network, making it
easier to deploy on edge computing devices.

(2) We design a multi-scale texture feature fusion module to automatically learn and
adjust the alignment angles and scales of the Ref texture feature for better SR results.

(3) We conduct comparative experiments between our SR method and several other
state-of-the-art SR methods. The comparative results show that our method achieves
superior performance, which demonstrates the effectiveness of our method.

(4) In order to test the application effect of our proposed SR method in smart city tasks,
we compare the accuracy improvement for urban region function recognition before and
after super-resolution by our proposed method. The results show that the accuracy after
super-resolution was significantly improved, which demonstrates that our SR method can
effectively improve the performance of tasks based on remote sensing images in smart cities.

The rest of the paper is organized as follows: Section 2 explains the proposed SR
method, including the overall network architecture, the details of two key modules, and
the loss function. Section 3 explains the performance of the proposed method in the test
dataset, and verifies the application effectiveness by applying our proposed method to the
task of urban region function recognition. Section 4 provides the discussion and conclusion.
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2. Method

In this section, we elaborate on how we devised the multi-scale texture transfer super-
resolution network (MSTT-SRNet) to fully utilize both internal and external reference
texture information for remote sensing image super-resolution. First, we briefly describe
the overall network structure. Then, the similar texture feature extraction module (STFE)
and multi-scale texture feature fusion module (MSTF2) are both elaborated in detail. Finally,
the content of loss function is given.

2.1. Network Architecture

Figure 1 illustrates the overall network architecture of the proposed MSTT-SRNet.
We deploy the well-known U-Net architecture as our backbone network. U-Net [35] is
widely used in the fields of semantic segmentation and image super-resolution. It is
composed of an encoder network (for semantic feature extraction) and a decoder network
(for semantic information generation). The peer nodes between the encoder and the
decoder are concatenated with each other to integrate semantic information and enhance
the generated features. Compared to other backbone networks, U-Net has a relatively
symmetrical structure which can well distinguish the low-resolution features from high-
resolution features.

Figure 1. The structure of the proposed MSTT-SRNet: the input LR image flow is represented by the
blue lines, and the reference image flow by the orange lines. STFE denotes the similar texture feature
extraction module. MSTF2 denotes the multi-scale texture feature fusion module.

Unlike most SR methods, our network has two inputs and two outputs, as shown by
the two data flows in Figure 1. The blue data flow indicates that the input is the LR image
Ilr and the output is the SR image Isr. The orange data flow indicates that the input is the
Ref image Ire f and the output is the SR_Ref image Isr_re f .

In addition, our network combines internal reference and external reference. The input
of internal reference is only the LR feature, and the input of external reference includes
the LR feature and the Ref feature. These two references both involve two key modules:
STFE and MSTF2. The STFE module calculates the similarity relationship between the LR
texture feature and the Ref texture feature so as to extract the Ref texture features with high
similarity and thus avoid the interference of irrelevant texture features, thereby reducing
the complexity of the network. After similar texture feature extraction, the MSTF2 module
was designed to transfer the aligned multi-scale Ref texture feature into the LR texture
feature. We present the details of these two modules in what follows.

2.2. Similar Texture Feature Extraction Module

Intuitively, common objects from the same class usually share some similarity in
texture and have a high similarity in features. To this end, we designed a similar texture
feature extraction module to extract the Ref texture features, with high similarity and
transferability, which contain the prior knowledge to generate SR results.

In this paper, the Ref texture features were mainly extracted from two aspects. (1) In-
ternal reference: During the collection of remote sensing images, due to the problems of
inappropriate angle, insufficient illumination, and cloud occlusion, the image content may
be partially blurred; we can thus extract similar texture features from the image itself. As
illustrated in Figure 2, the contents of the two blue boxes are very similar, but the content
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of the lower blue box is clearer, and thus the latter can be used as the prior knowledge
for the content reconstruction of the upper blue box. (2) External reference: If we only
rely on internal reference to reconstruct the LR image, the prior knowledge is low-quality
and may not contain adequate texture details, limiting the performance in real-world
applications. To this end, we leveraged a given high-resolution reference image to provide
diverse and rich prior texture knowledge for super-resolution reconstruction, as shown
by the two red boxes in Figure 2. The content of the red box in the reference image is very
similar to the content of the red box in the low-resolution image, which can help with the
content reconstruction.

