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Abstract: Because falls are the second leading cause of injury deaths, especially in the elderly
according to WHO statistics, there have been a lot of studies on developing a fall detection and
warning system. Many approaches based on wearable sensors, cameras, Infrared sensors, radar, etc.,
have been proposed to detect falls efficiently. However, it still faces many challenges due to noise
and no clear definition of fall activities. This paper proposes a new way to extract 44 features based
on the time domain, frequency domain, and Hjorth parameters to deal with this. The effect of the
proposed feature set has been evaluated on several classification algorithms, such as SVM, k-NN,
ANN, J48, and RF. Our method achieves a relative high performance (F1-Score metric) in detecting
fall and non-fall activities, i.e., 95.23% (falls), 99.11% (non-falls), and 96.16% (falls), 99.90% (non-falls)
for the MobileAct 2.0 and UP-Fall datasets, respectively.

Keywords: accelerometer; fall detection system (FDS); human activity recognition (HAR);
multi-classification; unbalanced data

1. Introduction

Human activity recognition (HAR) has a wide range of applications, such as ambient
assisted living, smart homes, rehabilitation, health care, and so on. Human activities
can be categorized into normal activities of daily living (ADL),such as sitting, standing,
walking, etc., and abnormal activities such as falls [1,2]. Falls are the second leading cause
of unintentional injury deaths worldwide [3]. Thus, fall detection and prevention play an
important role in daily living assistance, especially for seniors who are likely to have a
higher risk when facing falls. Therefore, many researchers recently pay a lot of attention to
study FDS.

The performance of the FDS depends on the type of sensor used. Sensors based on
cameras and wearables are generally more common than ambient sensors. FDS based on
ambient sensors gives high false-positive results due to environmental influences [4,5]. The
limitation of FDS based on cameras is the limited recognition space. Detection performance
is highly dependent on the lighting conditions of the environment. It also is expensive,
computationally intensive, and has a slow processing time. In addition, this system may
also affect the privacy of users [4,5]. The advantage of FDS based on wearable sensors
are that they are easy to deploy, allow for continuous monitoring, and are unaffected by
the environment. The implementations for FDS based on wearable sensors are generally
inexpensive, highly portable, and with low power consumption [4]. In addition, the
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wearable sensor also provides outdoor monitoring, and collects data easily. The smartphone
can be used as a wearable because of its ubiquity. Smartphones have built-in sensors, such
as accelerometers, magnetometers, and gyroscopes. Beside of that, the ability to connect
and communicate is the absolute advantage of smartphones. Many works have proved
that it is possible to achieve high performance in fall detection when relying solely on
accelerometer data [6–11].

The recent algorithms for dealing with fall detection mostly belong to two main
categories that are machine learning-based methods and deep learning-based methods.
Each approach has its advantages and disadvantages. For instance, the performance of the
machine learning methods largely depends on the proper selection of feature sets [2,6,12].
In contrast, deep-learning methods depend on model building and optimization [7–9,13].
Nonetheless, this latter approach usually requires a huge amount of computational and
storage resources.

In general, the existing fall detection algorithms can be classified into two main
categories: binary and multi-class detection methods. The binary detection methods focus
on identifying falls and non-fall activities [6,7,9–11,14–16]. Indeed, fall activities are those
having an abnormal and sudden change in their patterns, whereas, the non-fall activities
or ADLs usually have regular patterns. Thus, the works focusing on distinguishing falls
and non-fall activities are likely to achieve high accuracy. In contrast, the multi-class
detection methods try to recognize various specific fall activities-for example, fall forward,
falling backward, etc.-and various specific non-fall activities, for example, sitting, standing,
jogging, stair up, stair down, etc. [2,8,12,13]. A classifier might misinterpret an activity with
another one since some of their patterns are possibly similar. Therefore, the complexity of
the classification problem certainly increases as the number of labels grows.

Remarkably, due to the difficulty in collecting data for fall activities, the existing
public dataset used in fall detection contains very little amount of data representing fall
activities—possibly less than 10% of total data samples [1,2]. Therefore, these datasets
are unbalanced. This unbalanced issue causes most of the existing works dealing with
multi-class activity detection to usually achieve high performance in detecting specific
non-fall activities but lower performance in detecting fall activities [2,8,12,13].

Given the presented challenges, we propose a new feature set based on accelerometer
data to establish a fall detection framework. In addition to the ability to classify falling
and non-falling activities, this framework also has high detection accuracy in the context
of unbalanced datasets. Two sets of raw data from different sources (MobiAct [1] dataset
is obtained by smartphone; UP-Fall [2] dataset is obtained by IMU device) are used to
test the effectiveness of the proposed feature set. The obtained results show that our
proposed feature set has better fall detection performance than previous works in both
cases. Specifically, the experimental results are 95.23% (fall), 99.11% (no fall) and 96.16%
(fall), 99.90% (not fall) on the MobiAct and UP-Fall, respectively.

The rest of this article is organized as follows: the related work is presented in Section 2.
Then, the details of the proposed method are described in Section 3. Next, the experi-
mental settings and results are shown in Section 4. Finally, Section 5 provides various
conclusion remarks.

2. Related Works

Comparing the performance of FDSs is a problem because each study uses a different
dataset [17,18]. Many authors state that they cannot be compared directly with previous
studies due to differences in data collection methods, target groups, and environmental
settings in their studies [18,19]. Pannurat et al. [19] indicate that the factor affecting the
performance is the number of training samples used to train the FDS. The results obtained
from FDS studies based on accelerometer data are difficult to compare without using the
same dataset. To evaluate the effectiveness of the proposed feature set, we have surveyed to
find many datasets that many research teams have used and are relatively consistent with
our research target (Table 1). With the characteristics discussed, we have selected two open-
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access datasets, MobiAct v2.0 and UP-Fall, for feature extraction and FDS construction.
These two datasets are collected methodically, scientifically, and diversely. The MobiAct
v2.0 dataset has been collected from the accelerometer sensor of the smartphone. During
the data collection process, volunteers were allowed to choose the location and orientation
of the phone at random, so it was as close to reality as possible. The UP-Fall has been
collected from the IMU (Inertial Measurement Unit) device. These are inexpensive and
common devices in life. We use two datasets with different collection methods to ensure
the stability of the results; reduce bias when evaluating system performance.

