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Abstract: The use of natural language processing to analyze binary data is a popular research topic
in malware analysis. Embedding binary code into a vector is an important basis for building a
binary analysis neural network model. Current solutions focus on embedding instructions or basic
block sequences into vectors with recurrent neural network models or utilizing a graph algorithm
on control flow graphs or annotated control flow graphs to generate binary representation vectors.
In malware analysis, most of these studies only focus on the single structural information of the
binary and rely on one corpus. It is difficult for vectors to effectively represent the semantics and
functionality of binary code. Therefore, this study proposes aligned assembly pre-training function
embedding, a function embedding scheme based on a pre-training aligned assembly. The scheme
creatively applies data augmentation and a triplet network structure to the embedding model training.
Each sub-network extracts instruction sequence information using the self-attention mechanism and
basic block graph structure information with the graph convolution network model. An embedding
model is pre-trained with the produced aligned assembly triplet function dataset and is subsequently
evaluated against a series of comparative experiments and application evaluations. The results show
that the model is superior to the state-of-the-art methods in terms of precision, precision ranking
at top N (p@N), and the area under the curve, verifying the effectiveness of the aligned assembly
pre-training and multi-level information extraction methods.

Keywords: malware analysis; function embedding; aligned assembly; self-attention; graph convolution
network

1. Introduction

Malicious code of great variety and scale exists as binary programs. Binary program
analysis technology is an important means of studying malware; however, to improve the
efficiency of malware, technologies such as cross-referencing, automatic splicing, and poly-
morphic mutation are illegally applied on a large scale with malicious intent. Traditional
manual analysis [1] and machine learning-based methods [2–4] have difficulty coping with
the increasingly complex binary analysis requirements.

With the rapid development of deep learning, an increasing number of studies have
focused on introducing natural language processing (NLP) into binary analysis. These
studies use multi-layer neural networks to automatically extract the features of a certain
binary code. Vectors containing these features are applied to various binary analysis tasks,
such as binary search [5], similarity comparison [6–10], and code reuse detection [11,12].
They are also used in malware analysis tasks, such as vulnerability searches, malware
classification [6], and anomaly detection in multiple IoT scenarios [13].

However, the application of NLP methods to binary analysis faces two key prob-
lems. First, embedding binary into numerical vectors with fixed dimensions that can be
received by neural networks is difficult. These vectors should represent each binary in an
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n-dimensional Cartesian coordinate space. Secondly, the quality of the embedded vector
with a limited binary corpus must be maintained. The resulting binary vector should
effectively represent the semantics of the binary code.

To solve the aforementioned problems, researchers have proposed several binary
embedding approaches. Many NLP-based techniques [7,8] use instruction as input, gener-
ating representation vectors with the context information of the instruction sequence to
extract the binary feature. However, these schemes neglect the relationships among basic
blocks, resulting in a loss of structural information. Some researchers use graphs, such
as control flow graphs (CFGs) [5] and inter-procedural CFGs [9], produced in the disas-
sembly process to generate a binary representation vector. These graph methods use word
embedding to obtain instruction vectors, mining the little knowledge inside basic blocks.
In addition, the processing cost of the graph model is high. Other studies [11,12] have
combined representation methods with multiple granularities and used different types of
information at different levels; however, these end-to-end feature extraction methods have
a significant correlation with specific applications and are not generalizable. To maintain
the availability of datasets for the feature extraction model, most schemes fail to fully utilize
the binary corpus. Moreover, partial corpus information is lost during disassembly, causing
the representation capability of the resulting vectors to be relatively low.

To overcome these problems, this study draws on the data augmentation mecha-
nism [14,15] commonly used in the NLP field to propose an augmentation method for a
binary corpus. Assembly files derived from the same source code in different ways, called
homologous assembly, should be equivalent in semantics and functionality. When the
assembly is embedded into the same dimensional space, the distance between the vectors
of the homologous assembly should be closer than that of the non-homologous assembly.
Because the function name is preserved during disassembly, certain segments of the ho-
mologous assembly can be aligned by the function name. In this paper, such segments are
defined as aligned assemblies and are described in detail in Section 3.2.1. Therefore, in this
study, the assembly function was selected as the binary embedding granularity.

Meanwhile, to improve the representation capability, a triple-network-based structure
was designed to train the function embedding model through a binary distance comparison
task. Inspired by pre-training in deep learning, pre-training is used in augmented datasets
to advance the generality of different malware analysis applications. The vector embedded
by the obtained model can provide better performance with fine-tuning according to
specific tasks further downstream.

The major contributions of this work are as follows:

• A data augmentation method with aligned assembly functions to generate a triple
dataset aligned assembly triplet function (AATF) for binary function embedding
was proposed.

• A multi-level embedding network framework that can simultaneously capture se-
quence information at the instruction level and structure information at the block level
was designed.

• Aligned assembly pre-training function embedding (AAPFE) was pre-trained based
on the created triple dataset AATF and triplet loss function.

• Extensive experiments were conducted, and the results demonstrated that the pro-
posed model outperformed the state-of-the-art models in terms of precision, p@N, and
area under the curve.

The rest of this paper consists of four sections, which are organized as follows. In
Section 2 we present related work. In Section 3 we describe the overall architecture of
AAPFE and the internal mechanism of each component. Experiments and evaluations are
presented in Section 4. Finally, a conclusion is given in Section 5.
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2. Related Work

A binary contains not only the sequence information of its instruction but also the structural
information of graphs, such as the control flow graph and data dependency graph. Therefore,
we can classify binary embedding methods into the following three categories.

2.1. Sequence-Based Embedding Methods

Sequence-based embedding methods have been proposed in many studies, with
most using raw binary programs as inputs for the embedding models. For example,
Zhang et al. [16] adopted the Sequence2Sequence model MIRROR to transform the basic
block into a fixed-dimensional vector, regardless of the architecture. However, the proposed
method could only extract information within a basic block, losing the relationship among
different basic blocks. Li et al. [17] proposed a pre-training-based assembly language
embedding method, PalmTree, to capture the different features and learn an embedding
model for instruction sequences. However, the pretraining-based method requires well-
labeled function samples.