(a)low-resolution image (b)high-resolution reference image

Figure 2. Examples of internal reference and external reference.

The combination of internal reference and external reference provides rich and diverse
prior knowledge. However, not all prior knowledge is useful for image reconstruction.
Irrelevant and redundant texture features can even reduce the effectiveness of reference
prior knowledge, making the network too complex to deploy on edge computing devices.
The selection and extraction of texture features with high similarity from reference images
is essential because accurate and proper texture features assist with the generation of
SR images. However, it is challenging to extract such similar and transferable texture
features for SR restoration process. Our key idea was to employ the transformer attention
mechanism to learn the similarity relationship between LR texture features and Ref texture
features, which can guide the extraction of similar texture features. Figure 3 illustrates the
architecture of the proposed module.
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Figure 3. Illustration of the similar texture feature extraction module (STFE). The feature maps Foutput

are fed into the MSTF2 module as the input feature maps Fre f .

Formally, we denote the LR texture feature as Flr ∈ RC×H×W and the Ref texture
feature as Fre f ∈ RC×H×W , where C, H, and W represent the channel, height, and width of
the feature maps, respectively. The transformer attention mechanism uses three learnable
linear projection matrices, namely Query Q, Key K, and Value V, to compute the correlation
relationship, and extracts the values based on the correlation relationship.

Specifically, in order to reduce the computational complexity and reduce redundant
features, we first fed the input features Flr and Fre f into different convolution layers to

generate feature maps of FQ
lr , FK

re f , and FV
re f . The dimensions of these features were all

reduced to C
2 × H ×W.
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Then, we performed reshape operations on FQ
lr , FK

re f , and FV
re f , and converted the

dimension into HW × C
2 , respectively. After this, we used these three feature maps to

generate the linear projection matrices Q, K, and V to carry out similar texture feature
extractions. The process can be formulated as follows:

Q = FQ
lr ×WQ, (1)

K = FK
re f ×WK, (2)

V = FV
re f ×WV , (3)

Fsimilar = so f tmax(
QKT
√

dk
)V, (4)

where WQ, WK, and WV are the learnable matrices, respectively. dk is the normalization factor.
Then, we performed reshape operations on Fsimilar, and converted the feature dimen-

sion to C
2 × H ×W. Finally, we performed feature dimension reduction again to obtain the

output Ref texture feature with high similarity, denoted by Foutput; the feature dimension
was reduced to C

4 × H ×W.
According to different references, in internal reference, Fre f is equal to Flr. In external

reference, Fre f is the given reference texture feature. The similar texture feature extraction
module enables our model to selectively extract more similar texture features and sup-
press irrelevant texture features, which can greatly enhance the effectiveness of reference
texture features.

2.3. Multi-Scale Texture Feature Fusion Module

After obtaining highly similar Ref texture features, we considered transferring the Ref
texture features into the LR texture features to improve the content quality. However, there
were two important problems that needed to be solved: one was the texture alignment, the
other the texture scale.

In this section, we propose a novel multi-scale texture feature fusion module for multi-
scale Ref texture feature alignment and fusion. As shown in Figure 4, the proposed module
adaptively adjusts the texture alignment angles and scales, which can work together to
help generate better SR results.

Alignment prediction module

3 3 s=2

C

softmax

prediction
N*H*W

1 1 s=1

3 3 s=1

3 3 s=2

u
p
-s

am
p
le

C 1 1 s=1

C 1 1 s=1

Fref

Flr

Foutput

C*H*W

C*H*WC/4*H*W

C/4*H*W

C/4*H*W

C/4*H*W

C/2*H*W

3C/2*H*W

C/4*2H*2W

Alignment prediction module

3 3 s=1

C

softmax

prediction
N*H*W

Weighting shared

Weighting shared

Figure 4. The structure of the proposed multi-scale texture feature fusion module (MSTF2).