Table 1. Recent works on fall detection using MobiAct and UP-FALL datasets.

Researchers Dataset
Number
of Types

(ADLs/Falls)
Sensors Number of

Features
Feature

Domains

Window
Size/Window
Overlapping

Ratio

The Best
Method

Fall Clas-
sifier
Type

Measures

Chatzaki
et al., 2017

[12]

MobiAct
V2.0 12/4 A,G 39

Time
domain,

Frequency
domain

1 s, 80% k-NN Multi-
class F1-score = 96.8%

Shi et al.,
2020 [14] MobiAct 4/4 A, G

raw data
for CNN,
3 features
for CAM

Time
domain 1 s, 50% CNN +

CAM
Binary
class ACC = 95.55%

Mahfuz et al.,
2018 [6] MobiAct 9/4 A 58 Time

domain 10 s ANN Binary
class ACC = 98.75%

Hassan et al.,
2019 [16]

MobiAct
V2.0 12/4 A 58 Time

domain 10 s
Hybrid

deep
cnn-lstm

Binary
class F1 = 97%

Xu et al.,
2019 [7] MobiAct 6/1 A raw data 4 s CNN-

LSTM
Binary
class ACC = 98.98%

Wu et al.,
2019 [13] MobiAct 9/4 A,G raw data 3.45 s LSTM Multi-

class
ACC = 98.83%

F1 = 90.33%

L. Martínez-
Villaseñor

et al., 2019 [2]

UP-Fall
(IMU) 6/5 A, G 756

Time
domain,

frequency
domain

1 s, 50% ANN Multi-
class

ACC = 95.73%,
F1 = 71.79%

Le et al., 2021
[15] UP-Fall 6/5 A, L,

Av, Bs 14

Time
domain,

frequency
domain

k-NN +
APGWO

Binary
class

ACC = 99.3%,
F1 = 84.79%.

Lai et al.,
2021 [8] UP-Fall 6/5 A raw data

Res-TCN
(Adam
CNN)

Binary
and

multi-
class

ACC = 97.75%
F1 = 98.68%

(binary class)
ACC = 94.40%

F1 = 86.73%
(multi-class)

Santoyo-
Ramón et al.,

2021 [10]
UP-Fall 6/5 A 12

Time
domain,

Frequency
domain

SVM +
Major
voting

ensemble

Binary
class

Sen = 9.59%,
Spe = 98.41%

Nahian et al.,
2021 [11]

UP-
FALL 6/5 A 39

Time
domain,

Frequency
domain

LR Binary
class

Sen = 100%,
Spe = 99%

Kraft et al.,
2020 [9]

UP-
FALL 6/5 A 1 Raw data

CNN using
Rectifier

Linear Unit

Binary
class F1 = 99%

Note: A—Accelerometer, G—Gyroscope, M—Magnetometer, L—Luminosity, ACC = Accuracy metric, CNN—
Convolutional neural network, ANN—Artificial neural network, CAM—Class activation mapping, ResNet—
Residual Network, Bs—Brain Sensor, Av—Angular Velocity, LSTM—long short-term memory, APGWO—
Adaptive Particle Swarm-Grey Wolf Optimization, LR—Logistic regression, SMV—Signal Magnitude Vector,
Sen—Sensitivity, Spe—Specificity.
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Many research works on fall detection systems based on the MobiAct dataset only use
the Accuracy (ACC) metric to evaluate the performance of the model [6,7,14]. Accuracy is
a popular metric for evaluating the performance of classification models. However, with
unbalanced datasets, the ACC metric is no longer suitable to evaluate the performance of
the model [8]. In the MobiAct and UP-Fall datasets, the sample number of non-fall activities
accounted for more than 90%. Meanwhile, the sample number of fall activities that need
to be correctly detected is less than 10%. Non-fall activities (ADLs) are generally easier to
classify than fall activities [2,12]. The overall results on the ACC measure were very high,
but the results for the identification of fall activities were low [2,8,12,13]. As can be seen, the
ACC measure is not suitable to evaluate the performance of the fall detection model when
using an unbalanced dataset. In this case, metrics, such as Accuracy, Sensitivity, Specificity,
and F1 Score, are preferred [20].

It can be observed that most of the recent works focus on using a binary classifier
to identify fall and non-fall activities. There exist very few studies that deal with the
multi-class problem in detecting specific fall and non-fall activities [2,8,12,13]. As discussed,
these latter methods need to handle various difficulties such as the imbalance of datasets,
and the complexity of multi-class methods in fall detection. Thus, they often achieve high
performance in detecting specific non-fall activities but relatively lower performance in
detecting specific fall activities. Le et al. [15] propose a new feature set to reduce the number
of input attributes based on the APGWO model. They used three types of data included in
the UP-Fall dataset to train the model. Various classifiers, such as Logistic Regression (LR),
K-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naïve
Bayes (NB), Random Forest (RF), Multilayer Perceptron (MLP), and the proposed model
(APGWO), were used to evaluate the effectiveness of the proposed feature set. The best
performance in Accuracy and F1-scores metrics are 99% and 96%, respectively. Although
Le et al. [15] proposed an identification model based on binary classification, the F1 score is
not impressive. In addition, this study also uses a combination of many different types of
sensor data making it difficult to apply in practice.

Diponkor Bala and GM Waliullah [21] extracted the time and frequency domain
properties of the four activities Stand (STD), Walk (WAL), Jog (JOG), and Jump (JUM) from
the MobiAct V2.0 dataset. They then preprocessed the data size using PCA and Fisher’s
LDA methods. The best accuracy they obtained was 99.305% using the k-NN classifier. The
number of samples of the two operations STD and WAL is much larger than that of JOG
and JUM, so it can be considered unbalanced. Therefore, the Accuracy measure does not
accurately reflect the effectiveness of the proposed attribute set. With unbalanced data, it is
necessary to consider additional measures, such as Precision, Sensibility, F1-Score to obtain
the most objective results. In addition, the four activities that Diponkor Bala and G. M.
Waliullah [21] selected to build the identification model are cyclic, less complicated, so they
are easier to identify. If this model applies to confusing activities, such as going upstairs,
going downstairs, standing to sitting, sitting to standing, or activities with sudden changes
in resistance such as falls, it will not be effective.

