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Abstract: It is always an interesting research topic for digital receiver (DRX) designers to develop a
DRX with (1) ultrawide instantaneous bandwidth (IBW), (2) high sensitivity, (3) fine time-of-arrival-
measurement resolution (TMR), and (4) fine frequency-measurement resolution (FMR) for weak
signal detection. This is because designers always want their receivers to have the widest possible
IBW to detect far away and/or weak signals. As the analog-to-digital converter (ADC) rate increasing,
the modern DRX IBW increases continuously. To improve the signal detection based on blocking
FFT (BFFT) method, this paper introduces the new concept of accumulatively increasing receiver
sensitivity (AIRS) for DRX design. In AIRS, a very large number of frequency-bins can be used for
a given IBW in the time-to-frequency transform (TTFT), and the DRX sensitivity is cumulatively
increased, when more samples are available from high-speed ADC. Unlike traditional FFT-based
TTFT, the AIRS can have both fine TMR and fine FMR simultaneously. It also inherits all the merits of
the BFFT, which can be implemented in an embedded system. This study shows that AIRS-based DRX
is more efficient than normal FFT-based DRX in terms of using time-domain samples. For example,
with a probability of false alarm rate of 10−7, for N = 220 frequency-bins with TMR = 50 nSec,
FMR = 2.4414 KHz, IBW > 1 GHz and ADC rate at 2.56 GHz, AIRS-based DRX detects narrow-band
signals at about −42 dB of input signal-to-noise ratio (Input-SNR), and just uses a little less than N/2
real-samples. However, FFT-based DRX have to use all N samples. Simulation results also show
that AIRS-based DRX can detect frequency-modulated continuous wave signals with ±0.1, ±1, ±10
and ±100 MHz bandwidths at about −39.4, −35.1, −30.2, and −25.5 dB of Input-SNR using about
264.6 K, 104.7 K, 40.2 K and 18.3 K real-samples, respectively, in 220 frequency-bins for TTFT.

Keywords: weak signal detection; blocking fast fourier transform; fast fourier transform; time-to-
frequency transform; ultra-wideband digital receiver; receiver sensitivity; instantaneous bandwidth;
accumulatively increasing receiver sensitivity

1. Introduction

Ultra-wideband digital receiver (DRX) can be considered as a unique type of RF/
microwave/millimeter-wave-receiving system, because sometimes not only it does not
have any prior knowledge of the input signals, but also often the intercepted signals
that are trying to avoid being detected with low-probability intercept (LPI) features [1].
Because it works in the unique electromagnetic signal environment, it requires (1) as wide
an instantaneous bandwidth (IBW) as possible to capture signals in a wide frequency
spectrum simultaneously, (2) high receiving sensitivity in order to detect signals as far
or as early as possible, (3) fine time-measurement resolution (TMR) to determine the
intercepted signal time-of-arrival, and (4) fine frequency-measurement resolution (FMR) for
better de-interleaving signals and other signal processing that needs frequency information.
Broadening a DRX IBW and simultaneously increasing its sensitivity are interesting and
challenging research topics for ultra-wideband DRX designers.
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In recent years, although many time-to-frequency transform (TTFT) methods have
been developed [2], especially the Compressive Sensing based methods [3], which provide
an alternative approach to Shannon vision to reduce the number of samples and the
sampling rate, for signal reconstruction with noise reduction [4] and signal detection [5],
the fast Fourier transform (FFT) is still the most commonly used method after high-speed
analog-to-digital convertor (ADC), as it can produce the narrowest measurement band in a
conventional DRX design. The latter normally determines the equivalent noise bandwidth
Be [6] and sets the FMR, if there is no further signal processing for frequency measurement
in the DRX after FFT. Since the ADC sampling speed determines the Nyquist bandwidth(

BNyquist
)

of a DRX, which sets the upper-limit of the DRX IBW, in FFT-based DRX using
more samples (N) in TTFT results in narrower Be, since Be is proportional to BNyquist/N,
and Be is one of the main factors that determines the DRX noise floor for weak-signal
detection. The details of the relation between Be and a receiver sensitivity can be found
in [7–11]. Refs. [7,8] discuss the general concept of receiver tangential sensitivity and
how to measure it. Refs. [9–11] present the sensitivity of DRX from an electronic warfare
application perspective.

As the sampling frequency increases, the current ADC can easily give the DRX more than
1 GHz IBW with more than 10 bits samples. For example, Xilinx Zynq UltraScale+ RFSoc [12]
has 8 14-bit 5 GSamples/s ADCs. Annino [13] predicted that the DRX IBW will be increased
to 4 GHz in the near future. It is well known that increasing the samples in the FFT can
improve the receiver sensitivity and FMR. Ref. [14] introduced an FFT-based method to
measure the intercepted signal pulse descriptor words with multiple FFT frame sizes, which
can achieve good TMR and FMR. However, to the authors’ best knowledge, most current
multi-bit DRX designs, for example in [14], use a few thousand samples in FFT. This is
mainly because the hardware, such as field-programmable gate array (FPGA), does not
have enough resources to process very large amount of ADC samples for close-to-real-time
applications. Furthermore, long-length FFT has poor TMR.

In parallel to the ADC development, very large or long-length FFT on FPGA have
been studied for non-real-time applications. Kanders and Mellqvist [15] introduced one-
million-point (220) FFT that was implemented on a single FPGA with a throughput of
233 MSamples/Sec and 95.6 dB signal to quantization noise ratio. FPGA-based 4-channel
with about 217-point FFT was introduced in [16] for space-based synthetic aperture radar
application. For biology, astronomy, and medical imaging applications, an FPGA-based
high-throughput 220-point sparse Fourier transform was presented in [17], which can
be applied on frequency-sparse data to generate the latest 500 frequency locations and
values every 1.16 millisecond. Its FPGA implantation can process streamed input at
0.86 GSamples/Sec. There are many research and development studies on this topic; here,
we give just a few examples.

