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Abstract: Deep-brain stimulation (DBS) is an emerging research topic aiming to improve the quality
of life of patients with brain diseases, and a great deal of effort has been focused on the development
of implantable devices. This paper presents a low-noise amplifier (LNA) for the acquisition of
biopotentials on DBS. This electronic module was designed in a low-voltage/low-power CMOS
process, targeting implantable applications. The measurement results showed a gain of 38.6 dB and
a −3 dB bandwidth of 2.3 kHz. The measurements also showed a power consumption of 2.8 µW.
Simulations showed an input-referred noise of 6.2 µVRMS. The LNA occupies a microdevice area of
122 µm × 283 µm, supporting its application in implanted systems.

Keywords: CMOS; deep-brain stimulation (DBS); low-noise amplifier; implantable devices

1. Introduction

Over the past decades, neuroscientists have been engaging the integrated circuit com-
munity to help them in the development of new tools for analyzing and understanding the
brain. In this context, fundamental in vivo research on small animals has to be performed,
which requires miniaturized instrumentation for long-term studies [1]. For several years,
scientists have speculated that electroencephalographic (EEG) activity might provide the
communication channel between brain and computer [2]. As the field has evolved, the
demand for more functionally and miniaturization from the electronics community have
risen. Since it is necessary to deal with low-amplitude biological signals, it is important
to design amplifiers that make these signals compatible with devices such as ADCs for
further analysis on computers. The amplifiers must have specific requirements, such as
providing selective amplification to the physiological signal, rejecting superimposed noise
and interference signals, and assuring protection from damage caused by high voltages
and currents [3].

The recent developments of microelectronics have resulted in new applications in-
volving the acquisition of biosignals both with wearable and implantable devices [4–8].
For instance, the electrocardiogram (ECG) is one of the most well-known applications,
consisting of the acquisition of biosignals to allow medical doctors to diagnose heart dis-
eases [6–10]. The electroencephalogram (EEG) is another widespread application with
a large number of newly published works every year [11–13]. The neural recording has
pushed the acquisition of biosignals to new levels, with new applications involving neuro-
modulation [14–16]. Such applications include optogenetics, which is an emergent field
of applications, where the signals are acquired from a specific part of the brain, while
simultaneously, this same region of the brain can also be stimulated with light [17–20].
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Then, a new paradigm of optogenetics is the concept of an electrode with a chip-in-the-tip,
where a bioamplifier and the respective signal processing/control/interface electronics can
simultaneously acquire the neuronal signals while stimulating the brain with light [21,22].

Another emerging field of applications is the deep-brain stimulation (DBS) [23]. Deep-
brain stimulation (DBS) involves implanting, through a surgical procedure, a medical
device called a neurostimulator (often also called brain pacemaker). In the procedure,
implantable semi-rigid tips (with electrodes at the ends) are also inserted at strategic points
in the thalamus, subthalamic region, globus pallidus, among other areas [24]. The electrodes
are then connected to the neurostimulator itself by means of extension cables containing
metallic wires [25]. These electrodes are normally distributed at the end of the tips [26]
which is inserted into the brain, steering them towards the desired neurostimulation zones.
The neurostimulator sends mild pulses to the brain through the electrodes [27]. The
electrical current used is very low and is injected into points in the brain which are mostly
located in deep areas.

The neurostimulator is a device with dimensions no larger than a matchbox, with
an attached battery to provide energy for operation [28]. Figure 1 shows the concept of
DBS [29], where a bioamplifier (also known as low-noise amplifier (LNA)) and the respec-
tive signal processing/control/interface electronics simultaneously acquire the neuronal
signals and provide stimulation. The neurostimulator is usually placed in the chest or in
the abdominal area, under the skin, so that no parts are exposed or visible. The electrical
stimulation modifies the functioning of the neurons around the tips, when the system is
turned on, relieving the symptoms of various diseases.
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have become first-line devices in therapies for the relief of symptoms associated with neu-
rological and movement disorders that cannot be achieved with other therapies [31], e.g., 
chronic pain [32,33], Parkinson’s disease [34,35], tremor [36,37], dystonia [38,39], morbid 
obesity [40], Tourette syndrome [41], essential tremor [42] and obsessive compulsive dis-
order [31]. 