Panhwar et al. [22] presented a fall detection method using a smartphone’s inertia
sensor, a three-axis accelerometer, a three-axis gyroscope, and orientation data. They used
both SVM and ANN for testing. The Neural Network-based model gives the best overall
classification results with an accuracy of 96.07%. However, Panhwar et al. [22] only selected
the subset of MobiAct dataset consisting of two fall activities (FOL, BSC) and three ADLs
(STD, WAL, and SIT) to build the model. The data for these three daily activities are much
more weighted than the two falls. Therefore, the obtained results do not accurately reflect
the fall detection ability of the model.

Shi et al. [14] built a convolutional neural network (CNN) with class activation map-
ping (CAM). They used fall data and ADLs, including standing (STD), walking (WAL),
jumping (JUM), and jogging (JOG) of the MobiAct dataset to train the model. Short seg-
ments of the fall around the frame initiate the fall phase, and short segments of ADL were
used as training samples. Their model was able to achieve detection with an accuracy of
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95.55%. However, their proposed method could not give promising results in cases such as
a fall [2,6–12,14,23].

Martínez-Villaseñor et al. [2] introduced a UP-Fall Fall Detection dataset with various
sources of data, such as IMU, EEG, CAM, etc. The MLP classifier achieved the best results on
the Accuracy scale (95.0%). However, on the precision, sensitivity, and F1-score measures,
the results are 77.7%, 69.9%, and 72.8%, respectively, which are lower than the Accuracy
metric. This model has a relatively low recognition of falls. That proves that their proposed
feature set and model are not suitable for multiclass classification based on an unbalanced
dataset.

The proper selection of feature sets critically affects the accuracy of the detection
system. The ability to recognize fall activities is highly dependent on the feature set
extracted from the raw data [24–27].

Table 1 also shows that a large number of features are required in the multi-class
problem to obtain the prediction accuracy of higher than 94% for both MobiAct and UP-Fall
datasets. High prediction performance with the number of features less than 40 can be only
obtained in simple problems modeled as the binary classification. Chatzaki et al. [12] used
39 features in time and frequency domains to obtain an average prediction accuracy of
96.8%, however, the highest accuracy of fall detection did not exceed 84%. Therefore, our
work aims to investigate an efficient framework with low computational resource for fall
detection in the context of a complex multi-class problem.

3. The Proposal Framework for Fall Detection

A typical FDS is shown in Figure 1, which consists of three main components: data
capturing, fall detection, and communication components. The data-capturing compo-
nent, which can be a smartphone or a wearable device, retrieves real-time data from an
accelerometer or inertial sensors. Then, the data are processed by a fall detection system
to detect and recognize falls. In case of a fall detected, the communication component
is responsible for transmitting the alert signals to family members and/or to a hospital
or caregiver through a wireless communication channel. The fall detection component is
the most important in the system that requires high accuracy and reliability and real-time
processing ability.
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From the surveys in Section 2, there are several approaches to recognize falls among
daily activities, such as threshold-based, machine learning-based, and deep learning-based
approaches. Recently, machine learning and deep learning algorithms are broadly used
for their high-accuracy achievements [8,13,14,28,29]. Hence, in this work, we investigate
various machine-learning techniques, such as k-NN, J48, SVM, ANN and RF, for detecting
daily activities as well as falling activities.

The daily activities including abnormal behaviors such as falls are commonly recog-
nized in a framework, namely Human Activity Recognition (HAR) and are described in
Figure 2.
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In the following section, we will present our proposed approach related to data
preprocessing.

3.1. Data Preprocessing

In the HAR framework, the data preprocessing is composed of filtering, sliding
windows, and feature extraction.

3.1.1. Filtering Technique

The signal describing human activity obtained from the accelerometer consists of three
basic components: motion, gravitational, and noise [30]. To build a highly accurate model
of human daily activities detection, it is necessary to separate motion, gravitational, and
noise components in the signal received from the accelerometer [31]. Various types of filters
can be used to remove noise from accelerometer sensor data. Depending on the data type
and the Machine Learning model, a low-pass filter, a high-pass filter, a band-pass filter,
or a band-stop filter, are used. Low-pass filters are often used to remove high-frequency
noise [32,33], eliminate misplacement [34], and remove gravity components [35,36]. High-
pass filters and band-pass filters are often used to separate the acceleration signal that is
mixed with the gravitational force and noise [31,37–41]. These filtering processes also assist
the efficiency enhancement of feature extraction in activity recognition.

3.1.2. Windowing Technique (Sliding Window)

As aforementioned, after applying noise filtering, the resulting acceleration data
are split into several smaller data segments of a predefined size. Each data segment is
alternatively called a data window. A sliding window with a specific overlapping ratio is
used to avoid data sample loss, which can degrade the recognition accuracy of activities.
Each type of activity or behavior has different properties, so the proportion of data window
size can be also different to efficiently recognize activity classes. For short windows, it can
be helpful to detect fast activities such as falling, but some periodic characteristics of some
activities may be lost. For long windows, it can cover enough information of activities, but
the noise interference may be also increased.

Therefore, finding a suitable window size to effectively detect ADL activities including
falls will be always challenging. It is really necessary to determine the sliding window
parameters on the recognition performance to select the best for various datasets.

3.1.3. The Proposal Features Extraction Method (Feature Extraction)

Based on the successful models of activities detection [42], we also compute similar
sets of features in each data window. The sets of features are divided into three categories:

• The feature set in the time domain (T): The popular features are based on statistical
metrics, such as mean, variance, and standard deviation. Besides, some other features
in the time domain, such as the difference between the minimum and maximum values,
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zero-crossings, cross-correlation, peak to average ratio (PAR), signal magnitude area
(SMA), signal vector magnitude, and differential signal vector magnitude, (DSVM) are
additionally computed. The total number of features in the time domain is 34 features.