Recently, Xu et al. [18] introduced the blocking FFT (BFFT) method to improve real-
time performance to calculate the frequency spectrum of very long-sequence signals in
embedded spectrum measurement devices. It also demonstrated the implementation of
the method on Xilinx’s Zynq-7000 device. The idea of the BFFT is that the total N-point
sequential samples are divided into K consecutive time-slots for the calculation of N
frequency-bins. Using the M(= N/K) samples in current time-slot that are only available
from the ADC, the BFFT does K independent M-point FFTs, after a phase rotation factor
is applied onto each of M time-domain samples. Note that these K M-point FFTs can be
parallel processed on FPGA to speed up calculations, as M is K times smaller than N.
After calculations in the current time-slot, the K ×M frequency components are added
to N frequency-bins. The final N-bin spectrum is obtained by superimposing the results
from all frequency results from those K time-slots. The merit of the BFFT method is that
instead of waiting for a large amount (N) of samples available by storing them in a large
onboard memory, and then performing a large N-point FFT, BFFT performs K M-point
FFTs simultaneously on a FPGA as soon as M samples are available in the current time-slot.
This method tremendously reduces the resource requirement on hardware.
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The main contributions of this paper and some comparisons of them with the current
technology published in the literature are given below:

• First, we demonstrate how to increase DRX sensitivity and obtain fine FMR, e.g.,
a few kHz, using a very large number of samples in an ultrawide IBW, e.g., 1 million
real samples in more than 1 GHz IBW. The current DRX only uses a few thousands of
samples, which results in much coarser FMR in 1 GHz IBW.

• Then for weak-radar-signal detection, we introduce the new concept of accumulatively
increasing receiver sensitivity (AIRS). In the AIRS, depending on the intercepted signal
bandwidth, DRX does not need the full N (e.g., 1 million) real samples to be processed
by the BFFT in order to detect a weak signal in N frequency-bins. The signal detection
can be progressive, or the DRX sensitivity can be cumulatively increased, while the
new time-slot data is becoming available from the ADC and being processed by the
BFFT-based TTFT. As soon as the signal amplitudes/powers in certain frequency-bins
are higher than a certain threshold, the signal detections can be asserted [19,20]. Since
large frequency-bins are used in the given IBW and time-slot-based signal detection
is used, the AIRS-based DRX can achieve both fine TMR and FMR. Although the
multiframe FFT-based DRX in [14] has good TMR, in order to achieve the FMR and
sensitivity as our AIR-based DRX, the DRX in the reference still have to wait until all
the samples for the longest frame size (e.g., N = 220) are available. This results in the
inability of the multiframe FFT-based DRX to be processed on FPGA.

• The novel concept of time-slot-based thresholds of a given probability of false alarm
rate (Pf as) for weak signal detection is introduced for the first time in this paper.

• Since the time-slot-based thresholds are used, using a very large frequency-bin size in
a given IBW, an AIRS-based DRX just uses less than N/2 real-samples for very weak
signal detection, where as an FFT-based DRX needs the full N samples to detect the
same signal.

• Based on the AIRS, we demonstrate how to design a DRX that has wide IBW with
super-high sensitivity, simultaneously with fine TMR and fine FMR.

Note that, in this paper, the input signal-to-noise ratio (Input-SNR) and the output
signal-to-noise ratio (Output-SNR) are defined as the SNRs before and after AIRS processing
or FFT processing.

This paper is organized as follows. In the next section, the signal detection with very
long-length FFT is discussed. The results will be used to compare with AIRS results in
the later sections. Section 3 has a brief discussion of the BFFT method, which helps us to
present the concept of the AIRS. More details of the BFFT algorithm with FPGA hardware
implementation can be found in [18]. Using two examples, Section 4 presents the concept
of the AIRS. The thresholds for 90% of probability of detection (POD) with Pf as of 10−7

for time-slot-based thresholds used in AIRS are also presented in Section 4. Using the
thresholds developed in the Section 4, Section 5 demonstrates the continuous wave (CW)
signal detection using AIRS. Using different frequency modulation bandwidths (FMBW)
of linear frequency-modulated continuous wave (FMCW) signals, Section 6 discusses
wideband signal detection using AIRS. Note that, these FMCW signals include both positive
and negative chirp slopes. The last section has the conclusion. Appendix A shows the
examples that compare the results obtained from MATLAB® FFT function and our BFFT
code. Excellent agreements of the results support the correct functionality of the BFFT
method used in this study. Appendix B gives the acronym list.

2. Signal Detection from FFT-Based DRX with Different Number of Real Samples

This is a well-known problem and has been discussed in detail in [9]. The purpose of
this section is to use the approach in the reference to find the POD with given Pf as for very
long-length FFT-based signal detections, as the data suitable for a direct comparison with
our AIRS results is not available in the open literature.

The parameters used in the study were (1) ADC sampling frequency was at 2.56 GHz,
(2) since the real samples were used in the FFT, the single-tone CW signal frequency was
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randomly picked within 100 and 1180 MHz in each calculation, hence the DRX IBW was
about 1080 MHz, and (3) the data lengths used in FFT were from 25 to 220. The signal
detection in this study was defined as not only the peak signal in a frequency-bin being
higher than the threshold, but also the frequency-bin location should be within ±3 bins
of the input signal frequency. Hence, the frequency check was also considered during
detection, in this study.

Table 1 compares the thresholds calculated in this study with the results given in [9]
from 25 to 210 lengths of FFT. The comparison confirms our calculations were correct. The
details of the threshold calculation can be found in the Chapter 6 of [9], which will also be
briefly discussed in Section 5, when we develop the time-slot-based thresholds for AIRS.
Figure 1 shows the calculated thresholds for Pf as of 10−7 versus the length of FFT from
25 to 220. Using the parameters given above, Figure 2 shows the POD with Pf as of 10−7,
when the Input-SNR before FFT is against different lengths of FFT. Table 2 summarizes the
required minimum Input-SNR for different lengths of FFT in order to have 90% POD with
Pf as of 10−7. It shows that the FFT lengths of half-a-million and 1 million with −38.9 and
−41.9 dB Input-SNR, respectively, can have 90% POD the intercepted signal with 10−7 Pf as.

Table 1. The comparison between the calculated thresholds for 90% POD with Pf as of 10−7 in this
study and the results given in [9].

