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Abstract: This paper focuses on the learning-based motion control for flexible manipulators with
varying loads via the singularly perturbed technique. Considering the two-timescale feature of
the flexible manipulator, system dynamics are decomposed into fast and slow subsystems, and
corresponding sub-controllers are designed with robust adaptive dynamic programming (RADP)
and robust sliding mode control (RSMC) methods, respectively. In the proposed composite control
framework, an RADP-based sub-controller is developed to realize the trajectory tracking and alleviate
the parametric uncertainty utilizing rotating angles in the slow timescale, while an RSMC sub-
controller is introduced to improve the vibration suppression in the fast timescale. Finally, the stability
of the closed-loop system is guaranteed, and simulations are carried out to show the effectiveness of
the proposed control algorithm.

Keywords: flexible manipulator; singular perturbation theory; adaptive dynamic programming;
sliding-mode control; varying loads

1. Introduction

Over the past few decades, flexible manipulators have played an important role in
robotics, and have received much attention for their advantages, such as fast speed, low
power consumption, etc. [1,2]. Unlike rigid manipulators, flexible manipulators are known
to possess uncertainty dynamics with infinite order, rigid–flexible coupling, and nonlinear
dynamics. These attributes lead to significant challenges for the position control because
it is difficult to precisely track the desired position and suppress the vibration caused by
flexibility simultaneously [3,4].

The motion dynamics of flexible manipulators include macro position rotating (slow
dynamics) and micro elastic vibration (fast dynamics). Many control technologies have
been proposed to manage these dynamics, involving PID control, sliding mode control,
fuzzy control, neural network control, etc. [5–9]. Classical adaptive and neural network
controllers have been proposed in [10,11]. Nevertheless, the aforementioned controllers are
directly designed by dealing with the coupled macro and micro dynamics together, which
usually operate on different timescales (also called the two-timescale feature, TTSF). As
such, inaccurate control is caused and ill-conditioned numerical issues will occur by the
direct application of the traditional methods to the flexible manipulators due to the TTSF.
To solve such difficulties, singular perturbation (SP) theory is introduced in the motion
control for flexible manipulators.

By using the SP theory, the state-space model of the flexible manipulators can be
decomposed into two low-order subsystems, namely the slow subsystem in the slow
timescale and the fast subsystem in the fast timescale. Then, sub-controllers are designed in
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slow and fast timescales in correspondence to slow and fast subsystems [12,13], and fruitful
results have been achieved. Based on the decomposed subsystems of flexible manipulators,
a composite learning controller using neural network control and a disturbance observer
was designed to improve the tracking precision [14]. In [15], the fuzzy sliding mode control
method was used to design a slow subsystem controller, and the LQR control method was
developed for the fast subsystem controller design. In [16], state feedback control was
proposed, and trajectory tracking and vibration suppression were realized simultaneously
during movement. These examples show the high accuracy of positional tracking and
fast vibration suppression using the SP theory. In [17], a composite controller based on
computed torque control and linear-quadratic control is designed, which suppresses the
joint and link vibration satisfactorily, and great trajectory tracking performance is achieved.
Though research results have been obtained for the flexible manipulators with fixed loads,
when it comes to the varying loads, the aforementioned algorithms are no longer applicable
due to the existence of vibration in the movement and imprecise parameters.

To cope with such problems, in this paper, a composite learning controller is proposed
with robust adaptive dynamic programming (RADP) and robust sliding-mode control
(RSMC) methods. A slow sub-controller based on RADP is developed to realize trajectory
tracking using rotating angles with no knowledge of flexible manipulators. Then, a fast
sub-controller based on RSMC is designed, taking the dynamic uncertainties into account.
Finally, a composite controller based on RADP and RSMC is formulated, and the stability is
proven via the SP theory. Simulation results of different varying loads verify the accuracy
of the decomposition and the effectiveness of the controller.

Contributions of this paper are summarized as follows:

(1) A novel learning-based composite controller is proposed, for the first time, for flexible
manipulators with RADP and RSMC;

(2) The possible ill-conditioned numerical is avoided and the stability of the system is
guaranteed via the proposed SP-based control algorithm;

(3) Varying loads and parameters, as the first attempt, are taken into consideration in two
timescales, which significantly improves the positioning accuracy.