Despite the great successes that were achieved, the neurostimulators are still quite 
large electronic devices that, in addition to using cables under the skin to connect to the 
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Figure 1. Concept of deep-brain stimulation (DBS).

The first current use of the DBS technique dates back to 1997, when it was authorized
by the American FDA (Food and Drug Administration) for its application in the treatment
of Parkinson’s disease [30]. Since then, and thanks to their proven success, these systems
have become first-line devices in therapies for the relief of symptoms associated with
neurological and movement disorders that cannot be achieved with other therapies [31],
e.g., chronic pain [32,33], Parkinson’s disease [34,35], tremor [36,37], dystonia [38,39],
morbid obesity [40], Tourette syndrome [41], essential tremor [42] and obsessive compulsive
disorder [31].

Despite the great successes that were achieved, the neurostimulators are still quite
large electronic devices that, in addition to using cables under the skin to connect to the
head and then to the stimulation electrodes, still require the replacement of the power
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battery via an invasive surgical procedure every two to four years. In the future, the
implants must become more autonomous and less invasive, in order to reduce the heavy
burden of replacing their batteries and the discomfort that the implant itself causes to the
patient. There exists a pressure from the medical community and patient associations to
reduce the discomfort caused by the implant, by reducing the size and weight, increasing
the life of the implant through an efficient energy management system, and improving the
operational safety, such as when performing magnetic resonance imaging (MRI) or even
computed tomography (CT).

There are two paradigms for classifying deep-brain stimulation (DBS), the open-loop
DBS (also known as conventional DBS) and the closed-loop DBS (closed-loop DBS also
known as adaptive DBS) [43]. In the case of open-loop DBS, a neurologist manually adjusts
stimulation parameters every 3–12 months after implantation. On the other hand, in the
case of the closed-loop DBS, the adjustment of the stimulation parameters is performed
automatically based on measured biomarkers. Biomarkers are acquired signals and can
have different natures, namely bioelectrical, psychological, biochemical, among others [43].
Biomarkers are essential indicators on the disease under treatment with closed-loop DBS,
because they help to adaptively reconfigure the signals used in neurostimulation [29]. The
acquisition of biopotentials is an important component in closed-loop DBS.

For these reasons, and due to the lack in the market of miniaturized systems with
potential for safe implantation, the design of CMOS microdevices comprising complete DBS
systems has huge socioeconomic impacts both for make available new treatment techniques
and to boost the market related to the area of medical instrumentation and healthcare.
Figure 2 illustrates the block diagram containing the acquisition, neurostimulator and
control modules of a CMOS microdevice for application on DBS. CMOS microdevices
similar to the one presented in Figure 2 allow the integration of microsystems for DBS
therapies, which have high potential for implantation in the brain. In this context, this
paper presents the design of a fully integrated low-noise amplifier (LNA) suitable for
recording biological signal within the range of sub-Hz up to 10 kHz.
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Figure 2. A block diagram of a CMOS microdevice containing the acquisition, neurostimulator and
control modules for DBS. The LNA module presented in this paper is filled with the yellow color.

2. Design

A low-noise amplifier faces several challenges due to the nature of the signals to am-
plify, e.g., low-amplitudes and low-frequencies (and being very close to the DC component).
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These types of amplifiers for neural recording typically present a mid-band gain of about
40 dB, and a bandwidth ranging from the sub-Hz to 10 kHz [44–53].