Some studies have used assembly code as the input. Steven et al. [5] proposed
an assembly representation learning model, Asm2Vec, that uses the PV-DM model in
NLP to extract and fuse the semantic information of the assembly code. However, this
approach cannot be transferred to other applications. Massarelli et al. [6] proposed a general
function embedding scheme, SAFE, to embed instructions and a bidirectional recurrent
neural network (biRNN) to embed functions on the disassembled binary functions. It
can simultaneously generate embeddings on a variety of architectures. However, their
i2V-based instruction embedding scheme cannot extract behavioral function information.
Li and Jin [18] proposed a simple function embedding model based on the word2Vec
algorithm and biRNN, and verified this model without considering the graph information.
However, this method cannot obtain enough control flow and semantic information feature
for other applications.

Asm2Vec and SAFE directly use the NLP model to predict the sequence relationship
of instructions or basic blocks, avoiding the calculation of complex graph structures. The
optimization of this model is relatively simple; however, these sequence methods utilize
instruction information to represent the binary assembly file through a one-dimensional
linear relationship, whose graph structure information is lost.

2.2. Graph-Based Embedding Methods

Several studies have directly utilized basic block control flow graphs for binary rep-
resentation. For example, Duan et al. [9] proposed a method of using the generated CFG
graph to extract contextual information. This embedding method obtains the semantic
feature of the instruction and embeds the two types of information as basic blocks to
construct a comparison model to handle program-wide binary diffing. However, since
the input granularity is program level, the model is highly dependent on data preprocess-
ing. Feng et al. [19] utilized attribute control flow graphs (ACFGs) to embed a binary for
firmware images. The model was shown to outperform others in terms of effectiveness and
time consumption; however, it requires a large scale of dataset to guarantee the robustness
of application.

These methods extract features through graphs, such as CFGs or ACFGs, that represent
binary assembly files, extracting basic inter-block structural information and ignoring the
instruction information within a block. Moreover, a model based on a purely graphical ap-
proach is typically heavier than a sequence-based model. To obtain sufficient performance
advantages, large-scale datasets are often trained, which causes efficiency bottlenecks in
some scenarios.

2.3. Embedding Methods Based on a Hybrid Structure

In order to gain the advantages of both sequence and graph methods, researchers have
begun to adopt hybrid structure-based methods. Qiao et al. [11] designed an embedding
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scheme of cross-architecture basic blocks. This method combines sequence and graph
structure information to embed the basic blocks in the labeled dataset MISA; however,
the model depends on a large number of preprocessed samples for training. Xu et al. [10]
proposed a novel neural network (NN)-based approach called Gemini that computes the
embedding based on the block sequence and CFG of every binary function. However,
this model generates embeddings with cosine distance, which may result in a remarkably
time-consuming process. Yu et al. [20] adopted the masked language model (MLM) and
adjacency node prediction (ANP) tasks inspired by BERT [21] into a pre-trained token and
block embedding to encode the semantic feature. A graph algorithm and convolutional
neural network (CNN) models were adopted to extract the structure and order information
of CFG; however, this representation method is computationally complex and thus requires
considerable time consumption.

These methods are complex for researchers without substantial computing power or a
large amount of data. In addition, they are not task-transfer models for other applications.
The characteristics of the binary embedding approaches proposed in recent years are
summarized in Table 1.

Table 1. Comparison among binary embedding methods. For Boolean columns:
√

—supported;
×—unsupported. Embedding method can be sequence based (S), graph based (G), or a hybrid
structure (H). Input granularity and approach granularities can be instruction (I), basic block (BB),
function (F), or program (P). Computation complexity can be high (H), moderate (M), or low (L).
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GENIUS [19] 2016 G F BB × ×
√ √

H

GEMINI [10] 2017 H F BB, F
√

×
√

× M

ASM2Vec [5] 2019 S F I × × ×
√

M

SAFE [6] 2019 S F I, BB
√

× × × M

Li’s [18] 2020 S BB I, BB × × × × L

DEEPBINDIFF [9] 2020 G P BB, F
√

×
√ √

H

Qiao’s [11] 2020 H BB I, BB
√

×
√

× M

MIRROR [16] 2020 S BB I
√

×
√ √

M

Yu’s [20] 2020 H BB I, B
√ √ √

× H

PALMTREE [17] 2021 S F BB
√ √ √ √

H

3. Proposed Approach

This study proposes a function embedding model called AAPFE, which uses an as-
sembly function as input to automatically construct an assembly representation network
through deep learning, introducing as little human bias as possible. In downstream applica-
tion scenarios, the binary can be embedded into function vectors with high representation
abilities, and after fine-tuning, the malware analysis task can achieve a high accuracy rate.
AAPFE takes aligned assembly functions as input and must learn the semantic and func-
tionality information between different assembly files with high quality; the vector distance
of homologous alignment functions is closer than that of other non-homologous functions.
The vectors of the aligned functions Entity2 and aligned functions Entity7 derived from the
libssl-1_1.dll program in OpenSSL are projected into the same three-dimensional vector
space, as shown in Figure 1.
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Figure 1. Assembly function embedding vector space T-SNE visual distribution. The classical
functions Entity2 and Entity7 in the OpenSSL project were selected as examples. The function vectors
of aligned assembly generated by homologous assembly should be close, whereas the function vectors
of unaligned assembly should be far apart and distributed discretely.

3.1. Overview

AAPFE, whose overall structure is shown in Figure 2, is composed of three parts:

1. The first part is the aligned assembly generation. The anchor assembly ASMa is
generated by the compilation of a source code, and the positive assembly ASMp is
obtained by the disassembly of the binary file Bin. Bin is derived from the same
code. ASMa and ASMp are homologous assemblies with the same functionality and
semantics; however, their syntax and structure are different. Next, the name is used as
the index for alignment and preprocessing to obtain the aligned assembly functions.
Meanwhile, random sampling from ASMn is adopted to obtain the negative functions
to generate the assembly function triplet.