• The feature set in the frequency domain (F): The time series data of each component
are converted into the frequency domain by using the Fast Fourier Transform (FFT)
algorithm. Then, the features in the frequency domain consisting of energy and entropy
metrics are computed. The spectral energy in certain frequencies is an additional
feature computed. These features represent the cyclic information of activities. The
number of features in this set F is 7 features.

• Hjorth parameters (H): Consisting of activity (A), mobility (M), and complexity (C),
these parameters were introduced by Hjorth in 1970 to analyze time-series data [43].
Because these parameters can provide useful information in both the time and fre-
quency domains, they were mostly used in analyzing biomedical signals such as ECG
and EEG [43,44]. Therefore, these parameters are proposed as additional features in
our work. The number of features in this set H is only 3 features because only the rms
component is applied in computation.

Table 2 summarizes various feature sets that are extracted in our study. The formulas
to compute these features are described in detail in [42]. The feature set plays an important
role; hence, a selection of suitable feature sets significantly affects the performance of the
activity detection model. For identifying ADLs and falls, it is necessary to combine the
features in the time domain, the frequency domain, and the Hjorth parameters. Feature
combination between different domains also needs to be investigated to determine the
effective set of features for ADLs recognition and fall detection.

Table 2. The extracted features set [42].

Domain Features Definition Applied Components

Time

µ Mean ax, ay, az, arms, ϕ, θ
σ2 Variance ax, ay, az, ϕ, θ
σ Standard deviation ax, ay, az

Diff = max(x)-min(x) Difference ax, ay, az
R Correlation (ax, ay), (ax, az), (az, ay)

ZC Zero crossings ax, ay, az
PAR Peak to average ratio ax, ay, az
SMA Signal magnitude area ax, ay, az, arms
SVM Signal vector magnitude arms

DSVM Differential signal vector
magnitude arms

I Integration ϕ, θ

Frequency EFFT Energy ax, ay, az, arms
En Entropy ax, ay, az

Hjorth
A Activity arms
M Mobility arms
C Complexity arms

Note: ax, ay, az are acceleration signals in x, y, z axes, respectively; ϕ is the angle of rotation of the accelerometer
in the x-axis, θ is the angle of inclination of the accelerometer in the y-axis; arms is the available acceleration of
the signal.

3.2. Model Selections

There are many classification algorithms, which have been applied in daily activities
recognition as well as fall detection. Most of the studies on HAR focus on proposing the
combined classifier to improve pedestrian fall detection performance. During the research
process, they used additional basic classifiers, such as ANN, k-NN, LSTM, SVM, RF, J48,
DT, etc., to evaluate the effectiveness of the proposed model. Table 1 presents the best
recognition model of some typical research. Besides, many research papers use basic classi-
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fiers but still achieve very good recognition results, such as the study of Chatzaki et al. [12],
Mahfuz et al. [6], Wu et al. [13], L. Martínez-Villaseñor et al. [2].

The paper focuses on constructing a feature set to improve the performance of the
activities recognition and fall detection model. We select basic and common classifiers to
evaluate the effectiveness of the proposed feature set. We have selected the same classifiers
as the studies included in the performance comparisons in this paper. The classifiers used
are ANN, k-NN, J48, RF, and SVM. These are common classifiers in HAR studies.

3.3. Model Evaluations

As aforementioned, the metrics, such as Precision, Sensibility, Specificity, and F1-Score,
are preferred to measure the performance of fall detection methods due to the imbalance of
datasets. They are defined below [20]:

Precision =
TP

TP + FP
(1)

Sensibility =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

F1 − Score = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

where TP is the number of true positives (correct prediction of activity), TN is the number
of true negatives (correct prediction of non-activity), FP is the number of false positives (in-
correct prediction of activity), and FN is the number of false negatives (incorrect prediction
of non-activity).

4. Experimental Evaluations
4.1. Experimental Datasets

We use two public datasets—MobiAct 2.0 and Up-Fall—for investigation on ADLs and
fall detection due to their popularity and huge size. Each dataset has different characteristics
based on/in terms of the number of ADLs and types of falls and the way to collect the
sensor data. MobiAct was collected from smartphone sensors [1], whereas UP-Fall was
collected from wearable devices [2]. These datasets have been widely used by numerous
HAR studies. The details of the two datasets are presented in Table 3.

Table 3. The public datasets used in ADLs and fall detection.

Dataset Year ADLs Falls Subjects
Gender

Age Height (cm) Weight (kg)
Male Female

MobiAct 2016 12 4 67 48 19 20–47 158–193 50–120
UpFall 2019 6 5 17 9 8 18–24 157–175 53–99

4.1.1. MobiAct Dataset

The MobiAct dataset was collected from the accelerometer, gyroscope, and orienta-
tion sensors of a Samsung Galaxy S3 smartphone. It includes 4 different types of falls
and 12 different ADLs from 66 subjects [1]. The details of this dataset (version 2.0) are
summarized in Table 4.
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Table 4. Activities of Daily Living and Falls were recorded in the MobiAct dataset [1].

Activity Label Trials Duration Description

Falls

Back-sitting-chair BSC 3 10 s Fall backward while trying to sit on a chair
Front-knees-lying FKL 3 10 s Fall forward from standing, the first impact on knees

Forward-lying FOL 3 10 s Fall Forward from standing, use of hands to dampen fall
Sideward-lying SDL 3 10 s Fall sidewards from standing, bending legs

Daily
activities

Sit to stand (chair up) CHU 6 6 s Transition from sitting to standing
Car-step in CSI 6 6 s Step in a car

Car-step out CSO 6 6 s Step out a car
Jogging JOG 3 30 s Jogging
Jumping JUM 3 30 s Continuous jumping

Lying LYI 12 - Activity has taken from the lying period after a fall
Stand to sit (sit on chair) SCH 6 6 s Transition from standing to sitting

Sitting on chair SIT 1 1 min Sitting on a chair with subtle movements
Standing STD 1 5 min Standing with subtle movements

Stairs down STN 6 10 s Stairs down (10 stairs)
Stairs up STU 6 10 s Stairs up (10 stairs)
Walking WAL 1 5 min Normal walking

Different from previous studies [7,22,45], we use only accelerometer data to train
the activity detection model to recognize all sixteen actions of the MobiAct dataset. The
sampling frequency for all activities is around 85 Hz.