FFT Length 32 64 128 256 512 1024

Threshold 22.67 32.16 45.52 64.21 90.90 128.42
Threshold from [9] 22.92 32.07 45.26 64.24 90.66 128.33
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Table 2. Required minimum Input-SNR and minimum Output-SNR of 90% POD with Pf as of 10−7

for different lengths of FFT.

FFT Length 32 64 128 256 512 1024 216 217 218 219 220

Min. Input-SNR (dB) 3.3 0.4 −2.7 −5.7 −8.7 −11.7 −29.8 −32.8 −35.9 −38.9 −41.9
Min. Output-SNR (dB) 15.3 15.6 15.4 15.4 15.4 15.4 15.4 15.4 15.3 15.3 15.3

Considering the FFT processing gain, the minimum FFT Output-SNR is also shown in
Table 2. The minimum Output-SNR for any length of FFT is about 15.4 dB, when the Input-
SNR is at the levels given in second row of the table. As described in [9], the FFT-processing
gain is defined as 10 log10(Bandwidth reduction through FFT). For example, since the
sampling rate is 2.56 GHz the BNyuist = 1280 MHz before FFT, and the frequency-bin size
after the 1024-point FFT is 2.5 MHz, the bandwidth reduction is 512, so the processing gain
is 27.1 dB. The processing gain also can be calculated using 10 log10(N/2), which we will
use to calculate AIRS processing gain in the discussions of Sections 5 and 6.

Although FFT with long-length input data can detect weak signals, the traditional
FFT-based signal detection has following inherent problems:

• It cannot achieve fine TMR and fine FMR, simultaneously.
• To detect a weak signal, long-length FFT has to be used. This delays detection time,

since all the samples have to be collected before starting the processing.
• The collected samples require large memory and resources in the embedded system.

To overcome these problems and take the full advantages of both short-FFT (with fine
TMR) and long-length FFT (with fine FMR), in this paper, for the first time we introduce
the AIRS method, which is based on the BFFT method.

3. Briefing on the BFFT Method

In order to assist us presenting the AIRS method, in this section we briefly summarize
the BFFT method. More details can be found in [18]. The discrete Fourier transform (DFT)
is defined as:

X(v) =
N

∑
n=0

x(n)Wnv
N (1)

where N is total number of time-domain samples, v = 0, 2, . . . N − 1 and Wnv
N = e−

j2πnv
N .
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In BFFT, the N samples are divided into K equal time-slots and each time-slot has
M time samples generated by an ADC, and then (1) can be written as:

X(v) =
M−1

∑
n=0

x(n)Wnv
N + · · ·+

(k+1)M−1

∑
n=kM

x(n)Wnv
N + . . . +

N−1

∑
n=(K−1)M

x(n)Wnv
N (2)

Let u = n− kM and considering the kth time-slot samples:

(k+1)M−1

∑
n=kM

x(n)Wnv
N =

M−1

∑
u=0

x(u + kM)W(u+kM)v
N (3)

BFFT defines:

Yk(v) =
M−1

∑
u=0

x(u + kM)W(u+kM)v
N (4)

Then (2) can be written as:

X(v) =
K−1

∑
k=0

Yk(v) (5)

Note that, Yk(v) has the same form as in (1). However, since there are only M time samples
in (4), the FFT can only produce M frequency-bins. In order to let the M samples in kth

time-slot contribute to overall N-point spectrum, BFFT also divides N frequency-bins into
K equal length bin-blocks, and each frequency block also has M frequency-bins.

Let v = Kr + m, where m = 0, 1, 2, . . . , K − 1 and r = 0, 1, 2, . . . , M− 1, then (4)
can be written as:

Yk(Kr + m) =
M−1

∑
u=0

x(u + kM) W(u+kM)(Kr+m)
N =

M−1

∑
u=0

x(u + kM)Wm(u+kM)
N Wru

M (6)

In (6), WkMKr
N = 1 and KM = N are used.

We define:
y(u + kM, m) = x(u + kM) Wm(u+kM)

N (7)

In (7), x(u + kM) denotes the kth time-slot samples, which are in between kM and
(k + 1)M− 1 time steps, and u is the time-index in the kth time-slot (u = 1, 2, . . . M− 1).
(7) tells that, as soon as these M time-domain samples are available, each needs to be
multiplied by a phase rotation factor (Wm(u+kM)

N ) before being used in spectrum calculations
by FFT. A phase rotation factor is determined by the local frequency location (m) in a
frequency block and the time-step n = (u + kM) in overall sampling time series. Table 3
shows the relation between time-index u in each time-slot and the time-index n in overall
ADC sampled data.

Table 3. The relation between the time-index u in each time-slot and the overall sampled data.

Time-Slot 0 1 · · · k · · · K − 1

u 0, 1, 2, 3, . . . . . . M − 1
n (= u + kM) 0, 1, . . . M − 1 M, M + 1, . . . 2M kM, kM + 1, . . . (k + 1)M (K− 1)M, (K− 1)M + 1, . . . N

Then (7) can be expressed as:

y(n, m) = x(n) Wnm
N (8)

From (6), we have following modified M-point DFT, which can be calculated by FFT.

Yk(Kr + m) =
M−1

∑
u=0

y(n, m)Wru
M (9)
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Since m = 0, 1, 2, . . . , K− 1, (9) can be calculated by K independent M-point FFTs in
a FPGA. This is the reason why the method is called BFFT.

The DFT in (1) with consideration of implementing using the BFFT, the (Kr + m)th

frequency component can be expressed as:

X(Kr + m) =
K−1

∑
k=0

Yk(Kr + m) =
K−1

∑
k=0

M−1

∑
u=0

y(n, m)Wru
M (10)

with m = 0, 1, 2, . . . , K− 1, r = 0, 1, 2, . . . , M− 1 and N = KM.
Tables 4–7 illustrate how to apply the BFFT for the DFT with very long sampled data.

Table 4. K×M frequency-domain results obtained from M samples in the 1st time-slot (k = 0), and
n in the table is given in the 2nd column of Table 3.

M Y0(Kr + m)
After K-independent M-point FFTs, the first set of K×M frequency-domain data Y0

that will be added to N frequency-bins.