2. The second part involves the function embedding net, which accepts triplets. Using
multi-granularity embedding fusion, these three embedding nets have the same
structures. The instruction sequence and basic block jump relationship information is
embedded as a real-valued vector representing the assembly function at the instruction
level and the basic block levels. After summing and normalizing the function vectors,
the vector representing the assembly function is output.

3. The final part is the learning target, which compares the output of the embedded
vectors in pairs. The objective is to have the distance of the vector of the aligned
assembly be lower than that of the unaligned assembly. The distance is used as part
of the loss function for the gradient propagation. After training, the converged model
parameters are obtained, and the AAPFE model is finally stored.



Electronics 2022, 11, 940 6 of 23

Electronics 2022, 11, x FOR PEER REVIEW 6 of 23 
 

 

AAPFE is a function embedding pre-training model based on similarity comparison 
tasks. The purpose is to learn an assembly embedding model to effectively extract the 
semantic and functionality features of malicious binary programs. This process involves 
converting binary program inputs into fixed-dimensional numerical vectors, thus provid-
ing a useful data source for malware analysis tasks using deep neural networks. Inspired 
by [22], the triplet network is employed as the overall training structure of AAPFE, and 
each embedding network in the triplet network is a sub-network of the same feed-forward 
structure with shared parameters. 

 
Figure 2. AAPFE overview. 

The following sections introduce the various components of AAPFE based on the 
triple structure, including the aligned assembly generation, function embedding network, 
training network goals, and deployment methods. 

3.2. Dataset Collection 
3.2.1. Aligned Assembly Generation 

The field of NLP digs deep into the corpus of datasets. For example, applications such 
as event detection based on a multilingual corpus [13,14] have achieved improvements. 
In malware analysis, the labeled binary corpus itself is relatively scarce, and some source 
program syntax and semantic information have been lost in the process of code lowering, 
such as compilation and linking. After preprocessing and optimization by the compiler, 
information in the form of arrays, structures, and enumerations in high-level coding lan-
guages no longer exists. Logical structures, such as loops and selections, are transformed 
into “jmp,” even when lifting binary code to the assembly layer. With this background, a 
function pair called an aligned assembly is proposed. 

The generation process of the aligned assembly is shown in Figure 3 and Algorithm 
1. Firstly, the LLVM is utilized to compile several open-source C/C++ projects into assem-
bly codes, which are treated as anchor files (ASMa). In the next step, the binary file Bin is 
generated by compiling and assembling the source file with GCC. Then, IDA-Pro is uti-
lized to disassemble the binary file Bin, and the generated assembly files are treated as 
positive samples (ASMp). Such a homologous assembly file is regarded as an equivalent 
assembly program pair, p aASM - ASM . Next, random sampling is employed, where 
ASMp is found in order to obtain the non-homologous assembly file ASMn, which is used 
as a negative assembly file. 

Figure 2. AAPFE overview.

AAPFE is a function embedding pre-training model based on similarity comparison
tasks. The purpose is to learn an assembly embedding model to effectively extract the
semantic and functionality features of malicious binary programs. This process involves
converting binary program inputs into fixed-dimensional numerical vectors, thus providing
a useful data source for malware analysis tasks using deep neural networks. Inspired
by [22], the triplet network is employed as the overall training structure of AAPFE, and
each embedding network in the triplet network is a sub-network of the same feed-forward
structure with shared parameters.

The following sections introduce the various components of AAPFE based on the
triple structure, including the aligned assembly generation, function embedding network,
training network goals, and deployment methods.

3.2. Dataset Collection
3.2.1. Aligned Assembly Generation

The field of NLP digs deep into the corpus of datasets. For example, applications such
as event detection based on a multilingual corpus [13,14] have achieved improvements.
In malware analysis, the labeled binary corpus itself is relatively scarce, and some source
program syntax and semantic information have been lost in the process of code lowering,
such as compilation and linking. After preprocessing and optimization by the compiler,
information in the form of arrays, structures, and enumerations in high-level coding
languages no longer exists. Logical structures, such as loops and selections, are transformed
into “jmp,” even when lifting binary code to the assembly layer. With this background, a
function pair called an aligned assembly is proposed.

The generation process of the aligned assembly is shown in Figure 3 and Algorithm 1.
Firstly, the LLVM is utilized to compile several open-source C/C++ projects into assembly
codes, which are treated as anchor files (ASMa). In the next step, the binary file Bin is
generated by compiling and assembling the source file with GCC. Then, IDA-Pro is utilized
to disassemble the binary file Bin, and the generated assembly files are treated as positive
samples (ASMp). Such a homologous assembly file is regarded as an equivalent assembly
program pair, ASMp −ASMa. Next, random sampling is employed, where ASMp is found
in order to obtain the non-homologous assembly file ASMn, which is used as a negative
assembly file.
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Figure 3. Schematic of aligned assembly generation.

Subsequently, the assembly functions are mapped one by one based on the previous
steps, according to the function name. Here, the corresponding anchor function sample
fa and positive function sample fp are aligned. Then, another random sampling method
is processed to select a function sample from the functions generated from ASMn as the
negative function sample fn. Algorithm 1 below details the generation of AATF. According
to the algorithm, a large-scale aligned assembly triplet function dataset can be created using
a moderate-scale open-source project set. Currently, a triple function input unit based on
an aligned assembly, has been manufactured. Compared to simply utilizing the binary
corpus for training, the aligned assembly is expected to provide better training benefits, as
will be verified by the experiments described in Section 4.