Figure 3a shows the schematic of the proposed LNA [46,47]. This amplifier is com-
posed of the two pairs of capacitors C1 = 20 pF and C2 = 200 fF, a transconductance
operational amplifier (OTA) and a pair of resistors R2. The mid-band voltage gain of this
amplifier is given by:

Av =
C1

C2
= 100 = 40 dB (1)
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Figure 3b illustrates the schematic of the OTA, which is composed of eight PMOS and
four NMOS: PMOS transistors M5a and M5b form a differential pair; NMOS transistors
M4b and M4c forms the differential pair load and, also one to one current mirrors with M4a
and M4d, respectively; PMOS transistors M1a and M1b forms another one to one current
mirror; PMOS transistor M6 and M7 form the biasing circuit; PMOS transistors M2a and M2b
and NMOS transistors M3a and M3b are cascode transistors that increases the impedance
of the nodes connected to their drains (Vout, for instance). The capacitor C is only for
understanding purposes because on the final design this one is replaced by Cx.

The OTA converts a voltage difference Vd = V+ − V− into a current Iout. The conversion
is such that the current at the output of the OTA is:

Iout = gm × (V+ −V−) (2)

where gm is the transconductance of the OTA. The input signals V+ and V− must have the
same common-mode voltage VCM for a good working of the circuit, e.g., V+ = VCM + vd/2
and V− = VCM − vd/2. Under these circumstances:

Iout = gm × (V+ −V−) = gmvd (3)

The transfer function HLNA(s) of the LNA in terms of the different components is given
by (see Appendix A):

HLNA(s) = Vout
VIP−VIM

= −
(

C1
C2

)
×

( C2
gm

)
×

(
s C2

gm −1
)
×s

s2
(

C1C2+C1Cx+C2Cx
g2

m

)
+s C2

gm +1

 (4)

where gm is the transconductance of the OTA, e.g., gm = Iout/(V+ − V−). The reason
for the negative sign is explained in the demonstration in Appendix A. Appendix A
presents the fully deduction of the transfer function HLNA(s) of the LNA. The capacitance
Cx includes all capacitances, either parasitic or connected, of the output node. The parasitic
capacitances include the contributions of routing connections, the PADs for the exterior
(when applicable)], the capacitance wires used for the measurements (when applicable),
and the input capacitance of measurement instruments (when applicable).
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The transfer function can be simplified in terms of the zeros and poles, resulting in:

HLNA(s) = −
(

C1

C2

)
×

( C2
2

C1C2 + C1Cx + C2Cx

)
×

(
s− gm

C2

)
× s(

s + sp1
)
×
(
s + sp2

)
 (5)

This transfer function can be rewritten as:

HLNA(s) = −
(

C1

C2

)
×
[(

C2
2

C1C2 + C1Cx + C2Cx

)
× (s− 2π fz)× s

(s + 2π fL)× (s + 2π fH)

]
(6)

The LNA transfer function contains two zeros, one zero located in the origin and
another zero located at f z = gm/(2πC2), and two poles, one pole located in the lower
cutoff frequency f L = 1/(2πR2C2) and the other pole, in the upper cutoff frequency
f H = gm/[2π (C1 + (C1/C2 + 1)CX)]. It must be noted that the frequency of the second zero
f z is much higher than the frequency of any pole. Additionally, the LNA gain between fL
and fH can be determined and its value is approximately (C1/C2).

Figure 3b illustrates the transfer function HLNA(f ) for six combinations of R2 and
Cx. The three plots represented in blue trace use a higher R2 value and the three plots
represented in dashed red traces use a lower value. Both the three blue and red plots
were obtained with Cx equal to 0 pF, 3.9 pF and 9.2 pF. Since the blue plots have a higher
R2, their lower cutoff frequency f L are smaller. The upper cutoff frequency f H decreases
if the capacitance Cx increases, maintaining constant the value of R2. In conclusion, the
bandwidth of the LNA increases if R2 increases or Cx decreases.

Figure 3c illustrates a Bode plot of a generic transfer function with two zeros, two
poles, and their relative positions similar to the LNA zeros and poles of this work.

On a fully on-chip solution, the LNA connects internally to the next stage; thus, Cx is
only due the parasitic capacitance of internal connections. However, an internal capacitor
CL or a switched capacitor array is included on many designs to trim the band, adjusting
the pass-band to the desired application. This is achieved by changing the upper cutoff
frequency f H, trimming the capacitance Cx.