0 M−1
∑

u=0
y(n, 0)Wru

M
Y0(0), Y0(K), Y0(2K), . . . . . . ., Y0((M− 1)K)

1 M−1
∑

u=0
y(n, 1)Wru

M
Y0(1), Y0(K + 1), Y0(2K + 1), . . . , Y0((M− 1)K + 1)

2 M−1
∑

u=0
y(n, 2)Wru

M
Y0(2), Y0(K + 2), Y0(2K + 2), . . . , Y0((M− 1)K + 2)

· · · · · · · · ·
K− 1 M−1

∑
u=0

y(n, K− 1)Wru
M

Y0(K− 1), Y0(2K− 1), Y0(3K + 1), . . . , Y0(N − 1)

Table 5. K×M frequency-domain results obtained from M samples in the 2nd time-slot (k = 1), and
n in the table is given in the 3rd column of Table 3.

M Y1(Kr + m) The 2nd set of frequency− domain data Y1 that will be added to N frequency-bins.

0 M−1
∑

u=0
y(n, 0)Wru

M
Y1(0), Y1(K), Y1(2K), . . . . . . ., Y1((M− 1)K)

1 M−1
∑

u=0
y(n, 1)Wru

M
Y1(1), Y1(K + 1), Y1(2K + 1), . . . , Y1((M− 1)K + 1)

2 M−1
∑

u=0
y(n, 2)Wru

M
Y1(2), Y1(K + 2), Y1(2K + 2), . . . , Y1((M− 1)K + 2)

· · · · · · · · ·
K− 1 M−1

∑
u=0

y(n, K− 1)Wru
M

Y1(K− 1), Y1(2K− 1), Y1(3K + 1), . . . , Y1(N − 1)

Table 6. K×M frequency-domain results obtained from the kth time-slot M samples, and n in the
table is given in the (k + 1)th column of Table 3.

M Yk(Kr + m) The kth set of frequency-domain data Yk that will be added to N frequency-bins.

0 M−1
∑

u=0
y(n, 0)Wru

M
Yk(0), Yk(K), Yk(2K), . . . . . . ., Yk((M− 1)K)

1 M−1
∑

u=0
y(n, 1)Wru

M
Yk(1), Yk(K + 1), Yk(2K + 1), . . . , Yk((M− 1)K + 1)

2 M−1
∑

u=0
y(n, 2)Wru

M
Yk(2), Yk(K + 2), Yk(2K + 2), . . . , Yk((M− 1)K + 2)

· · · · · · · · ·
K− 1 M−1

∑
u=0

y(n, K− 1)Wru
M

Yk(K− 1), Yk(2K− 1), Yk(3K + 1), . . . , Yk(N − 1)
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Table 7. K×M frequency-domain results obtained from the kth time-slot samples (k = K− 1) and n
in the last column of Table 3.

m YK−1(Kr + m) The last set of frequency-domain data YK−1 that will be added to N frequency-bins.

0 M−1
∑

u=0
y(n, 0)Wru

M
YK−1(0), YK−1(K), YK−1(2K), . . . . . . ., YK−1((M− 1)K)

1 M−1
∑

u=0
y(n, 1)Wru

M
YK−1(1), YK−1(K + 1), YK−1(2K + 1), . . . , YK−1((M− 1)K + 1)

2 M−1
∑

u=0
y(n, 2)Wru

M
YK−1(2), YK−1(K + 2), YK−1(2K + 2), . . . , YK−1((M− 1)K + 2)

· · · · · · · · ·
K− 1 M−1

∑
u=0

y(n, K− 1)Wru
M

YK−1(K− 1), YK−1(2K− 1), YK−1(3K + 1), . . . , YK−1(N − 1)

From the above discussions, we can find that:

• In each table, BFFT does K independent M-point FFTs on the currently available M
samples from the ADC in the current time-slot.

• Those K FFTs make the current M samples contribute to the spectrum calculation in
N frequency-bins, i.e., when current K FFTs are completed, based on (10), the K×M
frequency results will be added to the corresponding frequency-bins from 0 to N − 1.

• A complete BFFT needs the K2 number of M-point FFTs to finish full N-point frequency
spectrum calculation, which equals one N-point FFT. However, from signal detection
perspective in a DRX, as soon as a frequency-bin power exceeds the threshold, a signal
detection can be asserted.

In summary, the advantages of the use of the BFFT in DRX application are not only
producing very-large frequency-bins within a given IBW using much shorter length FFT
calculations, but also providing the AIRS capability for DRX, which will be discussed and
demonstrated in following sections.

4. Accumulatively Increasing Receiver Sensitivity (AIRS) for Ultra-Wideband DRX
4.1. Examples to Demostrate the Comcept of AIRS

As discussed in the last section, the BFFT method not only can partition very large
number of samples into time-slots with much smaller number of samples for spectrum
calculations, but more importantly, from signal-detection perspective, it also can give DRX
the ability of using the currently available M real-samples to contribute N/2 frequency-bin
spectrum calculations. Figure 3 shows the calculated spectrum using the first 24 time-slots
for a CW detection, when the Input-SNR is at−20 dB. The results in the figure show that, at
the beginning, the peak gives wrong estimated frequency since noise power dominates the
power in the bin. As more time-slot data are being used, the peak location is getting closer
to the signal frequency, and the peak amplitude increases in the bin. In reality, when the
peak is bigger than the time-slot-based threshold corresponding to the number of time-slot
data used, the signal detection can be declared, and the time of detection can be recorded
using the time of that time-slot. Therefore, the TMR of an AIRS-based DRX is equal to the
length of the time-slot, even though a large number of frequency-bins are considered. The
FMR is determined by the bin size. Figure 4 shows similar results as in Figure 3 for an
FMCW signal with 50 MHz FMBW.
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(a) the first time-slots, (b) the first 2 time-slots, and (c–x) are the first 3 to 24 time-slots of the CW
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the first time-slots, (b) the first 2 time-slots, and (c–x) the first 3 to 24 time-slots of the FMCW signal 
starting at 855.01 MHz with 50 MHz FMBW, where 𝑁 = 2 , 𝑀 = 256, Input-SNR =  −20 dB. Since 
the signal has a wide frequency band, the frequency portion in the 𝑁 samples in this example was 
from 877.918 to 888.174 MHz, and the frequency components of the FMCW in the first 24 time-slots 
of 𝑁 samples more focused on the beginning part of the spectrum. 