Algorithm 1. Aligned Assembly Triplet Functions (AATF) Generation.
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14 D ← D ∪ {(func, r, −1)}; 
15 end 
16 for  func ∈ Sp  do 
17 candidatesn = {f | f has different name with func, f ∈ Sn}; 
18 r ← RandomSample (candidaten); 
19 D ← D ∪ {(func, r, +1)}; 
20 r ← RandomSample (Sn − candidaten); 
21 D ← D ∪ {(func, r, −1)}; 
22 end 

3.2.2. Preprocess 
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3.2.2. Preprocess

The resulting aligned assembly cannot be directly used by the embedding model. Thus,
preprocessing in advance is essential. First, normalization and expression are applied to
each instruction in every assembly file. During normalization, the instructions are split into
opcodes and operands. Opcodes are used to describe machine language instructions, speci-
fying which part of the instruction field performs an operation. The instruction formats
and specifications that constitute an opcode are specified by the processor’s instruction
set specification. Operands participate in the execution of instructions, which specify the
objects that perform mathematical operations in the instructions. They contain various con-
stants and registers, which may cause out-of-vocabulary (OOV) problems. The distinction
of constant names or register names, which have no semantics, can only introduce noise
into the embedding model; thus, the categorization of processing operands is a critical step
in instruction normalization. A rule-based instruction normalization scheme (Table 2) is
utilized to alleviate the OOV problem.

Table 2. Instruction normalization rule list.

Type Character Normalization

Constant

Address addr
Variant name var

Immediate value imm
Basic block label BB
Function name Func

Register

Pointer type reg_pointer
Float type reg_float

General type (8bit) reg_gen_8
General type (32bit) reg_gen_32
General type (64bit) reg_gen_64
Address type (32bit) reg_addr_32
Address type (64bit) reg_addr_64

Data type (8bit) reg_data_8
Data type (32bit) reg_data_32
Data type (64bit) reg_data_64

Taking the function Entity2 as an example, the assembly code obtained by compiling
the source code contains three basic blocks: Entity2, LBB19_1, and LBB19_4. Without
normalization, it is easy for the model to fail to extract information effectively, as a token
does not exist in the dictionary. A schematic of the assembly function before and after
normalization is shown in Figure 4.

In AAPFE, instead of simply deleting subsequent instructions by sequence, the term
frequency-inverse document frequency (TF-IDF) method is used to weight all instructions
in the basic block. When an instruction appears more frequently in a basic block and is
less common, its TF-IDF value is higher, and the instruction is more important. The top
instructions with the highest TF-IDF values define the maximum length of the basic block.
The remaining instructions are discarded to preserve the information of the basic block as
much as possible. This parameter is specified along with others in Section 4.1.

After normalization and compression, tokenization is performed. Here, the torch.nn
class in the PyTorch framework is used to transform instruction tokens directly into embed-
dings. This embedding is simply an initiatory vector, which is randomly initialized as a
unique real-valued vector. The initiatory vector has no meaning and can represent neither
the semantics of the instruction token nor the relationship between different tokens. At this
point, data preprocessing is complete, and the vectors of the instruction tokens are fed into
the triplet sub-network as input.
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Figure 4. Schematic of normalization on function Entity2.

3.3. Function Embedding Sub-Network

In AAPFE, an embedding network is designed at both the instruction and block levels.
A multiheaded self-attention [23,24] (hereinafter referred to as self-attention) mechanism is
utilized to calculate the context information of each token in an instruction sequence and to
update the weight of the token vector in a basic block. All vectors are summed in one basic
block to obtain a basic block vector BBi

k.
Subsequently, by capturing the jump instructions in the basic block, an adjacency

matrix of the CFG can be generated. The adjacency matrix describes whether there is a jump
relationship between basic blocks and is utilized to extract the neighboring information and
update the block-level embedding. In the triplet sub-network of the AAPFE architecture,
the structure of each embedded network is the same, as shown in Figure 5. Only one
subnetwork is introduced.
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Figure 5. Embedding network structure that performs two tasks: the extraction of the instruction
sequence information based on self-attention and the embedding of the basic block jump adjacency
matrix using a graph convolution network (GCN). The generated basic block vectors compute the
average and then connect to the layer normalization.

Each embedding network consists of two parts: instruction and basic block embedding.
The input assembly function is characterized using two types of embedding information as
the output of each subnetwork. The embedding networks are described in detail below.
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3.3.1. Self-Attention-Based Instruction Embedding

Firstly, the obtained instruction token is processed through the position-wise connec-
tion layer and the position information is embedded into each instruction as an instruction
sequence. The embedding of the instruction sequence is an information embedding of a
two-dimensional sequence structure, which is generally processed by a recurrent neural
network (RNN). However, it is difficult for an RNN to extract semantic information far from
the target word, and LSTM developed from an RNN cannot perform parallel computing.
The self-attention mechanism is used at the instruction level.

Before calculating the self-attention layer, the instruction token is fed into the position-
wise feed-forward network to embed the position information. The perception layer
updates the vector value according to the position information of each token in the instruc-
tion sequence. The output of this position layer is connected to the residuals. The residual
connection can not only avoid a single fitting of position information but can also reduce
the gradient vanishing or exploding. In this process, an instruction token containing the
sequence information of the positional relationship is obtained.

The self-attention mechanism is utilized to calculate and update the weight of each
instruction token based on the context information, which uses key-value pairs as the
representation of input words and regards the query vector as the representation of the
target token. The self-attention weight calculation process for “reg_gen_32” involves its
context tokens, as shown in Figure 6 below.
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For example, in the two instructions “cmpl imm reg_gen_32” and “jne BB,” the
embedding vector of “reg_gen_32” is calculated through the self-attention mechanism.
Firstly, position information is added to each token in the instructions, after which each
token is converted into a vector and the query, key, and value of each token are calculated.
Next, the query of “reg_gen_32” and the key of context tokens are multiplied to obtain the
corresponding score value, and the SoftMax function is used to calculate the score to obtain
the self-attention weight of “reg_gen_32.” Finally, the generated self-attention weight and
value of “reg_gen_32” are multiplied to obtain the self-attention output of the target token
in the “cmpl imm, reg_gen_32” instruction.