2. Dynamics Modeling and Decomposition

The dynamics of series flexible manipulators with multi-degrees of freedom is estab-
lished using Lagrange and assumed-mode methods as follows:

M
[

θ̈
q̈

]
+

[
0 0
0 D

][
θ
q

]
+

[
S1
S2

]
=

[
1
0

]
τ (1)

where M =

[
M11 M12
M21 M22

]
is the inertia matrix, which is positive definite, non-singular,

and symmetric, D is the stiffness matrix, and S1,S2 are the nonlinear terms of Coriolis and
centrifugal forces, where S1 = 0. The dynamics of flexible manipulators can be modeled as
a two-timescale system with coupled slow and fast dynamics, which can be seen from [13].

The variables τ ∈ R1×1 are control torque; θ ∈ Rn×1 and q ∈ Rnm×1 are defined,
respectively, as:

θ =
[

θ1 ... θn
]T

q =
[

q11 ... q1m ... qn1 ... qnm
]T

θi describes the ith joint rotating angles and qij describes the ith manipulator and jth
vibration modes. Let H be the inverse matrix of M; thus,

H = M−1 =

[
H11 H12
H21 H22

]



Electronics 2022, 11, 956 3 of 11

Then, multiplying both sides of dynamics (1) with H yields:{
θ̈ = −H11(S1 − τ)− H12(S2 + Dq)
q̈ = −H21(S1 − τ)− H22(S2 + Dq)

(2)

Based on SP theory, multi-timescale factor ε= 1/d is introduced, where d is the min-
imum eigenvalue of D. On this basis, new variables are defined as z = q/ε and D̃=εD .
Then, (2) can be rewritten as:{

θ̈ = −H11(S1 − τ)− H12(S2 + D̃z)
εz̈ = −H21(S1 − τ)− H22(S2 + D̃z)

(3)

Letting ε = 0, z in (3) can be solved as:

zs = D̃−1Hs−1
22 (−Hs

21Ss
1 − Hs

22Ss
2 + Hs

21τs) (4)

where superscript s denotes slow dynamics, θs is the approximation of θ , and τs is the con-
troller in slow timescale. By substituting (4) into (3), the slow subsystem can be derived as:

θ̈s = Gτs + GSs
1 (5)

where G = Hs
11 − Hs

12(Hs
22)
−1Hs

21. Define ηs
1 = θs and ηs

2 = θ̇s. In the slow timescale, the
transformed dynamics of (5) can be obtained as:{

η̇s
1 = ηs

2
η̇s

2 = Gτs − GSs
1

(6)

To derive the fast subsystem, new variables are defined as ξ = t/
√

ε and z f =

[z f
1 , z f

2 ]
T = [z− zs,

√
εż]T . In the fast timescale, slow variables are regarded as constants [12],

and yield:

dθs/dξ = d2θs/dξ2 = 0
dzs/dξ = d2zs/dξ2 = 0

(7)

In the boundary layer of flexible manipulators, by setting ε = 0, the transformed
dynamics of the fast subsystem can be obtained as:

dz f
1

dξ = z f
2

dz f
2

dξ = −Hs
22D̃z f

1 + Hs
21τ f

(8)

According to Tikhonov’s theorem [18], the following relations hold:

θ = θs+O(ε)
q = ε(zs + z f ) + O(ε)

(9)

In (9), θ is the high-order infinitesimal of θs and q is the high-order infinitesimal of
ε(zs + z f ) regarding ε .

3. Controller Design
3.1. Slow Controller Design

As shown in (5), the trajectory tracking error is defined as:

e1 = θ − θd
e2 = θ̇ − θ̇d

(10)
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where θd denotes the ideal tracking. Define x1 = e1, x2 = e2. Thus, the second-order
differential ideal position is that θ̈d = 0. Define xs

1 = e1, xs
2 = e2. Then, ẋs

1 = xs
2, ẋs

2 = θ̈− θ̈d.
Taking formula (6) into account, formula (11) can be obtained

The slow dynamics can be rewritten as:

ẋs = Asxs + Bsτs (11)

where As =

[
0 1
0 0

]
, Bs =

[
0

−Hs
12(Hs

22)
−1Hs

21 + Hs
11

]
.