4.1.2. UP-Fall Detection Dataset

UP-Fall Detection (UP-Fall) dataset [2] includes 11 activities—six human daily activ-
ities as well as five different types of human falls—of 17 healthy young adults using a
multimodal approach, i.e., wearable sensors, ambient sensors, and vision devices. The
details of this dataset are described in Table 5.

Table 5. Activities performed by subjects.

Activity Label Duration (Seconds) Description

Falls

FH 10 Forward using hands
FF 10 Forward using knees
FB 10 Backward
FS 10 Sideward
FE 10 Attempting to sit in an empty chair

Daily activities

W 60 Walking
ST 60 Standing
SI 60 Sitting
P 10 Picking up an object
J 30 Jumping
L 60 Laying

To collect data for the UP-Fall dataset, Martínez-Villaseñor et al. [2] used five Mbientlab
MetaSensor wearable sensors collecting raw data from the 3-axis accelerometer, the 3-axis
gyroscope, and the ambient light value. In addition, one electroencephalograph (EEG)
NeuroSky MindWave headset was occupied to measure the raw brainwave signal from its
unique EEG channel sensor located at the forehead. They installed six infrared sensors as
a grid 0.40 m above the floor of the room, to measure the changes in interruption of the
optical devices. Lastly, two Microsoft LifeCam Cinema cameras were located at 1.82 m
above the floor, one for a lateral view and the other for a frontal view.

Nevertheless, in this paper, we use only the data obtained from the 3-axis accelerometer
of the IMU device in the UP-Fall dataset. This device was placed in the right pocket of the
volunteers’ pants. The sampling frequency is standardized at 100 Hz for all actions.
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4.1.3. Distribution of Datasets

Figure 3 shows the data distribution ratio of two datasets MobiAct and UP-Fall. For
the MobiAct dataset, the number of samples of the four fall activities represents only 8% of
the total samples. Meanwhile, four basic daily activities, such as Walking (WAL), Standing
(STD), Jogging (JOG), Jumping (JUM), accounted for 72% of the sample. For the UP-Fall
dataset, the number of samples of the five fall activities represented only 9% of the total
samples. Six basic daily activities, such as Walking (W), Standing (ST), Sitting (SI), Jumping
(J), Lying (L), accounted for 90% of the sample. Hence, MobiAct and Up-Fall are both
unbalanced datasets that contain a very small portion of fall activities.
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4.2. Effect of Feature Sets
4.2.1. Experiment Description

Feature selection significantly affects the performance of the activity recognition
classifier. In addition to features extracted from the time and frequency domain like in other
studies, we extract more features from the Hjorth parameter. Experiments on different
datasets show that, when adding the features of the Hjorth parameter, the performance of
the fall detection system increases significantly. In this experiment, we study six feature
sets to evaluate the influence of feature sets on different classifiers in fall detection. These
include the feature sets of each separate domain and the feature sets combined from
different domains as shown in Table 6. As previous studies have shown, the time-domain
feature set has more advantages than other domain feature sets in terms of the number of
features and computational time; so, it has more influence on the performance of activity
detection [42,46]. Therefore, the time domain is chosen as a key factor to combine with
the frequency domain and Hjorth parameter. Then, the combinations of feature sets
from different domains are time domain with frequency domain (TF), time domain with
parameter Hjorth (TH), time domain with frequency domain, and with Hjorth parameter
(TFH).

Table 6. The summary of six feature sets used in our experiments.

Domains Sets of Features Number of Features

Time T 34
Frequency F 07

Hjorth H 03
Time + Frequency T + F 41

Time + Hjorth T + H 37
Time + Frequency + Hjorth T + F + H 44

In this experiment, raw accelerometer data of the MobiAct dataset and the UP-Fall
dataset have been processed to split into data windows with a 256-sample size and 80%
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overlap. Each data window is transformed to extract six different feature sets, as shown in
Table 6.

Five popular classifiers, i.e., Random Forest (RF), Artificial Neural Network (ANN),
Decision Tree (J48), k-nearest neighbor (k-NN), and Support Vector Machine (SVM), have
been used to evaluate the influence of feature sets on different classifiers as well as to select
the best classifier for the fall detection system. The parameters in the classifiers have been
set as shown in Table 7. The 10-fold cross-validation and the F-score metric are used to
evaluate the performance of the classifiers.

Table 7. The parameters of experimented classification algorithms.

No. Algorithms Parameters

1 RF Size of each bag P = 100; number of iterations I = 100; number of execution slots = 1; number of
attributes to randomly investigate K = 0.

2 J48 Set confidence threshold for pruning C = 0.25; set minimum number of instances per leaf M = 2

3 k-NN
Number of nearest neighbors (k) used in classification K = 1; maximum number of training

instances maintained. Training instances are dropped FIFO W = no window; the nearest neighbor
search algorithm to use weka.core.neighboursearch.LinearNNSearch.

4 ANN

Learning rate for the backpropagation algorithm L = 0.3; momentum rate for the
backpropagation algorithm M = 0.2; number of epochs to train through N = 500; percentage size
of validation set to use to terminate training V = 0; the value used to seed the random number

generator S = 0; the number of consecutive increases of error allowed for validation testing before
training terminates, E = 20.

5 SVM
The complexity constant C = 1; the tolerance parameter L = 0.001; the epsilon for round-off error.
P = 1.0 × 10−12; whether to 0 = normalize/1 = standardize/2 = neither N = 0 = normalize; the

number of folds for the internal cross-validation V = −1, use training data.