Texture alignment. Since the objects in remote sensing images may appear in any
direction and angle, the texture features between the LR image and the Ref image are likely
to be misaligned. Therefore, we designed an alignment prediction module to predict the
alignment angle for each convolution feature in the Ref features. Specifically, we denote the
LR texture feature by Flr ∈ RC×H×W and the Ref texture feature by Fre f ∈ R C

4 ×H×W , where
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C, H, and W represent the channel, height, and width of the feature maps, respectively. We
first adopted a 3× 3 convolution operation to encode the texture feature, and concatenated
it with the LR feature. Then, a 1× 1× N prediction filter was employed to produce a
feature map, with a size of N × H ×W. N represents the alignment angles, which is 8 by
default in our paper. Lastly, a softmax function was applied on the feature map to obtain
the alignment angles for each feature matrix which will be convoluted in multi-scale texture
feature extraction.

Texture scale. After obtaining the alignment angles, we extracted the multi-scale
texture features from three scales. In the first type, we used a 1× 1 convolution to extract
the Ref texture feature if the scale was equal to the LR texture feature. In the second type,
we used a 3× 3 convolution with alignment angle to extract the Ref texture feature if the
scale was larger than the LR texture feature. In the third type, we first ×2 up-sampled the
Ref texture feature by bicubic interpolation, then used a 3× 3 convolution with alignment
angle to extract the Ref texture feature if the scale was smaller than the LR texture feature,
and the stride of the convolution operation was set to 2. The convolution operation with
alignment angle is described in the following.

A 3× 3 convolution kernel can be expressed as K = {k1, k2, . . . , kn}, where n represents
the coordinate value in the convolution kernel; it is counted from left to right, then from top
to bottom. The maximum value is 9. ki represents the value of the i− th coordinate point.
F = { f1, f2, . . . , fn} represents the corresponding feature matrix which will be convoluted
with the 3× 3 convolution kernel. A standard 2D convolution operation can be defined
as follows:

Foutput = (F ∗ K)(n) =
n

∑
i=1

( fiki) (5)

In our study, we needed to rotate the texture feature F before the convolution operation
according to the predicted alignment angle to re-sample a new texture feature matrix
F̂ = { f̂1, f̂2, . . . , ˆfn}. The re-sampling locations of different alignment angles are shown in
Figure 5.

Figure 5. The re-sampling locations of different alignment angles. The total number of alignment
angles is 8.

In this way, we were able to align the Ref texture feature to the LR texture feature. The
new convolution operation can be defined as follows:

ˆFoutput = (F̂ ∗ K)(n) =
n

∑
i=1

( f̂iki) (6)

Then, the aligned multi-scale Ref texture features were concatenated, and fused by a
1× 1 convolution operation.
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Finally, based on the aligned multi-scale Ref texture feature, a fusion operation was
conducted to transfer the Ref texture feature into the LR texture feature, which was then
used as the SR feature to generate the SR image.

2.4. Loss Function

In order to obtain better SR results, we used the weighted sum of multiple loss
components to calculate the total loss function. The total loss function is defined as follows:

Ltotal = λcontLcont + λperLper + λtextLtext (7)

where Lcont denotes the content loss, Lper denotes the perception loss, Ltext denotes the
texture transfer loss, and λrec, λper, and λtext are the balancing weights.

Content loss. The content loss consists of two parts: one is the content loss of the
input LR image, and the other is the content loss of the Ref image. We used L1 loss to
measure the content loss, which was demonstrated better than L2 loss and supported easier
convergence. The calculation formula is defined as follows:

Lcont =
1

CHW

∥∥∥Isr − Ihr
∥∥∥

1
+

1
CHW

∥∥∥Isr−re f − Ire f
∥∥∥

1
(8)

where Isr and Ihr denote the reconstructed image and the ground-truth high-resolution
image of the input low-resolution image, respectively. Isr−re f and Ire f denote the recon-
structed reference image and the input high-resolution reference image, respectively. C, H,
and W represent the channel, height, and width of the images, respectively.