Based on the LQR method [19], the control goal is to find the optimal law as follows:

τ∗ = −K ∗ xs (12)

which minimizes the following weighted function:

J =
∫ ∞

0
(xs)TQxs + (τs)T Rτsdt, xs(0) = xs

0 ∈ Rn (13)

where Q, R are positive and definite. (As, Bs) is stabilizable and (As, Q1/2) is observable.
The aim is to solve the following algebraic Riccati equation, where As and Bs are known:

(As)T P + PAs + Q− PBsR−1(Bs)T P = 0 (14)

The optimal law is determined using (15), which is not relative to the initial condition:

τs∗ = −R−1(Bs)T P ∗ xs (15)

where P∗ is the unique solution to the algebraic Riccati equation (14).

Proof. Define the Lyapunov function as:

V = (xs)T Pxs (16)

Differentiating (16) and substituting (11), (14), (15) into it provides:

V̇ = (ẋs)T Pxs+(xs)T Pẋs

= (Axs + Bτs)T Pxs+(xs)T P(Ax + Bτs)
= (xs)T(A− BR−1BT P)T P(xs)+(xs)T P(A− BR−1BT P)(xs)
= −(xs)T(−AT P− PA + PBR−1BP + PT(BR−1BT)T P)(xs)
=− (xs)T(Q + PT(BR−1BT)T P)xs

(17)

where matrix R, P are symmetric and positive definite, Q is also positive definite, and we
can obtain:

V̇ < 0 (18)

Under the action of controller (15), the slow subsystem is stable. The controller design
relies on the accurate parameters As and Bs, but they are not always measured accurately
with the existence of vibration caused by the inertial effect and actuation.

Let K0 be the initial feedback gain matrix and Pk be the solution to the following
Lyapunov Equation (19):

(As − BKk)
T Pk + Pk(As − BKk) + Q + KT

k RKk = 0 (19)

Kk = R−1(Bs)T Pk−1 (20)

The solution to (14) can be approximated by iteratively updating (19) and (20) [20].
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Based on SP theory, the dynamics of flexible manipulators can be regarded as rigidbody,
which are linear and controllable. In [21], an RADP algorithm is proposed. The slow
dynamics in (11) can be rewritten as:

ẋs = As
kxs + Bs(Kkxs + τs) (21)

where As
k = As − BsKk.

Then, we can obtain:

xs(t + ∆t)T Pkxs(t + ∆t)− xs(t)T Pkxs(t)
=
∫ t+∆t

t [(xs)T((As
k)

T Pk + Pk As
k))xs + 2(Kkxs + τs)T(Bs)T Pkxs]dσ

= −
∫ t+∆t

t (xs)TQkxsdσ + 2
∫ t+∆t

t (Kkxs + τs)T RKk+1xsdσ

(22)

where Qk = Q + KT
k RKk.

In (22), the terms (As
k)

T Pk + Pk As
k and (Bs)T Pk relative to As, Bs are replaced by −Qk

and RKk+1xs, respectively. Then, the optimal control law (12) can be designed by the state
of the flexible manipulator dynamics. The following is the execution process of RADP.

Optimal control laws based on RADP [21].

Step 1: Employ τs = −K0xs + γ as the initial control law of the slow dynamics, where γ is
the exploration noise; since the characteristic of vibration exists inevitably for the flexible
manipulator system, γ is chosen to be 0.

Step 2: Compute dynamic matrix δxsxs , Ixsxs , Ixsτs during iteration until they meet the
following relations:

rank[Ixsxs , Ixsτs ] =
n(n + 1)

2
+ mn, m = 1, n = 2 (23)

where

δxsxs = [µ(xs(t1))− µ(xs(t0)), µ(xs(t2))− µ(xs(t1)),
..., µ(xs(tl))− µ(xs(tl−1))]

T (24)

Ixsxs = [
∫ t1

t0

xs ⊗ xsdτ,
∫ t2

t1

xs ⊗ xsdτ, . . . ,
∫ tl

tl−1

xs ⊗ xsdτ]T (25)

Ixsτs = [
∫ t1

t0

xs ⊗ τsdσ,
∫ t2

t1

xs ⊗ τsdσ, . . . ,
∫ tl

tl−1

xs ⊗ τsdσ]T (26)

0 ≤ t0 < t1 < · · · < tl

µ(xs)= [(xs
1)

2, xs
1xs

2 , (xs
2)

2]T

Step 3: Solve Pk and Kk+1 from (24) during iteration.