For the UP-Fall dataset, we focus on the data collected from the IMU’s 3-axis ac-
celerometer placed in the right trouser pocket. For the MobiAct dataset, we use only the
data collected from the smartphone’s 3-axis accelerometer mounted on the right waistband.
The experimental results of evaluating the influence of these feature sets are shown in
Figure 4.
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4.2.2. Discussion

Figure 4 shows the experimental results of the performance of the ADLs and fall
detection system on classifiers using different feature sets. The obtained results in Figure 4
show that the influence of the feature sets on the recognition performance in all five
classifiers is similar. In both datasets, the time domain feature set gives the best performance
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of activity recognition while the Hjorth feature set with only three features attains the
lowest performance when considering the performance on each separate feature set. The
combination of different feature sets improves the recognition performance significantly. In
general, the recognition performance based on the TF feature sets is better than that of the
TH feature set in different classifiers except for the k-NN classifier for the MobiAct dataset
and the J48 and RF classifiers for the UpFall dataset. Overall, the TFH feature set combining
the features of three domains attains the best recognition performance in all classifiers.

As shown in Figure 4, the RF algorithm is the best classifier in all cases for both datasets.
In the case of using the TFH feature set, the RF classifier attains the accuracy of 98.3% and
99.3% for the MobiAct and UpFall datasets, respectively. The following classifiers are k-NN,
J48, ANN, and SVM for the MobiAct dataset and J48, k-NN, ANN, and SVM for the UP-Fall
dataset. Thus, there is a small dependence on the performance of classifiers on datasets
using different feature sets. The results also show the decisional role of the time-domain
feature set due to the majority number of features in the feature sets. In the MobiAct dataset,
the list in descending order concerning the recognition performance is RF, k-NN, J48, ANN,
and SVM for the combined feature sets and the T feature set. The corresponding list is RF,
J48, k-NN, ANN, and SVM for the F feature set, and RF, J48, ANN, SVM, and k-NN for the
H feature set. However, in the UP-Fall dataset, the list in descending order concerning the
recognition performance is RF, J48, k-NN, ANN and SVM is identical for all feature sets.

Although the influence of the recognition performance on the feature sets in fall
detection is similar to that in the general activity recognition as mentioned above, there is
a small dependence/difference of the fall detection performance using different feature
sets (Figure 5). For the MobiAct dataset, the recognition performance on the feature sets in
fall detection is divided into two groups, the lower performance group consisting of ANN
and SVM and the higher performance group consisting of k-NN, J48, and RF for different
feature sets except for the TFH set. It is shown that the J48 algorithm outperforms the k-NN
algorithm for the F and H feature sets, but it is inverted for the combined feature sets in
fall detection. For the Up-Fall dataset, there is an obvious difference in the fall detection
between using the feature sets in different domains. The fall detection model using the time
domain feature set still attains the highest performance among three separate domains.
However, the models using the combined feature sets such as the TF and TH sets cannot
improve the performance as compared with the model using only the T set. The best model
only is attained using the combined TFH feature set. We noted that there are only three
Hjorth features. However, the addition of Hjorth parameters to the feature sets considerably
improves the fall detection model. In most classifiers, using the TH feature set is even better
than using the TF feature set. This improvement is because the Hjorth parameters contain
the information relating to frequency domain, such as mean frequency and bandwidth,
which assist to detect very well the fast transients of activities such as falls.
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The recognition performance of specific activities using different classifiers is presented
in Table 8 for the MobiAct dataset and in Table 9 for the UP-Fall dataset. In general,
the recognition performance of harmonic activities, such as walking, jumping, and idle
activities such as standing, sitting, is much better than that of changing activities such as
falls, standing to sit. The classifier achieving the best accuracy in recognizing a specific
activity varies on the two datasets. For example, the BSC fall detection based on the RF
classifier obtains the best accuracy of 94%; however, the SDL fall detection based on other
classifiers obtains the best performance in fall detection for the MobiAct dataset. In ADL
recognition, the JUM activity obtains the best accuracy of 99.9% for all classifiers. The
CHU and SCH activities are easy to be confused with falling activities, which causes a
downgrade in fall detection performance. However, using the RF classifier, one can attain
an accuracy of above 93% in detecting these activities. Similarly, the 01 (FH) fall activity
obtains the best accuracy in fall detection for all classifiers, and the 06 (W) walking and
11 (L) laying activities obtain the best accuracy in ADL recognition for most classifiers.

Table 8. The detailed performance of various classifiers using TFH set on the MobiAct dataset in terms
of F1-score. The raw accelerometer data are cut at the window size of 256 samples, 80% overlapping.

Activity Code
Classifier

ANN J48 k-NN RF SVM

Falls

Back-sitting-chair BSC 0.681 0.822 0.862 0.940 0.524
Front-knees-lying FKL 0.610 0.832 0.878 0.939 0.491

Forward-lying FOL 0.542 0.818 0.869 0.932 0.458
Sideward-lying SDL 0.715 0.848 0.921 0.935 0.672

Daily
activities

Sit to stand CHU 0.664 0.845 0.815 0.946 0.550
Car step in CSI 0.847 0.814 0.900 0.929 0.726

Car step out CSO 0.904 0.941 0.920 0.979 0.838
Jogging JOG 0.990 0.984 0.996 0.995 0.978
Jumping JUM 0.996 0.991 0.999 0.999 0.988

Lying LYI 0.779 0.953 0.859 0.987 0.431
Stand to sit SCH 0.725 0.833 0.882 0.945 0.625

Sitting on chair SIT 0.889 0.983 0.99 0.998 0.714
Standing STD 0.991 0.995 0.995 0.997 0.982

Stairs down STN 0.850 0.846 0.902 0.924 0.726
Stairs up STU 0.865 0.854 0.903 0.94 0.771
Walking WAL 0.992 0.990 0.995 0.996 0.977

Weighted Avg. (F1-Score) W.Avg. 0.938 0.958 0.971 0.983 0.901

Table 9. The detailed performance of various classifiers using TFH set on the UP-FALL dataset
in terms of F1-score. The raw accelerometer data are cut at the window size of 256 samples,
80% overlapping.