Figure 4. Peak amplitude and estimated frequency at the peak location using real samples from
(a) the first time-slots, (b) the first 2 time-slots, and (c–x) the first 3 to 24 time-slots of the FMCW signal
starting at 855.01 MHz with 50 MHz FMBW, where N = 220, M = 256, Input-SNR = −20 dB. Since
the signal has a wide frequency band, the frequency portion in the N samples in this example was
from 877.918 to 888.174 MHz, and the frequency components of the FMCW in the first 24 time-slots
of N samples more focused on the beginning part of the spectrum.
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4.2. Thresholds of 90% POD with Pf as of 10−7 in AIRS Using Different Number of
Time-Slot Data

Using the same threshold calculation method applied in Section 2, in this section, we
study the time-slot-based thresholds, when different number of time-slot data are used in
AIRS as deliberated in Figures 3 and 4.

First, we assumed that the ADC samples had no signal and its output noise samples
had Gaussian distribution. In order to obtain the frequency-domain noise (amplitude)
distribution, we collected amplitude data in N frequency-bins after each time-slot noise
samples being used in AIRS. We used N = 220 and M = 128 as an example. After
the calculations in Table 4 using the 1st time-slot noise data (k = 0), there were total of
10×N/2 complex noise data in the frequency-domain, where 10 came from 10 independent
simulations. The amplitude data in the first half of N frequency-bins were useful since
inputs were real noise samples. The histogram plot of frequency-domain noise amplitude
data is shown in the first subplot in Figure 5. It can be approximated by the Rayleigh
distribution. Then, the 2nd time-slot noise samples (k = 1) were used in the calculations as
described in Table 5 to obtain the 2nd set of 10× N/2 complex noise data. The histogram
plot of the 2nd subplot of Figure 5 has the noise amplitude contribution using both the
1st and 2nd time-slot noise samples. The distribution also can be approximated by the
Rayleigh distribution. This process was carried out until using the Kth time-slot noise
samples (k = K− 1) according to the calculations given in Table 7.

The first 10 subplots in Figure 5 show frequency-domain noise distributions, after
each addition of time-slot noise data processed by the AIRS. Figure 5 also shows frequency-
domain noise amplitude distributions, when the subsequent time-slot noise data are used.
Results display that when more time-slot noise data are used in the calculations, the
distributions can be clearly represented by the Rayleigh distribution. Further simulations
show that the Rayleigh distribution can also be found in other N and M combinations that
can be used in AIRS. From a statistical perspective, it has been shown [21] that the squared
coefficients of the sliding-window DFT with white noise input signals is asymptotically
distributed as Chi-square [22] with two degrees of freedom. Thus, the distribution of the
amplitude of these noise coefficients is Rayleigh distribution.

Once we confirm that the time-slot-based frequency-domain noise amplitude distribu-
tion is Rayleigh distribution in AIRS, the equations from (6.2) to (6.4) of [9] can be used to
calculate the thresholds from the 1st to Kth time-slots for any given N and M combinations.
These equations are given in (11) to (14). The Rayleigh distribution is defined as:

p(r) =
r

σ2 e
−r2

2σ2 (11)

where σ2 is a constant and can be calculated by either the mean (µ) or the standard deviation
(s) of the measured noise distribution. They were obtained from the above simulations.

σ =
µ√
π/2

(12)

σ =

√
s

4− π
(13)

The σ values obtained from (12) and (13) were very close. In this study the average of
the two values was used. Once the noise distribution is approximated by the Rayleigh, the
threshold can be set a function of Pf as:

thr =
√
−2σ2 ln

(
Pf as

)
(14)

The time-slot-based thresholds are shown in Figure 6 for

• The number of frequency-bins equals to 217, 218, 219 and 220;



Electronics 2022, 11, 1018 12 of 26

• In each case, the number of real noise samples (M) in a time-slot equals 128, 256 and
512, respectively.
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Figure 5. Examples of the frequency-domain noise distribution (histogram plot in gray color) when
noise amplitude data from different time-slots are used, where N = 220 and M = 128. The solid curve
line and vertical line in each subplot are the Rayleigh distribution and the threshold for Pf as of 10−7.
Those time-slot-based thresholds will be used in detection after corresponding time-slot samples
being processed in AIRS.
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Figure 6. The time-slot-based thresholds with Pf as of 10−7 versus time-slots. Note that all curves
start from the first time-slot and for a given M different color curves are superposed on top of each
other in early time-slots.

The results in Figure 6 show that:

1. For a predefined number of frequency-bins in TTFT, to obtain the same threshold level,
the total number of noise samples used in the calculations should be the same, even
though the samples of time-slots can be different. For example, when the number of
frequency-bins is 220, in order to reach the same threshold 4111, 512× 2048 number of
samples are needed irrespective of how the partition of the real noise samples is done
in a time-slot. This result can help us to determine how to partition the samples in
time-slots based on

a. The required TMR, and/or
b. The available hardware resources in the embedded system.

2. The threshold versus time-slot is independent to the predefined number of bins in
TTFT, and only depends on how to partition samples in a time-slot. This is because
when calculating the threshold in a given time-slot, the M Gaussian-distributed noise
samples make the contribution to all N bins after being multiplied by the phase
rotation factors and KM-point FFTs. Although for different N the phase rotation
factors are different, these factors do not introduce any new noise. So, when M is
fixed, for the same time-slot the threshold should be the same regardless of how
many predefined frequency-bins in the TTFT. This result allows us to keep just one
set of threshold tables in AIRS for a given M, when the method is implemented in
an embedded system. For example, we just use the dashed-line results in Figure 6 in
following simulations.

In AIRS, after using the real samples in the current time-slot to finish KM-point FFTs
and adding the results to the N frequency-bins, bin-values in [0 N/2] are compared with
the time-slot-based threshold of the corresponding time-slot given in Figure 6. Those bins
with their values bigger than the threshold are reported. In reality, a peak-bin tracking
program is needed to track detected signals for further processing.