The resistor R2 must present a very high value to guarantee a low cutoff frequency
f L, lower than 1 Hz. Since C2 is in the order of few tenths of pF, R2 must be in the order
of TΩ. These resistors cannot be implemented in a conventional form in an integrated
circuit; neither are commercially available, and if it was the case, the high tolerances would
unbalance the circuit in Figure 3a with the two resistors away from each other by a few
MΩ to a few GΩ. A widely known technique for implementation of high value resistors is
the use of pseudo-resistors [46,53]. Figure 3a also details the implementation of resistors
R2 with pseudo-resistors. These pseudo-resistors are PMOS devices, as detailed with the
zoom in the figure, each one composed of six PMOS transistors connected in series. It was
found that these pseudo-resistors can reach values in the order of TΩ and occupy an area
many orders of magnitudes lower than the area of a conventional resistor. They are called
“pseudo” because it mimics the behavior of a real resistor. The red dots in the terminal A of
the pseudo-resistors R2 serves to show how these pseudo-resistors connects to the LNA.
The terminal A of the pseudo-resistors connects to the bulk and source of Mp1, while the
terminal B connects to the gate and drain of Mp6. The bulk of any PMOS Mp(i) connects to
the respective source, while the gate connects to the respective drain. Moreover, all PMOS
are connected in series.

The most important characteristic of a LNA is its noise. The noise in our LNA is largely
caused by the transistors of the OTA. The noise of MOS transistors can be modeled by two
current sources from drain to source, and their power spectral density are given by:

i2DSth ≈ kthkTgm : thermal noise (7)



Electronics 2022, 11, 939 7 of 24

i2DS f ≈
k f

CoxWL
1
f

: flicker noise (8)

where kth and kf are parameters that depend on the fabrication process, k is the Boltsmann
constant, T is the temperature in Kelvin, Cox is the gate oxide capacitance, W and L are the
transistor dimensions, and gm is the transistor transconductance.

To evaluate the effect of noise introduced by the transistors, the following procedure
is performed:

(1) Transpose the transistor noise current sources to the Vout node;
(2) Find the transfer functions between a current source Iout applied to the output and Vout;
(3) Find PSD of the noise at Vout;
(4) Find the input referred noise.

The transposition of the noise current sources is easily performed since in the OTA the
noise currents are mirrored to the output. Therefore, the total current at the output node is
given by:

i2outn ≈ 2kthkTgm5a + 2
k f

CoxW5a L5a
1
f + 4kthkTgm4c + 4

k f
CoxW4c L4c

1
f

+2kthkTgm1a + 2
k f

CoxW1a L1a
1
f

(9)

Notice that the noise of the cascode transistors does not affect the OTA noise.
The transfer function Hout(s) = Vout(s)/Iout(s) should be deduced as done with HLNA(s).

The final expression can be found and is presented below

Hout(s) =
(R2(C1 + C2)s + 1)

s2[R2(C1C2 + C1Cx + C2Cx)] + s(C1 + gmR2C2 + Cx) + gm
(10)

The transfer function can be simplified, resulting in:

Hout(s) =
(C1 + C2)

(C1C2 + C1Cx + C2Cx)
×

(
s + 1

R2C1+C2)

)
(
s + sp1

)
×
(
s + sp2

) (11)

Function Hout(s) has the same poles as HLNA(s) and a unique zero: zero = 1/(R2(C2 + C2)),
sp1 = 1/(R2C2) and sp2 = gm/((C1 + (C1/C2 + 1)Cx)). The pass-band of LNA is located be-
tween sp1 and sp2. The PSD of the noise at the output now can be written, resulting in:

PSDVout( f ) =

∣∣∣∣∣∣ (C1 + C2)

(C1C2 + C1Cx + C2Cx)

(
s + 1

R2(C1+C2)

)
(
s + sp1

)
×
(
s + sp2

)
∣∣∣∣∣∣
2

i2outn (12)

In the LNA pass-band, between sp1/2π and sp2/2π, the PSD value is given by:

PSDVout( f ) =
∣∣∣∣ (C1 + C2)

C2
× 1

gm

∣∣∣∣2i2outn (13)

These relation points out that it is important to keep gm high in order to reduce the
output noise. This goal is reached by using large widths for M5a and M5b. Finally, the input
referred total noise is:

Total Noiseinput = 1
LNAGAIN

2
√∫ +∞
−∞ PSDVout( f )d f

≈ C2
C1

2
√∫ +∞
−∞ PSDVout( f )d f

(14)

where LNAGAIN is the gain of the LNA.
Table 1 lists the dimensions of the MOSFETs that comprises the OTA and the pseudo-

resistors. The layout issues will be further addressed on Section 3.1. The listed relations (W/L) re-
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fer to the total value. For example, the transistors M1a and M1b with (W/L)1 = (13.4 µm/20 µm)
are composed of two parallel transistors, whose dimensions are equal to (W/L) = (6.7 µm/20 µm)
and at the same time, containing only one finger. In another example, e.g., for the transistors M5a
and M5b with (W/L)1 = (463 µm/0.51 µm) are composed of two parallel transistors, whose di-
mensions are equal to (W/L) = (231.5 µm/0.51 µm) and, at the same time, containing 50 fingers
for each parallel transistor with (W/L)finger = (4.63 µm/0.51 µm).

Table 1. Dimensions of the MOSFETs that comprises the OTA and the pseudo resistors.

MOSFET Total
(W/L)

Multiplier
(Parallel MOSFETs) Fingers/Multiplier

M1a, M1b 13.4 µm/20 µm 2 1

M2a, M2b 20.6 µm/0.28 µm 2 1

M3a, M3b 15.4 µm/0.28 µm 2 1

M4a, M4b, M4c, M4d 10 µm/20 µm 2 1

M5a, M5b 463 µm/0.51 µm 2 50

M6, M7 2.3 µm/5.1 µm 1 1

Pseudo-resistors
Mp1 to Mp6

1 µm/1 µm 1 1

3. Implementation and Simulations
3.1. Layout Issues

Figure 4a illustrates the modifications made to schematics of LNA of Figure 3a for
the fabrication. Each output node has a resistor of small value (≈497.6 Ω) as a preventive
protection against connection mistakes such as accidental short-circuits, limiting the output
current. Each node with input signals, nodes with reference voltage and biasing nodes
has a protection against electrostatic discharges (ESD) [54], an additional resistor Rin of
small value (≈497.6 Ω) and a NMOS. Figure 4b illustrates the schematics of both the ESD
protection (on left) and the resistor with NMOS (on right). This last resistance provides
an additional level of protection to the gates of the internal circuits. The NMOS presents a
width of 3 µm and a length of 1 µm. The resistance RBIAS in the biasing pin is also equal
to a small value (≈497.6 Ω). The capacitance CBIAS on bias voltage reduces the noise to
provide the most stable bias voltage VBIAS as possible. This capacitance comprises three
MIM capacitors with 2 fF/µm2, each one with a total capacitance of 456 fF each.

The layout of ESD protections is similar to those proposed by Baker on chapter 4 of
his book [55], which is composed of N+/P-sub and P+/N-well diodes. Figure 4c illustrates
the layout of the ESD protections side-by-side with the respective photograph that was
integrated in the fabricated CMOS microdevice. Each N+/P-sub and P+/N-well diodes
are composed of the parallel of two smaller diodes measuring 16 µm × 87 µm. It must be
noted that each PAD occupies an area of 62 µm × 62 µm.