The output and input of the self-attention processing layer are also connected by a
residual network followed by a layer normalization, and all the token vectors are summed
up to aggregate the instruction sequence as a block-level embedding.
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3.3.2. GCN-Based Basic Block Embedding

The graph convolutional network (GCN) [25–27] is a model that performs convolu-
tion operations on graphs. Marcheggiani et al. [28] and Huang et al. [29] demonstrated
that sequence models and GCNs have complementary modeling capabilities; therefore,
based on the instruction sequence vector obtained earlier, the GCN is used to fuse the
edge information between basic blocks into block-level information. Based on this basic
block intermediate representation vector, the main discussion is how to extract the jump
relationship information between the CFG basic block nodes and generate basic block em-
beddings. First, the jump instructions in each basic block are filtered out. If the instruction
opcode is a jump function instruction, such as “jmp,” “jnc,” or “jc,” an edge is established
between these two basic blocks. The element of the corresponding position in the adjacency
matrix is assigned a value of one; otherwise, the elements are assigned a value of zero.
By traversing the individual instructions of the instruction sequence, the CFG basic block
adjacency matrix, which contains the structure information of an assembly function, can
be built. For example, sample Opt_path_end is a function disassembled from the dynamic
library file libss.lib in the OpenSSL project, as shown in Figure 7.
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loc_A93D0: 
      pop      rbx
      retn

 loc_A93C8:
       mov     rax,rdx
       pop      rbx
       retn

 loc_A93B9:
      lea      rax,   [rdx-1]
      cmp    rbx,   rax
      jb        short loc_A93B0

loc_A93A0:
      push     rbx
      mov     rbx,  rdi
      call      _strlen
      lea       rdx,[rbx+rax]
      jmp     short loc_A93B9

 loc_A93C0:
        mov      rdx,rax

Public opt_path_end
Opt_path_end proc {
    "loc_A93A0":[
      "push     rbx",
      "mov     rbx,  rdi",
      "call      _strlen",
      "lea       rdx,[rbx+rax]",
      "jmp     short loc_A93B9"
    ],
    "loc_A93B9": [
      "lea      rax,   [rdx-1]",
      "cmp    rbx,   rax",
      "jb        short loc_A93B0"
    ],
    "loc_A93B0": [
      "cmp     byte ptr[rdx-1],2Fh",
      "jz         short loc_A93C8"
    ],
      "loc_A93C8": [
       "mov     rax,rdx",
       "pop      rbx",
       "retn"
    ],
      "loc_A93C0": [
        "mov      rdx,rax"
    ]，
     "loc_A93D0": [
      "pop      rbx",
      "retn"
    ]
  }
   ……

loc_A93B0:
      cmp     byte ptr[rdx-1],2Fh
      jz         short loc_A93C8

 
Figure 7. Schematic of basic block adjacency matrix establishment. The assembly segment is selected 
from function “Opt_path_end” in the OpenSSL project as an example to show a detail matrix of the 
establishment process. 

Figure 7. Schematic of basic block adjacency matrix establishment. The assembly segment is selected
from function “Opt_path_end” in the OpenSSL project as an example to show a detail matrix of the
establishment process.

Based on the characteristics of the above information, the GCN model is used to extract
block-level information. The GCN model uses a multi-layer graph neural network to update
the embedding according to the layer-by-layer propagation concept of the CNN [30]. Given
a graph G (V, E), where V represents a node, ||V|| = N, and E represents an edge, the
GCN utilizes the convolution of the two functions, as shown in Equation (1).

g× x ≈ θ(IN + D−
1
2 AD−

1
2 )x (1)

The adjacency matrix is represented by A ∈ RN×N and the degree of a node is given
by Di j = ∑j A

i j. Because IN + D−
1
2 AD−

1
2 ∈ [0, 2], the multi-layer neural network often

makes the gradient easily explode or disappear.
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To alleviate this problem, re-regularization is employed. Let IN + D−
1
2 AD−

1
2 =

D̃−
1
2 ÃD̃−

1
2 and Ã = A + IN , D̃i j = ∑j Ã

i j, where Ã is the adjacency matrix with self-

connections and D̃ is the degree of each node. Equation (2) is approximated, and the
activation function Relu is added to obtain the GCN model calculation formula, as shown
in Equation (2).

H(l+1) = Relu(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (2)

In the above formula, l represents the number of layers of the GCN and H(l) ∈ RN×C

represents the input vector of the node in the lth layer. The input layer H(0) = X is the initial
input vector of the model, whereas N is the number of vectors and C is the matrix dimension.
W ∈ RC×F is a parameter of NNs and F represents the number of feature mappings, which
is the number of kernel functions. D−

1
2 ÃD−

1
2 can be regarded as a normalized adjacency

matrix and H(l)W(l) is equivalent to performing a linear transformation on the embedding
of the lth layer node. The left-multiplied adjacency matrix indicates that the feature of the
node is the result of adding the features of neighboring nodes.

In this study, the jump information between basic blocks is extracted through the GCN
model using Equation (2), after which the representation vectors of the basic blocks are
updated. After embedding the basic block, the corresponding basic block vector is obtained
by fine-tuning the multi-layer neural network, which corresponds to Equation (3).

Eg = MLP(GCN(In f og, Att(b))) (3)

Xu [31] proved that the sum function is the best choice for fusing both semantic feature
and structure information; hence, all block vectors are summed, and the function vectors
are obtained. Thus far, a function embedding model that simultaneously extracts sequence
information at the instruction level and graph structure information at the block level has
been constructed.

3.4. Model Training
3.4.1. Training Objective

In binary analysis, the binary code needs to be converted into a vector through the
function embedding model to achieve a similarity comparison with another binary. The
binary similarity comparison problem is transformed into a comparison of Euclidean
distances between vectors. In the feature space, the distance between the representation
vectors can be inversely proportional to the similarity between the binaries; this can be
measured directly, as shown in Equation (4).

Sim(Fi, Fj) = exp(−D(Ei ,Ej)

d )

= exp(− ||Ei − Ej ||2

d )
(4)

Here, Ei and Ej are the representation vectors of Fi and Fj, respectively. d represents
the embedding dimension, and D is the distance between two vectors.