Perception loss. The content loss was too rigid to measure the content difference
by pixel-to-pixel value. Perception loss measures the content difference through high-
dimensional semantic features which are closer to the results of human perception. We
measured the perception loss through the feature maps extracted by the VGG-19 network.
The perception loss also includes two parts: one is the perception loss of the LR image, and
the other is the perception loss of the Ref image. The formula is defined as follows:

Lper =
1

CHW

∥∥∥φi(Isr)− φi(Ihr)
∥∥∥

1
+

1
CHW

∥∥∥φi(Isr−re f )− φi(Ire f )
∥∥∥

1
(9)

where φ(·) denotes the VGG-19 network, and i represents the i-th layer’s feature map of
the VGG-19 network. In this paper, we simply adopted the relu5_1 layer’s feature map. C,
H, and W represent the channel, height, and width of the feature map, respectively.

Texture transfer loss. As the content loss and perception loss cannot guarantee that the
texture of the SR image is transferred from the Ref image, we introduced a texture transfer
loss to enhance the effectiveness of the texture transfer. With our texture transfer loss we
attempted to restrict the SR texture feature so that it would be close to the Ref texture
feature. We adopted the cosine similarity calculation to measure the texture similarity
between the SR texture feature and the Ref texture feature. The texture transfer loss is
defined as follows:

Ltext =
3

∑
j=0

(1− cos(Fsr
j , Fre f

j )) (10)

where j denotes the number of the External+Internal module. cos(·) represents the cosine
function, the value range is normalized from 0 to 1, and the high value indicates the high
similarity. Fsr

j denotes the output SR feature of external reference. Fre f
j denotes the Ref

texture feature which was fed into the external reference.

3. Experimental Results

In this section, we first describe the construction process of the dataset used in this
paper and provide the implementation details. Then, we evaluate the performance of our
method compared with other SR methods. Then, we fully verify the effectiveness of our
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designed modules by ablation experiments. Lastly, we test the application effect of our
proposed method in smart cities by the task of urban region function recognition.

3.1. Datasets

Since there are no open available datasets for remote sensing images super-resolution
with reference images, we chose the AID dataset [36] and WHU-RS19 dataset [37] to
construct the training set and test set. These two datasets have relatively high pixel and
spatial resolution.

The AID dataset was released by the Huazhong University of Science and Technology
and Wuhan University in 2017. It contains 30 classes, with about 220–420 remote sensing
images in each class. The total number is 10,000. The pixel resolution is 600× 600, and the
spatial resolution is 0.5 m∼8 m.

The WHU-RS19 dataset was released by Wuhan University in 2011. It contains 19
classes. Each class has about 50 images with 600× 600 pixels. The spatial resolution is
0.5 m. The total number is 1005.

Considering that the similarity between the LR image and the Ref image affects the
super-resolution results significantly, we regarded the former image as the original HR
image and the latter image as the corresponding Ref image in the same class. This strategy
can ensure that the original HR image and the Ref image have a high texture similarity. In
this way, we collected 5500 HR–Ref pair samples.

Figure 6 shows the image degradation process in our paper.

Figure 6. The procedures of image degradation. Gaussian kernel size was randomly sampled from
{5, 7, 9, 11}. The cloud brightness was randomly sampled from {220:240}. The cloud density was
randomly sampled from {0.01, 0.02, 0.03, 0.04, 0.05}.

Finally, we obtained 22,000 pair samples in every scaling factor. Each pair sample
included a low-resolution image, a reference image, and a high-resolution ground truth
image. We selected 20,000 samples for training and 2000 samples for testing. Figure 7
shows some examples in the dataset.
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(a) lr

(b) ref

(c) hr

Figure 7. Examples from the training dataset.