Activity Code
Classifier

ANN J48 k-NN RF SVM

Falls

Falling forward using hands FH 0.961 0.971 0.860 0.970 0.644
Falling forward using knees FF 0.742 0.939 0.811 0.961 0.316

Falling backwards FB 0.800 0.857 0.808 0.907 0.725
Falling sideward FS 0.771 0.792 0.753 0.811 0.383

Falling sitting in empty chair FE 0.813 0.874 0.824 0.891 0.612

Daily
activities

Walking W 0.978 0.998 0.993 0.999 0.884
Standing ST 0.97 0.995 0.993 0.999 0.893

Sitting SI 0.972 0.988 0.988 0.998 0.949
Picking up an object P 0.854 0.962 0.918 1.000 0.674

Jumping J 0.948 0.997 0.97 0.997 0.644
Laying L 0.987 0.993 0.995 0.998 0.975

Weighted Avg. (F1-Score) W.Avg. 0.963 0.987 0.978 0.993 0.875
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4.3. Comparison
4.3.1. Research Based on MobiAct Dataset

In this section, we provide a comparison between our model and the recent works on
the MobiAct dataset [1]. As mentioned above, many works use the MobiAct to build the fall
detection model with only two classes of activities; therefore, the work of Chatzaki [12] is
selected for our comparison because of the similarity in the multi-class recognition problem
between our model and Chatzaki’s model. In this comparison, we have set up the model
parameters such as the sliding window size of 128 samples (equivalent to 1.5 s) with an
80% overlapping ratio similar to that in the research by Chatzaki et al. [12].

The comparison results are shown in Figure 6. In general, the obtained results show
that the detection performance of our proposed model is similar to that of Chatzaki’s
model [12] in terms of weighted average F1-Score when using the same J48 or k-NN
classifier. However, there is a significant improvement of accuracy in fast-changing activities
recognition including fall detection with the proposed TFH combined feature set. For the
J48 classifier, our model can attain an accuracy of higher than 80% in fast-changing activities
recognition, while Chatzaki’s model only attains the highest accuracy of lower than 70% in
these recognitions. In similarity, the fall detection can attain an accuracy of higher than 90%
in our model, but lower than 84% in Chatzaki’s model for using the k-NN classifier.
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Figure 6. The detailed performance of Chatzaki et al. [12] and our proposed model in detecting ADLs
and falls.

With the proposed TFH combined feature set, the ability to identify activities that are
difficult to distinguish, fast state changes, such as sitting to standing (CHU), standing to
sit (SCH), is better than that in the research work by Chatzaki et al. [12]. The results in
Figure 6 show that the proposed feature set in this paper is especially suitable for activities
that happen quickly and change suddenly, such as falls (BSC, FKL, FOL, and SDL). That
was our aim when constructing the feature set.

The identification results of 16 activities in the MobiAct v2.0 dataset are present as a
confusion matrix shown in Figure 7. A closer look at the results in Figure 7a (Results of
Chatzaki et al. [12] and Figure 7b (Our results) show that sit to stand (chair up) (CHU) is the
most confusing. CHU activity in the study by Chatzaki et al. [12] is misclassified as a stand
to sit (SCH), the confusion is up to 22.8%. The CHU activity in our study is misclassified as
car step out (CSO), confusion is 7.02%. In addition, the rate of misclassifying Front-knees-
lying (FKL) into forward-lying (FOL) and vice versa was also higher than other activities.
Chatzaki et al. [12] said that the correct recognition of falls is more problematic. Although
the weighted accuracy of Chatzaki et al. [12] can attain 96.8%, the detection accuracy of
falls is very low which is only 70.9% for FOL and max 83.2% for BSC. It should be noted
that the obtained results indicate a significant improvement of accuracy in fall detection
and the balance of detection accuracy in all activities. In particular, the detection accuracy
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of all activities is higher than 96% and the fall detection accuracy of FOL, FKL, BSC, and
BSC is 90.6%, 90.8%, 91.2%, and 94.7%, respectively. The balanced accuracy in multi-class
recognition of our model also demonstrates the importance of data cleaning, normalization,
and feature extraction when using raw data.
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The results used to compare with the study of Chatzaki et al. are not the best. In this
paper, our method has the best outcome of 98.79% on F1-Score when using the MobiAct
dataset. This result is achieved when using the TFH feature set cut at a sliding window size
of 128 samples, 80% overlap rate, and trained by an RF classifier model. Table 10 details
this result.

Table 10. The best method: TFH feature set and RF classifier (window size: 128 samples, overlapping:
80%), MobiAct dataset.

Activity (The MobiAct Dataset) Code F1-score

Falls

Back-sitting-chair BSC 94.92%
Front-knees-lying FKL 95.58%

Forward-lying FOL 95.28%
Sideward-lying SDL 95.14%

Weighted Average of falls 95.23%

Daily activities

Sit to stand CHU 95.18%
Car step in CSI 94.75%

Car step out CSO 98.33%
Jogging JOG 99.49%
Jumping JUM 99.91%

Lying LYI 98.84%
Stand to sit SCH 96.61%

Sitting on chair SIT 99.84%
Standing STD 99.96%

Stairs down STN 95.02%
Stairs up STU 95.50%
Walking WAL 99.62%

Weighted Average of non-falls 99.11%

Weighted Average of all activities 98.79%
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4.3.2. Research Based on UP-Fall Dataset

Similarly, we have compared our model to the recent works on the UP-Fall dataset
with the equivalent conditions of the experiment. Figure 8 shows the published research
results of Lai et al. [8] and experimental results based on our proposal.
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With the focus of research to propose a feature set for the fall detection system, our
model has achieved very high accuracy results. The Accuracy, Precision, Sensibility, Speci-
ficity, and F1-Score metrics have similar results, the lowest is 93.63%, and the highest is
99.52%. That proves that our model rarely happens to recognize “false negative” and
“false positive”. In the research of Lai et al. [8], the recognition performance of falling
and non-falling activities has a big difference. The ability to detect falls and activities that
confuse (P-Picking up an object) is not good and only reaches 62.2% to 85.8%. Meanwhile,
our method also achieves at least 90.49%, including confusing activity (P-Picking up an
object). The recognition performance of fall activities in Lai’s research [8] published in
Pattern Recognition was better than that in Villaseñor’s research work [12]. However, with
the feature set we proposed, our model has a higher performance than these two studies,
especially for fall activities.