Next, we will describe the way in which the constructed model can be trained. Because
data augmentation and the triplet network structure are employed, the resulting vectors
are more complex than pairwise direct comparisons. Here, utilizing the triplet loss [22]
is an effective means of training a suitable embedding model for each function. In the
embedding space, functions of the same functionality and semantics should be clustered
closely together to form well-separated groups. A margin-based triplet loss function is
built, and reliance is placed on minimizing the loss to train the AAPFE. In the model
training process, we attempt to distinguish the distance difference between the aligned
and unaligned function vectors as the training objective. The Euclidean distance is used
to measure the difference between two assembly function vectors. In the metric learning
method, the distance between the positive sample and the anchor sample vector is smaller
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than that between the negative sample and the anchor sample vector. The training loss
function can be calculated using Equation (5).

Loss = max{D(
→
F a,
→
F p)− D(

→
F a,
→
F n) + α , 0}

D(
→
F a,
→
F p) = D(Ea, Ep) = ||Ega − Egp||2

D(
→
F a,
→
F n) = D(Ea, En) = ||Ega − Egn||2

(5)

In the projection space, it should be an absolute distance instead of a relative dis-
tance. Therefore, the Euclidean distance is used. Meanwhile, the Euclidean distance does
not cause all samples of the same type to map to the same point, which is meaningless.
α represents the margin, which measures the difference between the two groups of distance
comparisons. The larger α is, the greater the difference between the distances of the aligned
and unaligned assemblies, the stronger the distinguishability, and the greater the corre-
sponding training difficulty. If α is zero, the condition is extremely loose, and the training
difficulty is extremely low. This parameter will be discussed further in Section 4.1.

3.4.2. Model Deployment

As mentioned in the model overview in Section 3.1, this process adopts pre-training,
which obtains an embedded model AAPFE of assembler functions in advance through
a large-scale dataset, and then deploys the obtained model in the analyzer training of
downstream tasks. For downstream applications, AAPFE has two deployment patterns,
the first of which is the function embedding generation pattern. The AAPFE is applied
as an assembly function embedder, which can provide an input vector for downstream
task models. Downstream models use the vectors generated by the embedder directly
without tuning. The embedded vector is more compatible than the features extracted by
the end-to-end method. The function embedding generation pattern is useful when hard-
ware resources are limited, for example, in embedded devices that do not have sufficient
computing power.

The second deployment pattern is a fine-tuning pattern. The resulting model param-
eters are first frozen and then used to initialize the embedding models for downstream
tasks. The new model already has a certain ability to discriminate, although this ability
needs to be adjusted further by small-scale training with other datasets. In this approach,
the AAPFE-initialized models are fine-tuned and trained together in the downstream pro-
cess. When sufficient computing resources and training budget are available, this pattern
usually provides additional benefits and is task independent. There are several fine-tuning
strategies [32], such as two-stage fine-tuning and multi-task fine-tuning.

In this study, the fine-tuning pattern is adopted, employing fine-tuning AAPFE for
model deployment.

4. Experiments and Evaluation
4.1. Experimental Setup

The experimental dataset was derived from dozens of famous C/C++ open-source
projects in different fields, including 10,989 programs in total. The dataset was employed to
pretrain and evaluate the AAPFE. Table 3 lists the relevant projects and their classifications.
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Table 3. Open-source projects used in the dataset.

Project Version Description

Cmake 3.19.8 Cross-platform build tool
libtomcrypt 1.18.2 Cryptographic toolkit

micropython 1.14 Python for microcontrollers
opencv 4.5 CV and ML library
Binutils 2.30 Binary tool

gdb 10.1 Debug tool
Redis 4.0.13 Database of key value

FFmpeg 4.2.2 Multimedia process tool
Libuv 1.x Asynchronous I/O library

Libpng 1.6.38 Graphic r/w library
VTK 9.0.1 Visualization toolkit
Curl 7.37.1 Data transmission tool

CoreUtils 4.5.1 GNU core library
Glibc 2.33 C runtime library of Linux

valgrind 3.17.0 Dynamic detection toolkit
OpenSSL 1.1.1b Cryptographic tool

AAPFE is suitable for assembly embedding at the functional level, but not the program
level. The method described in Section 3.2 was used to generate the aligned assembly
derived from the open-source project. The anchor sample assembly was compiled using
LLVM (v4.0) with no compiler optimization (O0). The binary was assembled by GCC
(v7.5.0) and then disassembled by IDA Pro (7.4 sp1) into a positive sample assembly. After
alignment, normalization, and compression, the previously described AATF, which consists
of 45,360 triple samples, was obtained. Each triplet contained an aligned anchor-positive
sample pair and a negative sample. In this study, 80% of the triplets were used for training
and 20% for testing.

PyTorch was applied as the deep-learning framework. The experiment was built on
a ubuntu18.04 server in the laboratory, equipped with a 2×Xeon Gold 6154 CPU and a
2×Titan-Xp GPU with a memory size of 128 G; the disk was an SSD with a capacity of 4 T.

The hyperparameters for model training after multiple performance comparisons are
listed in Table 4 below.

Table 4. Hyperparameters during model pre-training.

Hyperparameter Value Description

d_model 256 Embedding dimension
GCN_depth 5 Number of GCN layer

α 120 Margin
Max_len 45 Maximum length of basic block
Max_size 100 Maximum length of function

lr 0.001 Learning rate
Dropout 0.1 Dropout coefficient

Opt SGD Optimization algorithm
B_size 32 Batch size

d_ff 256 FC-feed-forward dimension

After 40 epochs of pre-training, both the training and testing losses of AAPFE were
near convergence, as shown in Figure 8. The trained model was used as an embedder for
function vectors.
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4.2. Performance Evaluation

To verify the performance of the function embedding model, SAFE and Gemini were
used as baselines for comparative experiments. SAFE embeds functions through i2V-based
instruction embedding and a biRNN with a self-attention mechanism. Gemini utilizes
Structure2Vec to capture the ACFG structure information of basic blocks. SAFE and Gemini
are state-of-the-art sequence information extraction and graph information embedding
approaches, respectively.