The MOSFETs M1 to M5 of the OTA in the LNA were drawn with the technique
known as common centroid, which provides circuits more resilient to process variations by
matching the characteristics of the transistors [55,56]. Each MOSFET was split in two to
make these devices immune from cross-chip gradients. Moreover, the gates of the MOSFETs
M5 (where the inverting and non-inverting input are connected) were split in several fingers
to provide the best matching performance possible and reduce the parasitic capacitances,
which are extremely high because of their widths [52]. Figure 5a illustrates the layout of the
complete LNA side by side with the respective photograph. Figure 5b illustrated a zoomed
view of the layout of the LNA without the array of capacitors C1 for a better visualization.
The tags (1) to (3) refers to the sets of input resistances Rin with NMOS in Figure 4a. The
capacitors CBIAS1, CBIAS2 and CBIAS3 refers to the three MIM capacitor with 456 fF. Each one
of the four capacitors C2a and C2b were also implemented with MIM capacitors with 100 fF.
The common centroids of M1 to M5 of the OTA can be observed.
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3.2. Low-Noise Amplifier (LNA) Simulations

The behavior of the OTA was simulated in the H-Spice, and it was found a transcon-
ductance gm5 ≈ 7.58 µS for the transistors M5a and M5b. Thus, the transconductance of the
OTA is also gm ≈ 7.58 µS, because it is the same value of gm5.

The simulated LNA was the complete schematic of Figure 4a, taking into account the
individual contributions of the ESD protections, the input resistor Rin with NMOS and the
output resistor RESD. The complete schematic was simulated to obtain a better preview
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of the real conditions. Moreover, simulations were performed without the capacitance Cx
(e.g., Cx = 0) and with the passive voltage probe to understand the testing conditions. The
oscilloscope used in the measurements was the Tektronix model MDO34 3-BW-100. It was
used the passive voltage probe Tektronix model TPP0250, with an input capacitance of
3.9 pF.

Figure 6 shows the simulated resistance response of the pseudo-resistors in terms of
the voltage ∆V = Vin − Vout at its terminals, where Vin is the terminal that connects to the
bulk of the first PMOS and Vout is the terminal that connects to the gate of last PMOS (in
concordance with Figure 3a). A voltage pulse source was placed between the Vin and Vout
terminals of the pseudo-resistor, and the voltage were varied between −0.4 V and 0.4 V.
The current was simulated obtained, and the resistance was calculated by dividing the
voltage by the current. Figure 6 shows the result of this simulation with the illustration of
the voltage dependence of the pseudo resistance value.
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The total capacitance seen by the LNA output is the sum of the contributions of the
parasitic capacitances of the internal metals connections, the PAD for wirebonding to the
package, the connections of the test-bed, the 3.9 pF of the passive voltage probe and the
cables for connect into the oscilloscope. The capacitance seen by the output of LNA was
measured and determined to be equal to 5.3 pF, resulting in 9.2 pF total capacitance, if the
voltage probe capacitance is also taken in account.

Figure 7 shows the gain simulation for Cx = 0, for Cx equal to the capacitance of the
voltage probe (Cx = 3.9 pF) and for Cx equal to the total capacitance seen by the LNA output
(Cx = 9.2 pF) to better understand the effect of the measurement setup.
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Figure 7. Simulated frequency response of the LNA for Cx = 0 (red trace), Cx = 3.9 pF (blue trace),
and Cx = 9.2 pF (green trace).
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The simulations showed that ideally with Cx = 0 the LNA presents a mid-band gain of
≈39.4 dB with a −3 dB bandwidth of ≈54 kHz. The simulations also showed that with the
effect of the voltage probe, Cx = 3.9 pF, the LNA also presents a mid-band gain of ≈39.4 dB,
but a −3 dB bandwidth of ≈3.1 kHz. For the case of Cx = 9.2 pF with the effect of total
capacitance seen by the LNA output, the simulations showed a mid-band gain of ≈39.4 dB,
but with a −3 dB bandwidth of ≈1.4 kHz.

Figure 7 shows the frequency response for frequencies higher that 0.01 Hz. The simu-
lations revealed that this amplifier covers the range of extracellular recorded spikes, from
100 Hz to 6 kHz with a mid-band gain of ≈39.4 dB for the three situations of Cx = 3.9 pF.