3.2. Metrics

In this paper, we chose two standard evaluation metrics, peak signal-to-noise ration
(PSNR) and the structural similarity index measure (SSIM) [38], as the objective measure
indexes to evaluate the performance of our method and other compared SR methods.

We calculated the PSNR as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[X(i, j)−Y(i, j)]2, (11)

PSNR = 10 · log10(
MAX2

X
MSE

), (12)

where X denotes the HR image, Y denotes the SR image, m × n represents the pixel
resolution of the image, and MAX denotes the maximum possible pixel value of the image,
which was set to 255 in our experiments.

SSIM was calculated from three aspects: brightness, contrast, and structure. The value
ranged from 0 to 1. The larger the value, the more similar the structure.

Brightness was calculated by mean as follows:

l(X, Y) =
2µXµY + c1

µ2
X + µ2

Y + c1
, (13)

Contrast was calculated by variance as follows:

c(X, Y) =
2σXσY + c2

σ2
X + σ2

Y + c2
, (14)

Structure was calculated by covariance as follows:

s(X, Y) =
σXY + c3

σXσY + c3
, (15)

where µX and µY represent the mean value, σX and σY represent the standard deviations,
and σXY denotes the cross-covariance. c1 = (k1L)2 and c2 = (k2L)2 are two constants
to avoid division by zero, where L is set to 255, and k1 and k2 are set to 0.01 and 0.03,
respectively, in our experiments.

SSIM can be calculated as follows:

SSIM(X, Y) = [l(X, Y)α · c(X, Y)β · s(X, Y)γ], (16)
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Now, with α = 1, β = 1, γ = 1, and c3 = c2
2 , the formula can be changed to:

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ
2
X + σ2

Y + c2)
. (17)

3.3. Implementation

While training the MSTT-SRNet, the batch size was set to 4. We used Adam [39] as
the optimizer with a weight decay of 5× 10−4. We trained the network for 25 epochs.
The initial earning rate was 0.001 and it decreased by a factor of 10 every 10 epochs. The
multi-head in the transformer was set to 8. The weights of λcont, λper, and λtext were 5.0,
1.0, and 1.0, respectively. Our proposed method was implemented by PyTorch, and all the
experiments were run on a NVIDIA Titan XP GPU (12GB memory).

3.4. Comparisons with State-of-the-Art Methods

In order to better demonstrate the effectiveness of our method, we compared our
method with several other SR methods. The compared methods were bicubic, FSRCNN [14],
EDSR [19], TTSR [31], and DASR [25]. Bicubic is a typical traditional interpolation method.
FSRCNN and EDSR are traditional non-blind super-resolution methods. TTSR is also a
reference-based super-resolution method. DASR is a blind super-resolution method.

Figures 8 and 9 show the visual reconstruction effect of scaling factors ×2 and ×4,
respectively. We can see that: (1) the images reconstructed by the bicubic method are
very blurry, the detail information is missing, and the visual effectiveness is poor; (2) the
images reconstructed by the FSRCNN method and the EDSR method demonstrate a great
improvement in the content details, but there are still many cases where the boundary lines
are blurred, and the reconstruction effect is not ideal; (3) The images reconstructed by the
DASR method have a certain distortion, especially in the second group of samples, and
color distortion occurs, the main reason being that the estimation of the image degradation
type by this method does not deal with the degradation problem of cloud occlusion;
(4) TTSR is also a reconstruction method based on texture reference, but the effect on
remote sensing images is not ideal. The reason may be that the method is based on
correlation analysis between low-resolution image features and the same down-sampled
reference image features. However, there is no cloud occlusion degradation in the reference
image, which affects the correlation learning between low-resolution features and reference
features; (5) Our method learns the texture correlation between the reconstruct features and
the reference features in the decoder stage, both of which have no cloud occlusion noise.
Therefore, compared with other methods, the method proposed in this paper results in the
best reconstruction effect, and the texture details are more abundant, which fully verifies
the effectiveness of the method.