5. The POD with Pfas of 10−7 versus Input-SNR in AIRS for CW Signal Detection

Using the thresholds developed in the last section, this section discusses POD of AIRS
with different N and M combinations using the same method used in normal FFT-based



Electronics 2022, 11, 1018 14 of 26

signal detection. As discussed in Section 2, the single tone CW signal frequency was
randomly picked in between 110 to 1180 MHz.

For N = 217, Figures 7 and 8 show the POD with samples from different number
of time-slots and the required Input- and Output-SNR for 90% POD, respectively, with
M = 128, 256 and 512 cases in AIRS. From these two figures, we find that:

1. As more time-slot samples are used, the required Input-SNR is reduced for a given
POD. However, the rate of reduction decreases, as shown in Figure 7. Curves get
more crowded as Input-SNR decreases.

2. When samples in all the time-slots are used, the left-end curves of the three subplots
in Figure 7 are all the same as the 217-POD curve shown in Figure 2, and the required
Input-SNR for 90% POD is about−32.8 dB as given in the Table 2. This is the expected
result, since using all the time-slot data in AIRS is the same as using N-point FFT.

3. As long as the same amount of samples are used in AIRS, it produces the same POD
curve. For example, the red curve of four time-slots with M = 128 in Figure 7a is the
same as the red curve of two time-slots with M = 256 in (b) and also is the same as
the red curve of the first time slot with M = 512 in (c). The required Input-SNRs for
90% POD of these three curves are listed in the figure, which are −10.42, −10.42 and
−10.52 dB, respectively.

4. The required minimum Output-SNRs are about the same, as long as the same number
of samples is used in the AIRS, regardless of how the partition of the samples in a time-
slot is done. For example, as shown in the bottom subplot of Figure 8, to detect signal
at −31.5 dB Input-SNR with 90% POD, AIRS needs minimum of −14 dB Output-SNR,
which needs samples from 560, 280 and 140 time-slots when M = 128, 256 and 512,
respectively. Here the Output-SNR is defined as:

Output-SNR =Input-SNR + 10× log10(kM/2) (15)

where k is the index of a time-slot, and 10× log10(kM/2) can be viewed as AIRS-
processing gain, which is equivalent to the FFT progressing gain discussed in Section 2.

5. Figure 8 also shows that for AIRS, the minimum required Output-SNR is about
15.4 dB for 90% POD with Pf as of 10−7 when all N = 217 samples are used regardless
of how the samples are partitioned in a time-slot. This is similar to the results given in
Table 2. However, the AIRS can be more flexible to detect a signal using much less
time-samples and maintain good TMR and FMR. Table 8 shows the TMR and FMR
with different N and M combinations used in this study.

6. All the above observations can also be found in

a. Figures 9 and 10 for N = 218 case;
b. Figures 11 and 12 for N = 219 case, and
c. Figures 13 and 14 for N = 220 case.
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time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) M = 128, (b) M = 256
and (c) M = 512.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 27 
 

 

5. Figure 8 also shows that for AIRS, the minimum required Output-SNR is about 15.4 
dB for 90% POD with 𝑃  of 10  when all 𝑁 = 2  samples are used regardless of 
how the samples are partitioned in a time-slot. This is similar to the results given in 
Table 2. However, the AIRS can be more flexible to detect a signal using much less 
time-samples and maintain good TMR and FMR. Table 8 shows the TMR and FMR 
with different 𝑁 and 𝑀 combinations used in this study. 

6. All the above observations can also be found in  
a. Figures 9 and 10 for 𝑁 = 2  case; 
b. Figures 11 and 12 for 𝑁 =  2  case, and 
c. Figures 13 and 14 for 𝑁 = 2  case. 
In addition, the more samples are used, the lower Input-SNR is required. 

 
Figure 7. 𝑁 = 2 , the POD (with 𝑃  of 10 ) vs. Input-SNR, in each subplot when only the 1st 
time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) 𝑀 = 128, (b) 𝑀 = 256 
and (c) 𝑀 = 512. 

 
Figure 8. 𝑁 = 2 , Input-SNR and Output-SNR at 90% POD with 𝑃  of 10 , when different time-
slot samples are used in AIRS, blue line: 𝑀 = 128, red line: 𝑀 = 256 and black line: 𝑀 = 512. 
Figure 8. N = 217, Input-SNR and Output-SNR at 90% POD with Pf as of 10−7, when different
time-slot samples are used in AIRS, blue line: M = 128, red line: M = 256 and black line: M = 512.



Electronics 2022, 11, 1018 16 of 26
Electronics 2022, 11, x FOR PEER REVIEW 17 of 27 
 

 

 
Figure 9. 𝑁 = 2 , the POD (with 𝑃  of 10 ) vs. Input-SNR, in each subplot when only the 1st 
time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) 𝑀 = 128, (b) 𝑀 = 256 
and (c) 𝑀 = 512. 

 
Figure 10. 𝑁 = 2 , Input-SNR and Output-SNR at 90% POD with 𝑃  of 10 , when different 
time-slot samples are used in AIRS, blue line: 𝑀 = 128, red line: 𝑀 = 256 and black line: 𝑀 = 512.  

 
Figure 11. 𝑁 = 2 , the POD (with 𝑃  of 10 ) vs. Input-SNR, in each subplot when only the 1st 
time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) 𝑀 = 128, (b) 𝑀 = 256 
and (c) 𝑀 = 512. 

0 500 1000 1500 2000 2500
-40

-30

-20

-10

0

Long line: M = 128

Middle line: M = 256

Short line: M = 512

0 500 1000 1500 2000 2500
Time-Slot

13

14

15

16

M = 512 M = 256 M = 128

X 2048
Y -36.01

X 1024
Y -35.82

X 512
Y -35.86

X 512
Y 15.31

X 1024
Y 15.35

X 2048
Y 15.36

Figure 9. N = 218, the POD (with Pf as of 10−7) vs. Input-SNR, in each subplot when only the 1st
time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) M = 128, (b) M = 256
and (c) M = 512.
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Figure 10. N = 218, Input-SNR and Output-SNR at 90% POD with Pf as of 10−7, when different
time-slot samples are used in AIRS, blue line: M = 128, red line: M = 256 and black line: M = 512.
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Figure 11. N = 219, the POD (with Pf as of 10−7) vs. Input-SNR, in each subplot when only the 1st
time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) M = 128, (b) M = 256
and (c) M = 512.
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Figure 13. N = 220, the POD (with Pf as of 10−7) vs. Input-SNR, in each subplot when only the 1st
time-slot samples (right) and all time-slots sample (left) are used in AIRS, (a) M = 128, (b) M = 256
and (c) M = 512.
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Table 8. TMR and FMR for different N and M combinations used in this study with ADC sampling
frequency Fs = 2.56 GHz.