Figure 9 shows the results of recognizing activities in the form of a Confusion Matrix of
the UP-Fall dataset. The elements on the diagonal represent the ratio at which the predicted
performance compares to reality. The elements off-diagonal are those that are mislabeled
by the classifier. The higher the percentage of the elements lying on the diagonal of the
confusion matrix, the better, which indicates more correct predictions.

In the research work of Lai et al. [8], confusion matrix data appear to be split into two
clusters grouped based on performed actions: fall and non-fall. Their model is capable
of classifying non-fall activities almost perfectly. However, our model still gives better
classification performance in this group of activities.

In the group of fall activities, the model of Lai et al. [8] has a decent recognition
performance. Example: Falling backward (Column 3, FB) is only correctly classified 62.7%.
Our model gives an almost perfect performance in recognizing fall activities. It is even
better than the model proposed in [8] when it comes to detecting non-falling activities.

With the proposed feature set, our model has good recognition ability in all activities
in the UP-Fall dataset. All activities are over 90% detectable. In particular, the ability to
detect activities, such as Walking, Standing, Sitting, Jumping, Laying, achieved excellent
performance, 99.8% or more. Table 11 summarizes the best detection results of each activity
when using the UP-Fall dataset. Our method has a fall detection efficiency of over 96%.



Electronics 2022, 11, 1030 17 of 20Electronics 2022, 11, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 9. Confusion matrix of 11 activities of the UP-Fall dataset. Rows are Prediction classes; col-
umns are Actual classes. The 5 × 5 (FH, FF, FB, FS, and FE) sub-matrix is the fall operations. (a) The 
result of Lai et al. [8] using the Res-TCN model. (b) Our experimental results on the proposed feature 
set classified by the RF model. Details of activities are presented in Table 5 (Section 4.1.2). 

With the proposed feature set, our model has good recognition ability in all activities 
in the UP-Fall dataset. All activities are over 90% detectable. In particular, the ability to 
detect activities, such as Walking, Standing, Sitting, Jumping, Laying, achieved excellent 
performance, 99.8% or more. Table 11 summarizes the best detection results of each activ-
ity when using the UP-Fall dataset. Our method has a fall detection efficiency of over 96%. 

Table 11. The best method: TFH feature set and RF classifier (window size: 128 samples, overlap-
ping: 80%), UP-Fall dataset. 

Activity (The UP-Fall Dataset) Code F1-Score 

Falls 

Falling forward using hands FH 99.67% 
Falling forward using knees FF 99.69% 

Falling backwards FB 96.25% 
Falling sideward FS 90.49% 

Falling sitting in empty chair FE 94.20% 
Weighted Average of falls 96.16% 

Daily activities 

Walking W 99.97% 
Standing ST 99.92% 

Sitting SI 99.90% 
Picking up an object P 98.05% 

Jumping J 99.88% 
Laying L 99.92% 

Weighted Average of non-falls 99.90% 
Weighted Average of all activities 99.60% 

5. Conclusions 
Building an ML model for sensor-based fall detection is often fraught with difficulties 

due to the unbalanced amount of data, a lot of noise, and various types of actions. To solve 

Figure 9. Confusion matrix of 11 activities of the UP-Fall dataset. Rows are Prediction classes;
columns are Actual classes. The 5 × 5 (FH, FF, FB, FS, and FE) sub-matrix is the fall operations.
(a) The result of Lai et al. [8] using the Res-TCN model. (b) Our experimental results on the proposed
feature set classified by the RF model. Details of activities are presented in Table 5 (Section 4.1.2).

Table 11. The best method: TFH feature set and RF classifier (window size: 128 samples, overlapping:
80%), UP-Fall dataset.

Activity (The UP-Fall Dataset) Code F1-Score

Falls

Falling forward using hands FH 99.67%
Falling forward using knees FF 99.69%

Falling backwards FB 96.25%
Falling sideward FS 90.49%

Falling sitting in empty chair FE 94.20%

Weighted Average of falls 96.16%

Daily activities

Walking W 99.97%
Standing ST 99.92%

Sitting SI 99.90%
Picking up an object P 98.05%

Jumping J 99.88%
Laying L 99.92%

Weighted Average of non-falls 99.90%

Weighted Average of all activities 99.60%

5. Conclusions

Building an ML model for sensor-based fall detection is often fraught with difficulties
due to the unbalanced amount of data, a lot of noise, and various types of actions. To solve
this problem, researchers have combined many different solutions to improve the detection
performance of the model. In this paper, we propose a data extraction method based on the
time domain, frequency domain, and Hjorth parameter to build a dataset of 44 features
of accelerometer data. We use two sets (MobiAct V2.0 and UP-Fall) of accelerometer data
with different collection methods to evaluate the effectiveness of the proposed method. The
proposed dataset has also been tested on five different classifiers (SVM, k-NN, J48, RF, and
ANN algorithms) to confirm its superiority.
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Our experimental results illustrate that a proper combination of features in different
domains greatly improves the activity recognition performance of all classifiers in the
context of fall detection among many ADL activities. Specially, the fall detection accuracy
can be significantly improved although the datasets are strongly unbalanced. The RF
algorithm in our model is the best classifier in fall detection. In particular, our method
achieves an equivalent high performance in detecting fall and non-fall, fall and non-fall
activities, i.e., 95.23% (falls), 99.11% (non-falls), 98.79% (falls and non-falls), and 96.16%
(falls), 99.90% (non-falls), 98.79% (falls and non-falls) for the Mobile Act and UP-Fall
datasets, respectively. These figures are present in detail in Tables 10 and 11.

Our proposed method can be extended for detecting abnormal activities beside falls
among complex daily activities. Mobile applications for real-time fall detection and warning
based on our model can be easily and feasibly implemented due to its low computing
resource consumption.
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