LR BICUBIC FSRCNN ECCV2016 EDSR CVPR2017

HR TTSR CVPR2020 DASR CVPR2021 OURS

Figure 8. Visual comparison between our method and other methods with a ×2 scaling factor.
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LR BICUBIC FSRCNN ECCV2016 EDSR CVPR2017

HR TTSR CVPR2020 DASR CVPR2021 OURS

Figure 9. Visual comparison between our method and other methods with a ×4 scaling factor.

To further analyze the objective performance of our method, we reported the mean
PSNR and SSIM values compared with other methods on test sets of various scaling factors.
Table 1 shows the statistical results. It can be seen from the table that our method achieves
better results than other state-of-the-art methods, which demonstrates the effectiveness of
our method.

Table 1. The mean PSNR(dB) and SSIM on a test set with scale factors of ×2, ×3, and ×4.

Scale Bicubic FSRCNN EDSR TTSR DASR Ours

PSNR/dB
×2 29.71 31.64 31.86 31.94 30.83 32.31
×3 27.39 28.21 28.55 29.03 28.87 29.86
×4 25.42 26.91 27.01 27.22 26.33 27.65

SSIM
×2 0.895 0.902 0.904 0.913 0.899 0.918
×3 0.812 0.845 0.841 0.856 0.854 0.866
×4 0.781 0.803 0.811 0.812 0.806 0.831

3.5. Analysis of Different Reference Images

In order to better analyze the reconstruction effectiveness as affected by different Ref
images, Figure 10 shows the comparison of the generated SR results based on different Ref
images. It can be seen from the figure that the texture similarity between the LR image
and the Ref image on the left is low and that the SR result is poor, while the Ref image
on the right has a high texture similarity with the LR image and the texture details of the
corresponding SR result are richer, which fully indicates that it is effective for adopting a
Ref image to help with SR reconstruction. At the same time, the Ref image with higher
texture similarity has a higher reference value for helping with SR reconstruction.

(a) ref-1 (b) lr (c) ref-2

(d) sr-1 (e) hr (f) sr-2

Figure 10. SR results using different reference images with a ×2 scaling factor.
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3.6. Ablation Studies

In this section, we conduct several ablation experiments to verify the effectiveness of
the key components in our method, including the similar texture feature extraction module,
the multi-scale texture feature fusion module, and the texture transfer loss.

Similar texture feature extraction module. The function of the similar texture feature
extraction module (STFE) lies in using a transformer attention mechanism to extract the
high similarity texture feature from the Ref image, and in doing so to avoid the inter-
ference of irrelevant and redundant texture features to obtain more valuable reference
prior knowledge.

To verify the effectiveness of the STFE module, we designed an ablation experiment.
We removed the STFE module from the full model. For fairness, we also performed a 1× 1
convolution operation on the Ref texture feature to reduce the feature dimension. Then, we
fed the Ref texture feature to the MSTF2 module for the SR task.

Figure 11 shows the visual comparison results of scaling factor ×2. We can see that
both the LR image and the Ref image contain many objects, and the texture information
is complex. Although they have a high texture similarity, the SR result from the network
without STFE is poor, while the network with STFE restores richer texture details and a
more realistic SR result, demonstrating the superior usefulness of the STFE module in the
selection and extraction of Ref texture features.

Figure 11. Compared SR results between MSTT-SRNet without and with STFE module based on the
same Ref image with a ×2 scaling factor.

Multi-scale texture feature fusion module. To study the effect of the MSTF2 module,
we conducted an experiment by removing the MSTF2 module from the full model, then
compared the SR results with those from the full model. In addition, we also conducted
an experiment by cutting the playground area from the Ref image and then up-sampling
by bicubic interpolation to 600× 600 as the new Ref image, which means the different
scales of the Ref images, though the experiment is not fully comparable. We show the
performance comparison results of these two models based on differently scaled Ref images
in Figure 12. As shown in the figure, under the same scale of the Ref image, the model
with the MSTF2 module could obtain better SR results compared with the model without
the MSTF2 module, which demonstrates the effectiveness of the proposed MSTF2 module.
Under the different scales of Ref images, the results of the model without the MSTF2
module are superior when the scale of the Ref image is large, which implies that texture
scale matters. By adding the MSTF2 module, the SR results of different scales are relatively
approximate. This demonstrates the stronger adaptivity of multi-scale in extracting Ref
texture features.