Ωk

[
γ(Pk)

vec(Kk+1)

]
= Ξk (27)

where (xs)TQk(xs) = ((xs)T⊗ (xs)T)vec(Qk), Ωk = [δxsxs − 2Ixsxs(In⊗KT
k R)− 2Ixsτs(In⊗

R)], Ξk = −Ixsxs vec(Qk),γ(P) = [p11 p12 ... 2p1n p22 2p23 ... 2pn−1 pnn]T ,
Ωk ∈ Rl∗[ 1

2 n(n+1)+mn], Ξk ∈ Rl

Since Ωk has full column rank for all k ∈ Z+, formula (27) can be solved as:[
γ(Pk)

vec(Kk+1)

]
= (ΩT

k Ωk)
−1ΩT

k Ξk (28)
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Step 4: Solve Pk and Kk+1 iteratively from (27) until ‖Pk − Pk−1‖ ≤ α,α > 0; if not, return
to Step 3.

Step 5: Let K∗ = Kk, and then the optimal controller for the slow subsystem can be
solved as:

τs = −K∗xs (29)

Theorem 1. Since (As, (Qs)1/2) is observable and Ks
0 is any stabilizing feedback gain matrix, the

subsystem (11) is asymptotically stable under the optimal control law (29).

3.2. Fast Controller Design

In view of the parameter measurement error, a robust sliding-mode controller is
designed to suppress the vibration. In the fast timescale, the dynamics of vibration are
rewritten as:

ẋ f = A f x f + B f τ f+ fd (30)

where A f =

[
0 I

−Hs
22D̃ 0

]
, B f =

[
0 Hs

21
]T , | fd| < F, F is the constant upper bounds.

Design the sliding-mode function as:

s = Gx f (31)

where G > 0.
The fast controller can be designed as:

τ f = −(GB f )−1[GA f x f + ηsgn(s) + GFsgn(s)] (32)

Proof. Define the Lyapunov function as:

V =
1
2

sṡ (33)

Taking the formulas (27)–(30) into account, the differential of the above Lyapunov
function can be solved as:

V̇ = sṡ
= s
[

G(A f x f + B f τ f + fd)
]

= sG
[

A f x f + B f (−(GB f )
−1

(GA f x + ηsgn(s) + GFsgn(s))) + fd

]
= s[−ηsgn(s)− GFsgn(s) + G fd]
= −η|s| − G|s|(F− fd)
< 0, ∀s 6= 0

(34)

3.3. Composite Controller Design

Based on SP theory, the composite controller can be solved as:

τ = τs+τ f (35)

Theorem 2. Based on SP theory, the stabilities of the slow subsystem (11) and fast subsystem (30)
are guaranteed by their own controllers (29) and (32); thus, the stability of the whole-order system
(1) is guaranteed under the composite controller (35).

REMARK 1: In this paper, we use the singularly perturbed technique (SPT) to deal
with the control of flexible manipulators with varying loads. In such a system, the trajec-
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tory dynamic is the slow dynamic with position changes, which is coupled with the fast
dynamic of vibration suppression. In the framework of SPT, we can deal with slow and
fast dynamics in corresponding timescales, which will contribute to more precise control
and less conservativeness.

4. Simulation and Analysis

To verify the rightness and effectiveness of the dynamic decomposition and the com-
posite controller proposed in this paper, simulation results are given.

4.1. Verify the Dynamic Decomposition Based on SP

Based on SP theory, the dynamics of flexible manipulators are decomposed into slow
and fast sub-dynamics. The position curves of original system and the subsystem are
shown in Figure 1.