M

N 128 256 512
217 50 (nSec) 19,531 (Hz) 100 (nSec) 19,531 (Hz) 200 (nSec) 19,531 (Hz)
218 50 (nSec) 9765.6 (Hz) 100 (nSec) 9765.6 (Hz) 200 (nSec) 9765.6 (Hz)
219 50 (nSec) 4882.8 (Hz) 100 (nSec) 4882.8 (Hz) 200 (nSec) 4882.8 (Hz)
220 50 (nSec) 2441.4 (Hz) 100 (nSec) 2441.4 (Hz) 200 (nSec) 2441.4 (Hz)

In addition, the more samples are used, the lower Input-SNR is required.

6. Narrow and Wideband Signal Detections Using AIRS

In the last section, we discussed the relation between Input-SNR vs. time-slot in AIRS
in order to detect a CW signal with 90% POD and Pf as of 10−7. In this section, we study the
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relation between Input-SNR and time-slot that AIRS has the first detection for narrow- and
wide-band signals.

6.1. Input-SNR against Time-Slot That Has the First Detection

Using the thresholds given in Section 4, this section shows the weak FMCW signal
detections in AIRS. The signals used in this section and their corresponding color codes
used in the subsequent figures are given in Table 9. The carriers of these FMCW were
randomly picked and ensured that all the frequency components were in between 100 to
1180 MHz.

Table 9. FMBW of FMCW signals, chirp duration or pulse width (PW) is 2 (mSec) and amplitude is 1,
Fs is the ADC sampling frequency.

FMBW (Hz) 1 100 1000 Fs/N 10 K 100 K 1 M 10 M 100 M

Colors and line styles
in Figures 15 and 16

Black
solid Black solid Black solid Black solid Black

solid
Red

dashed
Blue

dashed
Magenta
dashed

Green
dashed

Figure 15 shows the Input-SNR versus the averaged time-slot number that has the
first detection of the signals given in Table 9, when N = 220 and Pf as = 10−7. The time-slot
numbers in the plots are the average numbers from 100 independent simulations, which
means that for a given FMBW 100 FMCW signals are randomly generated in between 100
to 1180 MHz with different Input-SNR values from −47 to −24 dB at 0.1 dB step. From the
figure, we have following observations:

1. For a given signal in Table 9, an Input-SNR vs. the time-slot having the first detection
curve can be divided into two sections by the value, called Input-SNRpeak, on the
curve, which is indicated by a solid or dashed vertical line. (More on Input-SNRpeak
will be discussed later.)

# Before the Input-SNRpeak, the required time-slot numbers are increased as the
Input-SNR decreases. In this range, the signal-power accumulation is faster
than that of the noise. However, we can see that more time-slots are needed to
detect lower Input-SNR signals, as the curves are in a concave shape.

# After the Input-SNRpeak, the required time-slot numbers are quickly reduced.
The reason for this is faster accumulation of noise than the signal, and the
detections happen only occasionally.

# When the Input-SNR is less than about −45 dB, there is no detection.

2. For the first 5 narrow band signals in Table 9, shown in black-lines in the figure,

a. AIRS can detect them at about −42 dB of Input-SNR level. This is the same
results given in Table 2 that the minimum required Input-SNR for N = 220 is
−41.9 dB for 90% POD with Pf as of 10−7.

b. The required time-slot numbers at Input-SNRpeak are less than K/2 for a given
M. This shows that the AIRS can start detecting narrow band signal using less
than half of the real-samples that N-point FFT needs.

c. It is obvious that AIRS is much more efficient than N-point FFT to detect signals
when Input-SNR is higher than Input-SNRpeak. AIRS requires much less real-
samples compared to the total bin size and it gives very good TMR (see Table 8)
that the traditional FFT with large-bin numbers cannot achieve.

3. For last 4 signals in Table 9, when the FMBW increases the AIRS is less capable of
detecting them compared to detecting the narrow band signals. The reason for this
will be discussed later. However, AIRS still can quickly detect them at lower than
−25 dB Input-SNR with samples from a very small number of time-slots.

4. Comparing the three subplots in Figure 15, the required time-domain samples are
about the same at a given Input-SNR. It does not depend on the method of partitioning
the samples in a time-slot. This is an anticipated result as the threshold in each time-
slot depends only on the total noise samples used in the calculation.
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Figure 15. N = 220, the time-slot that had the first detection versus Input-SNR for different FMCW
signals (averaged from 100 simulations); left- and right-columns are the results of the positive and
negative chirp slopes with the FMBW given in Table 9.

Figures 16–18 show the same results when N = 219, 218 and 217, respectively. In
addition to the same observations from Figure 15, the Input-SNRpeak locations move to
higher SNR levels as N is reduced for corresponding signals, i.e., each time N is reduced
by half, Input-SNRpeak moves up by about 3 dB for narrow band signals.
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Figure 18. N = 217, the time-slot that had the first detection versus Input-SNR for different FMCW
signals (averaged from 100 simulations); left- and right-columns are the results of the positive and
negative chirp slopes with the FMBW given in Table 9.

6.2. Explanation of Wideband Signal Detection in AIRS

Using the information in Table 10, let us discuss why AIRS has more difficulty in
detecting wideband signals than detecting narrow band signals. The data in the table
shows that a narrow-band signal samples in all the time-slots can make contribution to
one frequency-bin in AIRS processing, while the data from only about one time-slot can
contribute to the same frequency-bin, when FMBW is 100 MHz. This means that, for the
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positive chirp slope signals having 100 MHz FMBW, if the current time-slot data contain
the frequency components that can contribute to a frequency-bin, then the next time-slot
samples contribute to the next frequency-bin after AIRS processing.