As illustrated in Figure 8, two different scenarios were supposed, in order to simulate
the robustness of the LNA considering the capacitance and resistance associate to the wires
that connect the electrodes to the input of the LNA. A sinusoidal input with amplitude
of 100 µV and a frequency of 1 kHz was considered. Moreover, the effect of Cx was not
considered because it makes no difference in the conclusions. The resistance was considered
around 10 Ω in the situation 1. This value is probably higher than those found in a real
situation with cables of good quality, but it was an extrapolated value to confirm the
previous robustness of the amplifier. The situation 1 considered a serial resistance existent
between the positive electrode E+ and the positive input VIP of the bioamplifier, and the
one between E− and VIM. The situation 2 considered a capacitor of 100 nF placed in parallel
to the voltage source. This situation is merely theoretical because this value is probably
higher than those found in a real situation with cables of good quality, but once again, it
is also a good test to the reliability of the amplifier. On both situations, the simulations
showed an output signal with amplitude of 18.5 mVpp, e.g., a gain of 39.3 dB.
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Figure 8. Scenarios for the simulation of the robustness of the LNA.

The simulated PSD of the output noise is presented in Figure 9. The Cx value considered
is 9.2 pF and two curves are traced, shown by a red and a blue curve. In the red curve,
only the noise of the OTA transistors is taken in account; in the blue curve, the noise of the
pseudo-resistors is also taken in account. The red curve behavior is exactly as described by
expression (12). When the pseudo-resistors noise is added, the low frequency noise is increased.
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The input referred noise of the LNA, find in the simulation, is 6.2 µVRMS (from 0.5 Hz
to 50 kHz), when all noise sources are taken in account.

4. Experimental
4.1. Instruments and Setup

Figure 10 shows the schematic of the setup used during the measurements. This
setup is composed of the microdevice under test itself, a test-bed board (shaded in gray)
especially designed for the tests, an arbitrary signal generator Tektronix model AFG1022
with two simultaneous outputs and 25 MHz of bandwidth, an oscilloscope Tektronix model
MDO34 3-BW-100 with four input channels and 100 MHz of bandwidth, passive voltage
probes Tektronix model TPP0250, an external protoboard to facilitate the connection of
bias resistors, and a multimeter to measure the voltage supply to ensure that it is within
the valid tolerance range and/or other signals such as references and common mode
voltages. The photograph shows a specific situation of testing. The external connections
can be maintained unaltered to test other blocks in the microdevice, simply by redirecting
the signals throughout dip-switches. Moreover, the dip-switches also can activate and
deactivate several blocks within the microdevice. The test-bed board was designed to be
supplied by a DC power jack, targeted to a typical supply voltage of 5 V. The test-bed
can support supply voltages up to 16 V, whose value is limited by the voltage regulator
TLV1117. This voltage regulator provides the required nominal voltage of 1.8 V to supply
the CMOS microdevice. The common mode voltage VCM required to make the LNA work
can be achieved in two ways: from an external voltage source or from an operational
amplifier LM358, placed in the test-bed itself, working as voltage follower of half the
nominal supply voltage, 0.9 V. A dip-switch allows the selection of the VCM source.
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4.2. Results

Figure 11 shows the measured gain of the LNA and the simulated values. The am-
plitude of the input signals was settled to 4 mVpp. The LNA presents a mid-band gain of
≈38.6 dB, which is close to the simulated results. Moreover, the −3 dB bandwidth was
≈2.3 kHz. For frequencies higher than 10 kHz, the measured gain approaches asymptoti-
cally to the simulated gain with Cx = 9.2 pF, although, for frequencies between 1 kHz and
10 kHz, the measured gain is slightly higher than the simulated gain.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 10. Schematic of the experimental setup for the characterization of the microdevice. The inset 
shows the setup photograph. 

4.2. Results 
Figure 11 shows the measured gain of the LNA and the simulated values. The ampli-

tude of the input signals was settled to 4 mVpp. The LNA presents a mid-band gain of 
38.6 dB, which is close to the simulated results. Moreover, the -3 dB bandwidth was 2.3 
kHz. For frequencies higher than 10 kHz, the measured gain approaches asymptotically 
to the simulated gain with Cx = 9.2 pF, although, for frequencies between 1 kHz and 10 
kHz, the measured gain is slightly higher than the simulated gain. 