0 2 4 6 8 10 12 14 16 18 20
time(s)

0

1

2

3

4

5

6

7

8

9

an
gl

e(
ra

d)

whole-order system
slow sub-system

Figure 1. Position curves of the original system and the slow subsystem.

4.2. Verify the Effectiveness of the Composite Controller

To verify the effectiveness and accuracy of the composite controller (35), control
schemes with varying loads are simulated and simulation results are compared with the
fuzzy logic composite controller in [12].

In the slow timescale, a slow controller based on RADP by means of θ is designed to
track the angles since θs ≈ θ. The initial feedback matrix is chosen as Ks

0 =
[

3 5
]
. The

weighted matrixes are set as Qs = diag(1, 0.1), Rs = I.
In the fast timescale, a fast controller in consideration of dynamic uncertainties based

on RSMC is designed as shown in (32). The parameters of the controller are chosen as:

G = [ 0 0 0.5 1 ]T

η = 0.5

F = [ 0 0 50 50 ]T

The simulation results using varying loads, m = 0, m = 0.1, and m = 0.2, are provided
in Table 1.

Figures 2 and 3 have shown the second position curves of the origin system and the
reduced order system. Figure 4 shows the convergence of Ks

k to its optimal value Ksd during
the learning process. After finite iterations, the optimal control laws based on RADP and
LQR can be solved, and the results are shown in Table 1.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time(s)

-2

-1

0

1

2

3

q1
(m

)

1st mode whole-order system

1st mode in fast sub-system

Figure 2. q1(m) of the original system and the fast subsystem.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

q2
(m

)

2nd mode whole-order system
2nd mode in fast sub-system

Figure 3. q2(m) mode position curve of the original system and the fast subsystem.

Table 1. The optimal control feedback gains with varying loads.

m Optimal Laws The Optimal Control
Feedback Gain

0 RADP Ks∗ =
[

1 2.0721
]

LQR Ksd =
[

1 2.0720
]

0.1 RADP Ks∗ =
[

0.9986 2.1310
]

LQR Ksd =
[

1 2.1406
]

0.2 RADP Ks∗ =
[

0.9986 2.1310
]

LQR Ksd =
[

1 2.1406
]

According to Figure 4 and Table 2, Ks∗ ≈ Ksd. The optimal control laws can be
solved regardless of the m value chosen under RADP, with no knowledge of the system
parameters.

Table 2. The optimal control feedback gains with varying loads.

References Results

[5] Full-state tracking PID controller.

[14] A composite learning controller with neural
network and disturbance observer.

[15] A composite learning controller with fuzzy
sliding mode control and LQR control.

[17] A composite learning controller with computed
torque control and linear-quadratic control.

Figure 5 shows that the controller based on RADP and RSMC has better performance
with varying loads. Figures 6 and 7 are the first two mode position curves, which show
that the vibration is rapidly suppressed under the controller.



Electronics 2022, 11, 956 9 of 11

Figure 4. Convergence of Ks
k to its optimal value Ksd during the learning process.

Figure 5. The position curve of flexible manipulators.

Figure 6. The first mode vibration of flexible manipulators.
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Figure 7. The second mode vibration of flexible manipulators.

5. Conclusions

In this paper, the dynamics of flexible manipulators, which are modeled as a singularly
perturbed system, are decomposed into slow and fast subsystems describing the rigid and
flexible motion by using the singularly perturbed theory. In the slow timescale, a slow
controller based on RADP with rotating angles is designed to realize trajectory tracking. In
the fast timescale, a fast controller based on RSMC is designed to suppress the vibration.
The stability of the closed-loop system of tracking error dynamics is guaranteed by the
proposed algorithm, and the possible numerical stiffness is also avoided. In addition, we
have launched a simulation by using the proposed algorithm, in which the accuracy of the
decomposition based on SP theory is proven. Moreover, the simulation results show that
the composite controller is not sensitive to the varying loads, and it has better performance.

Chattering avoidance is a very important issue in the sliding-mode control, and
this will be our future work with the flexible manipulator topics. On the other hand,
the proposed algorithms in this paper cannot be applied to the model for a completely
unknown situation, and therefore the issue of how to develop an ADP method with a
singular perturbation technique with completely unknown dynamics will lead to our future
research.
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