Because the AAPFE parameters are updated by self-supervised learning distance
discrimination between different functions, two tasks were established to verify the perfor-
mances of the three models for fairness:

1. Similarity comparison task: The objective of this task was to have the Euclidean
distance of the aligned assembly functions be lower than that of the unaligned as-
sembly functions. Precision and accuracy were used as indicators to measure task
performance; the dataset used was AATF.

2. Function search task: This task was consistent with the pre-training task; given a
source function, the target was to rank the aligned function as far as possible. The
evaluation metric of the task was p@N, which represents the precision ranking of the
objective function equivalent to the source function in this function set. The aligned
assembly triplet function extension (AATFX) dataset with 10,000 function sets was
obtained by augmenting AATF. Each function set contained a pair of aligned assembly
functions in the form of triplet data from AATF; the other 99 functions were randomly
selected samples, which were treated as negative samples. The source function was
equivalent to the aligned objective function. The distance to the positive sample vector
was the smallest. The source function was not equivalent to an unaligned assembly
function; therefore, the distance should be greater than that of the aligned function.

It is worth noting that a function search experiment was designed for two scenarios.
The first scenario utilized the compiled function as the source to search for the equivalent
target function in the set where 99 negative samples were disassembled functions, which
was called the #disassembling asm set. The second used the disassembled function as the
source to search for the equivalent target in the function set where all negative samples
were compiled functions, which was called the #compiling asm set.

The results shown in Figure 9 and Table 5 indicate that the precision, accuracy, and
p@N of AAPFE outperformed those of SAFE and Gemini. The corresponding results of the
three models were close to p@1, which was 51.02% of AAPFE, 47.29% of SAFE, and 45.75%
of Gemini when searching in the disassembled sample set, and 52.58%, 49.9%, and 46.67%
when searching in the compiled sample set. The p@1 indicator is relatively harsh. It is used
to rank the assigned function from 100 samples as the first; if the sampled functions are
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close, there will be a certain amount of noise. The results indicate that after pretraining,
AAPFE could fit a data conversion model with better performance than the Gemini and
SAFE models.
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Table 5. Comparison with the baseline using p@N metric.

Model
# Disassembling Asm Set # Compiling Asm Set

p@1 p@3 p@10 p@1 p@3 p@10

Gemini 45.75% 50.22% 74.3% 46.67% 52.05% 75.93%

SAFE 47.29% 63.73% 86.08% 49.9% 63.01% 87.61%

AAPFE 51.02% 77.09% 91.01% 52.58% 79.36% 94.16%

The reason for this may be that SAFE adopts i2V to embed the entire instruction infor-
mation as a vector, and then connects to the biRNN and self-attention network to generate
a function vector, which lacks the graph structure information that characterizes the basic
block of the function. However, Gemini uses an ACFG graph to represent functions and
embeds graph structure information as a function vector through Structure2Vec, without
considering the instruction information inside the node. The embedding network in AAPFE
is composed of self-attention and a GCN, which is not only more suitable for embedding
the node context instruction information of fine-grained preprocessed tokens, but also
integrates CFG graph structure information into the embedding, showing high-quality
embedding for multi-granularity information extraction performance.
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The results also demonstrate that the #compiling asm set values were slightly better
than those of the #disassembling asm set, verifying that in the feature space, the compiled
function was more contrastable than the disassembled function. The reason for this is that
the assembly function vector obtained by directly compiling the source codes extracts more
semantic and structural information than the function vector of the assembly produced by
the disassembler.

4.3. Training Evaluation

Hyperparameter tests and ablation experiments were performed on the model. These
tests were intrinsically benchmark evaluations that provided a generic assessment of the
quality and consistency of vector spaces, independent of their performance in downstream
applications. The different properties and composition structures of the model can be
evaluated in this way.

The dataset used was AATFX, as proposed in Section 4.2, and the evaluation index
was p@N.

4.3.1. Hyperparameter Test

Based on the changes in the model’s hyperparameters, controlled experiments were
conducted. The main hyperparameters of the model structure design include the number
of GCN convolution layers, L_N, and the dimension of the model, D_model. In the two
search scenarios, 128, 256, and 512 were selected as the dimensions; the number of GCN
layers was set to three to five; and 40 rounds of training were conducted. Figure 10 shows
the results of the hyperparameter testing.
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the compiling set.

These results indicate that when the number of GCN layers was five, the accuracy
ranking index p@10 reached 92.66%, and when the vector dimension was set to 256, p@1
and p@3 were higher than 128. When the embedding dimension was 512, p@10 was
the highest, and the improvement was limited compared to p@3. Considering the time
complexity factor, the embedding model was set to have 256 dimensions and five GCN
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layers to ensure the performance of the AAPFE model without causing excessive memory
overhead. Therefore, these two parameters were presented in advance during the pre-
training process.

4.3.2. Ablation Evaluation

AAPFE uses the self-attention mechanism and GCN model to build each embedding
network. Ablation experiments were conducted, and the different components of the em-
bedding net were compared. The sequence embedding under the self-attention mechanism
was replaced with Word2Vec to evaluate the embedding efficiency at the instruction level
using DeepWalk as the reference algorithm of the GCN to compare the graph embedding
effect at the basic block level. Similarly, the models of different training epochs were also
compared to verify the effects of pre-training on embedder construction.

In addition, comparisons between the fully trained AAPFE (40 training epochs), a
half-trained AAPFE (AAPFE-20; 20 training epochs), and an AAPFE without pre-training
(AAPFE-0) were made to demonstrate the effect of pre-training. The results are shown in
Figure 11.
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DeepWalk [33] is a graph structure path construction method based on the Ran-
domWalk [34] algorithm. It embeds the basic block jump relationship as a vector through
neighbor nodes, and the obtained graph vector loses a great deal of structural information.
Word2Vec is a classic word embedding method proposed by Mikolov [35]. The word em-
bedding framework is a classic learning function library for word embedding. The obtained
sequence information is limited by the size of the slicing window, and the embedding of
different instructions cannot be calculated in parallel. In the instruction-level and basic
block-level multi-granularity extraction methods, the Word2Vec + GCN scheme cannot
solve the problems of semantic information representation, such as polysemy, because
Word2Vec is still a one-to-one mapping between words and vectors. In contrast, because
DeepWalk is limited by the number of paths, the self-attention + DeepWalk scheme cannot
express multi-path information and intra-node information simultaneously. The proposed
multi-granularity extraction method adopts self-attention and the GCN, considering the
context information of each instruction simultaneously, and fuses the information of each
node in all the constructed paths.