Texture transfer loss. To ensure that the texture transfer loss would benefit our
network, we trained the MSTT-SRNet twice. The first training did not include texture
transfer loss, while the second training did. Table 2 shows the quantitative comparison
results of these two training networks with various scaling factors. We can see that: (1) in
the scaling factor ×2, texture transfer loss provides a 0.5 dB improvement in PSNR, and
a 0.007 improvement in SSIM; (2) in the scaling factor ×3, texture transfer loss provides
a 0.49 dB improvement in PSNR, and a 0.009 improvement in SSIM; (3) in the scaling
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factor ×4, texture transfer loss provides a 0.34 dB improvement in PSNR, and a 0.012
improvement in SSIM. The above results show the effectiveness of texture transfer loss.

HR

LR

SR2_crop

(without MSTF2)

SR2_crop

(with MSTF2)

Ref1LR_crop

HR_crop

SR1_crop

(without MSTF2)

SR1_crop

(with MSTF2)

Ref2

Figure 12. Compared SR results between MSTT-SRNet without and with the MSTF2 module based
on different scale Ref images with a ×2 scaling factor.

Table 2. The compared mean PSNR(dB) and SSIM on a test set trained by MSTT-SRNet without and
with texture transfer loss with scale factors of ×2, ×3, and ×4.

Scaling Factor Texture Transfer
Loss PSNR/dB SSIM

×2 without 31.81 0.911
with 32.31 0.918

×3 without 29.37 0.857
with 29.86 0.866

×4 without 27.31 0.819
with 27.65 0.831

3.7. Application in Smart Cities

In this section, we evaluate the application effect of our proposed SR method in smart
cities. We applied our SR method to a challenging large-scale dataset for urban region
function recognition (URFR dataset). The dataset was released by the 5th Baidu and XJTU
Big Data Contest in 2019. The aim of the contest was to design an urban region function
classification model based on remote sensing images and user visit data. The dataset
consists of two parts: the first part was provided in the preliminary round, denoted as
URFR-1, and includes 40,000 training samples and 10,000 test samples. The second part
was provided in the semi-final round, denoted as URFR-2, and included 400,000 training
samples and 100,000 test samples. There were nine types of region function labels in the
dataset, namely residential area (res.), school (sch.), industrial park (ind.), railway station
(rail.), airport (air.), park (park), shopping area (shop.), administrative district (adm.), and
hospital (hosp.). In our experiments, we only used the remote sensing images in the
training samples with ground truth labels. This dataset was particularly challenging as the
resolution of the remote sensing images was 100× 100, and the image content was blurry.
Some images even had serious cloud occlusion, which led to poor performance based on
this dataset. Table 3 shows the details of the URFR-1 and URFR-2 datasets.
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Table 3. The split settings and per-class numbers of the URFR-1 and URFR-2 datasets.

Dataset Split res. sch. ind. rail. air. park shop. adm. hosp. Total

URFR-1
train 8152 6417 3031 1155 2947 4685 2973 2209 2431 34,000
val 217 188 98 40 85 140 87 68 77 1000
test 1173 933 461 163 432 682 457 340 359 5000

URFR-2
train 102,211 77,520 43,315 5592 14,000 53,300 17,987 11,191 14,884 340,000
val 3094 2201 1338 170 410 1558 514 321 394 10,000
test 15,065 11,332 6362 826 2084 7826 2634 1669 2202 50,000

Visual Comparison. Figure 13 shows some remote sensing images in the URFR
dataset and the corresponding SR results generated by our proposed method. From the
visual comparisons, we can see that the SR results reconstructed by our proposed method
have clearer edges and richer textures.