Table 10. Frequency contents of different linear FMCW signals, when N = 220, PW = 2 (mSec),
M = 128, K = 8192, Fs = 2.56 GHz, the frequency-bin width = Fs/N = 2441.4 Hz, (BW: Bandwidth).

Linear FMCW FMBW
(Hz) 1 100 1000 Fs/N 10 K 100 K 1 M 10 M 100 M

Frequency
BW/sample (Hz) 1.95 × 10−7 1.95 × 10−5 1.95 × 10−4 4.77 × 10−4 1.95 × 10−3 1.95 × 10−2 0.195 1.95 19.5

Samples having
frequency BW equals

to bin width

1.25 × 10+10

�N
1.25 × 10+8

�N
1.25 × 10+7

�N
5.12 × 10+2

>N
1.25 × 10+6

≈N
1.25 × 10+5

<N
1.25 × 10+3

�N
1250
�N

125
�N

Convert 3rd row data
into time-slots

97,656,250
�K

976,563
�K

97,656
�K

40,000
>K

9766
≈K

977
<K

98
�K

9.77
�K

0.98
�K

6.3. The Input-SNRpeak and Output-SNRpeak for Narrow-Band Signals

In this section, we summarize the Input-SNRpeak for those narrow band signals in
each subplot from Figures 15–18. The top plot of Figure 19 shows the Input-SNRpeak of
the first 4 narrow-band signals in Table 9, when the different N and M combinations were
used. The bottom plot of the figure shows the Output-SNRpeak related to Input-SNRpeak
calculated using (15). Again, we can find that:

• When N is doubled the Input-SNRpeak reduces 3 dB.
• The Output-SNRpeak values are in between 10.75 to 12.3 dB, and the averaged Output-

SNRpeak is about 11.64 dB.
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Figure 19. Input-SNRpeak and Output-SNRpeak of different N and M combinations for the first
4 narrow band signals in Table 9. FMCW with positive chip slopes are shown in circle for M = 128,
square for M = 256 and diamond for M = 512. FMCW with negative chip slopes are shown in
asterisk for M = 128, cross for M = 256 and pentagram for M = 512.

Note that:

1. The Output-SNRpeak discussed here is related to the time-slot that has the first detec-
tion of narrow-band signals with Input-SNRpeak, when Pf as of 10−7 is considered. The
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Output-SNR discussed in Section 5 was to consider 90% POD for CW signal. However,
what is important to note is that at the Input-SNRpeak levels given in Table 11, which
are about the same levels of Input-SNR in Table 2, AIRS only needs less than N/2
real-samples to detect these signals, while FFT needs all the N real-samples. The
reason is that AIRS uses the time-slot-based thresholds, which only invokes the noise
up to that specific time-slot.

2. We also want to emphasize that the advantage of the AIRS processing is that it
can detect signals using the currently available samples for the N frequency-bins
without waiting for the availability of all the N samples. This offers a feasible way
of hardware implementation when a large number of samples are available from a
high-speed ADC.

Table 11. The average values of Input-SNRpeak and Output-SNRpeak for different N.

N 217 218 219 220

Averaged Input-SNRpeak (dB) −32.44 −35.42 −38.67 −41.58
Averaged Output-SNRpeak (dB) 11.64

Figure 20 summarizes the Input-SNRpeak and Output-SNRpeak of different N and
M combinations for wideband signals in Table 9.
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Figure 20. Input-SNRpeak and Output-SNRpeak of different N and M combinations for the last
4 wideband signals in Table 9. FMCW with positive chip slopes are shown in circle for M = 128,
square for M = 256 and diamond for M = 512. FMCW with negative chip slopes are shown in
asterisk for M = 128, cross for M = 256 and pentagram for M = 512.

7. Conclusions

Based on the BFFT method, this paper introduces the AIRS concept of weak signal
detections for an ultra-wideband DRX application for the first time. Unlike the conventional
FFT-based wideband DRX design, AIRS-based DRX design can use a very large number of
frequency-bins in a given IBW, achieve both fine TMR and FMR, and detect low Input-SNR
signals. Using time-slot-based thresholds with Pf as of 10−7, we demonstrate that the AIRS
requires much fewer time samples compared to the number of frequency-bins, in order to
detect narrow-band signals. In the worst case, when SNR is at Input-SNRpeak level, AIRS
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still only needs the number of samples less than half of the number of frequency-bins. For
wide-band signals, simulation results show that AIRS can detect them, when the Input-SNR
is even lower than −25 dB with a much lower number of real samples than the number of
frequency-bins. This is because a very fine equivalent noise bandwidth can be achieved in
AIRS-based DRX.
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Appendix A. The Comparison between Results Obtained by the MATLAB FFT
Function and the BFFT Code

This appendix shows the comparison between results calculated by our BFFT code
and MATLAB FFT function to verify the BFFT code used for this study. The parameters
used in the example are shown in Table A1. The comparisons of the frequency spectrum
are shown in Figures A1 and A2, and show that these two methods give the same results.

Table A1. The parameters used in the example to compare results.

Figure Number of Samples Signal Duration
(mSec)

Chirp Start
(MHz)

Carrier End
(MHz)

ADC Fs
(GHz)

Input-SNR
(dB)

BFFT

K M

A1 220 Chirp 0.4096 350.1 550.1 2.56 100 4096 256
A2 219 Chirp 0.2048 650.1 860.1 2.56 0 4096 128
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between the absolute values of two results is 1.2 × 10−12.
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Appendix B. Acronym List

ADC Analog-to-Digital Converter
AIRS Accumulatively Increasing Receiver Sensitivity
BFFT Blocking FFT
BW Bandwidth
CW Continuous Wave
DFT Discrete Fourier Transform
DRX Digital Receiver
FFT Fast Fourier Transform
FMBW Frequency Modulation Bandwidths
FMCW Frequency Modulated Continuous Wave
FPGA Field Programmable Gate A19rray
FMR Frequency Measurement Resolution
IBW Instantaneous Bandwidth
Input-SNR Input Signal-to-Noise Ratio
LIP Low Probability Intercept
Output-

SNR
Output Signal-to-Noise Ratio

POD Probability of Detection
PW Pulse Width
TMR Time-of-arrival Measurement Resolution
TTFT Time-to-Frequency Transform
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