The effects of pre-training on the results are evident, as the performance of AAPFE-0
was lower than that of Word2Vec + GCN because Word2Vec embeds instruction information
within a slicing window. However, AAPFE-0 extracted very little sequence information.
The p@N index of AAPFE-20 was close to that of the self-attention + DeepWalk scheme,
reflecting the slow parameter convergence of the GCN and the effect of graph convolu-
tion embedding, which can only be implemented in the subsequent 20 epochs, unlike in
DeepWalk. In AAPFE-0, the instruction vector is randomly assigned by the torch.nn, and
the convolutional layer does not learn the graph information of the basic blocks. Similar-
ity comparison information comes from the inherent differences between samples. The
parameters of the insufficiently pre-trained AAPFE-20 were not sufficiently updated.

4.4. Application Evaluation

In addition to the intrinsic comparative evaluation in similarity comparison and
searching, the application of AAPFE to downstream tasks is necessary to demonstrate
the effectiveness and robustness of the functional embedding model. Because binary
analysis is essentially a classification task, which is related to the similarity comparison
pre-training task, the embedding model was introduced into the binary malware analysis
task. According to the general requirements of malware analysis, two main tasks were
performed in the experiment: malware detection and malware classification.

4.4.1. Malware Detection

The malicious dataset employed in this study was derived from VX Heaven [36], a
well-known public virus library widely used for malware analysis tasks. VX Heaven has a
collection of 258,296 malicious binary samples in different formats, accounting for a total
of 60 GB. These samples are well labeled with four fields: virus type, platform, family,
and variant.

In the malware detection task, 55,600 malware binaries were classified and randomly
extracted from VX Heaven. Then, 51,600 benign samples were randomly selected from the
C/C++ open-source projects. After the 107,200 binaries to be detected were disassembled
into assembly functions by IDA, they were connected to the embedded network initialized
by the AAPFE parameters to generate function vectors.

To simplify the classifier as much as possible, the function vectors were added and
averaged by dimension and the binary file representation vector was obtained. To compare
the effects of the embedding part, we directly fed the binary vector to the fully connected
layer and the SoftMax function for detection. The embedding methods of Gemini and
SAFE were also used as comparison models. Because the AAPFE was pre-trained, simple
fine-tuning training was performed on the classifier. The precision, accuracy, recall, and
area under the curve (AUC) were selected as indicators to measure performance in the
malware detection tasks. The results are listed in Table 6.
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Table 6. Comparison of different models applied in malware detection.

Model Accuracy Precision Recall AUC

Gemini 88.21% 90.32% 92.71% 0.9141

SAFE 91.6% 94.09% 98.44% 0.93153

AAPFE 94.28% 96.36% 97.05% 0.9463

The results show that AAPFE achieved superior performance in the malware detection
task. The accuracy, precision, and AUC indicators of the proposed method mostly exceeded
those of the baselines, except for the recall indicator of SAFE, which was slightly superior.

This may be a result of the fact that the GCN overcomes the problem of parallelism
in CFG graph calculation, and thus is more efficient than Structure2Vec, which is used
by Gemini. SAFE also uses a deep network to learn instruction sequence information;
however, it only converts the basic block jump relationship into a sequence structure and
loses the behavioral function information. Nevertheless, SAFE uses a normal architecture
fused with Sentence2Ve and the biRNN method, which is more compatible.

4.4.2. Malware Classification

The malware classification task was conducted using a subset of VX Heaven that was
previously classified and labeled with malware functionality. In this study, 79,262 malwares
samples were selected from the top five types of samples; their distribution is shown in
Figure 12.
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For simplicity, the same approach employed to obtain the binary vector representing
the sample was utilized here. These binary vectors were used to perform five classifications
directly using the fully connected layer and the SoftMax function. The results of each model
in terms of the evaluation indicators of accuracy, precision, and F1-score are described in
Table 7 below.

Table 7. Comparison of different models applied in malware classification.

Model Accuracy Precision Recall F1-Score

Gemini 78.33% 79.81% 80.61% 0.802

SAFE 80.65% 82.5% 85.06% 0.8376

AAPFE 83.37% 84.22% 84.64% 0.8443

Through the analysis of the results, it is evident that the performances of all three
models were limited. There are two reasons for this result. First, the distribution of the
chosen sample types was not sufficiently uniform to affect the overall prediction accuracy,
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especially the accuracy performance. Second, the function vector was simply averaged;
therefore, some functional relationship information may have been lost. These two insuffi-
ciencies will be further improved in our future work; however, AAPFE performed better
than the other two models in binary embedding for malware classification tasks.

5. Conclusions

This study proposed a pre-trained aligned assembly function embedding model, which
takes an aligned assembly function as input data, and an embedding net that adopts a triplet
structure with sharing parameters. Each sub-embedding network in triplet architecture uses
the self-attention mechanism and the GCN layer to extract and fuse sequence and graph
information. The model provides both instruction context information and a basic block
association relationship; however, binary obfuscation and packing problems prevalent in
the field of anti-analysis are not considered.

Compared to the baseline method, not only did the embedding model of this scheme
achieve higher accuracy in the function similarity comparison task, but the embedded
vector also performed well in the downstream task. This improvement shows that the
embedded model based on pre-training is robust against various downstream tasks. A
series of experimental comparisons proved that the model has an over-performance effect.

In the future, different compilers, compilation options, and instruction architectures
can be used to generate equivalent homologous functions to build multiple aligned assem-
blies. More diverse ranked losses will be considered as the convergence target of model
training. Another future direction is to use multitasking pretraining methods, such as
BERT-based models, to extract more instruction-level and block-level information.
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