(a) LR

(b) SR

Figure 13. Visual comparisons on URFR dataset with a ×3 scaling factor.

Quantitative Evaluation. We performed the urban region function recognition ex-
periments on three widely used convolutional neural networks, namely VGG-19 [40],
ResNet-50 [41], and DenseNet-121 [42], to evaluate the application effect. We conducted a
comparative experiment. (1) Before SR: We used the original URFR dataset to train in turn
the three classification networks pre-trained on ImageNet. (2) After SR: We applied our
proposed SR method to the URFR dataset to generate the SR images. Then, we used the SR
URFR dataset to train in turn the three classification networks pre-trained on ImageNet
again. In our experiment, we set the same training parameters to the same type of classifi-
cation network during the two comparative training processes. We adopted the SR results
of scaling factor ×3. We resized both the original images and the SR images to 224× 224
for training and testing.

Table 4 summarizes the accuracy results of the comparative experiments on the URFR-
1 and URFR-2 test sets. From the results, we can see that the accuracy results after SR of
the three classification networks all outperformed the results before SR. The accuracy of
VGG-19, ResNet-50, and DenseNet-121 on the URFR-1 test set were improved by 2.32%,
4.11%, and 4.04%, respectively. The accuracy of VGG-19, ResNet-50, and DenseNet-121 on
the URFR-2 test set were improved by 2.52%, 3.78%, and 4.41%, respectively. This indicates
that our proposed SR method can effectively improve remote sensing image quality and
enhance the application value in smart-city-related tasks.
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Table 4. The accuracy results of the comparative experiments on the URFR-1 and URFR-2 test sets.

Network Image Type Accuracy (URFR-1 %) Accuracy (URFR-2 %)

VGG-19 original images 39.81 53.82
SR images 42.13 56.34

ResNet-50 original images 44.48 54.72
SR images 48.59 58.50

DenseNet-121 original images 45.08 55.43
SR images 49.12 59.84

4. Discussion and Conclusions

In this paper, to address the problems of insufficient resolution and blurry content
of remote sensing images, we proposed a novel SR method, called the multi-scale texture
transfer super-resolution network (MSTT-SRNet), which effectively leverages internal and
external reference prior knowledge. Particularly, the proposed method introduces the
transformer attention mechanism in order to exploit the texture similarity measurement
between the LR image and the Ref image to enhance the transfer texture feature repre-
sentation and reduce the parameters and computation of the network. At the same time,
considering the diverse scales and alignment angles of texture features, a multi-scale texture
feature fusion module was designed to obtain more accurate reconstruction results. The
experimental results show that our proposed method can achieve better subjective and
objective performance compared with several state-of-the-art SR methods.

In addition, we also evaluated the application value of our proposed SR method in
smart cities through the task of urban region function recognition. The dataset used in
this task was particularly challenging as the resolution of the remote sensing images was
very low (100× 100) and the image content was blurry; some images even had serious
cloud occlusion, which led to poor performance. We applied our proposed SR method
to this low-quality dataset. We then conducted comparative experiments between the
SR dataset and the original dataset on three widely used convolutional neural networks:
VGG-19, ResNet-50, and DenseNet-121. The results show that our proposed SR method
can effectively increase the accuracy of urban region function recognition. This indicates
that our proposed SR method has high application value in smart cities.

However, we found some problems during the experiment. Compared with real-world
datasets, the synthetic dataset in our paper based on the AID and WHU-RS19 datasets did
not contain sufficient variant scales. Thus, the texture scale difference between LR and
Ref images was small, which led to inadequate learning in the extraction and fusion of
multi-scale texture features. In the future, we will explore the variant scales in the process
of dataset construction. The possible ways to do this include choosing source datasets
with different spatial resolutions and selecting LR–Ref pair samples with scale variation.
Moreover, we also need to further test the application effect of our proposed method in
more smart city tasks based on remote sensing images.
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