 
Figure 11. Measured gain and comparison with simulations for Cx = 0, Cx = 3.9 pF and Cx = 9.2 pF. Figure 11. Measured gain and comparison with simulations for Cx = 0, Cx = 3.9 pF and Cx = 9.2 pF.

Notice that the upper cutoff frequency of the measured results is smaller than the
ideally simulated value (pink plot in Figure 11, where Cx =0 pF). It is caused by the
contributions of the parasitic capacitances seen from the LNA output. The length of the
cables to connect the test-bed to the oscilloscope was the smallest possible to decrease their
contribution to the total capacitance Cx. The gain at 6 kHz is ≈29.5 dB, 9 dB below the mid-
band gain, and is still an acceptable value. Higher gains are expected in a definitive LNA
application, where the output of the LNA is directly connects to a multiplexer, and most of
the parasitic capacitances are not present anymore. In other words, the total capacitance Cx
seen by the output of LNA will be drastically reduced, and therefore, the desired gain at
6 kHz will be increased.

An important test implemented is the characterization of the behavior of the gain to
variations of the common-mode voltage VCM. Figure 12 shows the measured gain for a
common-voltage variation of±0.1 V and±0.2 V from the nominal value VCM = Vdd/2 = 0.9 V.
It is possible to observe that the gain has no sensitivity to small variations of common-mode
voltage; thus, the LNA shows to be robust to these variations.
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A second set of stress tests performed with the LNA consisted of the injection of
input signals with amplitudes capable to almost saturate the output either at 0 V or Vdd.
Figure 13 illustrates the measurement results for these tests. The first input signals present
an amplitude of 10 mVpp and interestingly, the gain was slightest higher than the gain
obtained with an amplitude of 4 mVpp, with a mid-band gain of ≈39.3 dB. The output
signal in this first test presented a signal excursion of ∆Vout = 920 mVpp, e.g., ∆Vout is
almost equal to Vdd/2. The second test was more stressful, with an input amplitude of
20 mVpp. In general, the gain is lower than those obtained with input signals with lowest
amplitudes. This was almost expected because this pushes the output signal to present an
excursion equal or higher than the supply voltage Vdd.

The two scenarios illustrated in Figure 8 were also tested. The amplitude of the input
signals was settled to 4 mVpp. These two scenarios are exaggerated when compared with
real situations, but, for this reason, they are good for validating the robustness of the LNA.
The results in Figure 13 revealed that the measured mid-band gain was almost equal to the
values presented in Figure 11, where the measurement conditions were optimized with
cables of high quality and short length.
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Figure 13. Measured gain for two sets of stress tests: input amplitudes of 10 mVpp and 20 mVpp, and
cables from the electrodes with two serial resistance of 10 Ω and with a parallel capacitance of 100 nF.

The LNA was also tested with low-amplitude signals. These tests used a custom
home-made signal generator able to generate sine waves with amplitudes of either 60 µVpp
or 130 µVpp. The behavior was not very different from those observed in Figure 11 with an
amplitude of 4 mVpp; however, the measured gain was slightly lower, e.g., ≈37.7 dB or less
than 1 dB in relation to the 38.6 dB measured with the former.

A new set of tests were performed, each consisting of applying signals in saline
solution with characteristics equivalent to those observed in neuronal tissues, to test the
robustness of the LNA. Moreover, these saline tests were also performed to avoid ethical
issues related to experimentation with in vivo human subjects and animals, and, at the
same time, to get an idea about the phenomena in the brain.

In these tests, several electrodes were immersed in a jar filled with saline solution
(saline solution consisting of sodium chloride solute dissolved in distilled water solvent
in the proportion of 0.9%). The saline solution emulates very well the ionic species of the
human tissue in terms of the electrical parameters.

Figure 14a shows the schematic of the experimental setup for these tests, which is composed
of the signal generator, oscilloscope, test-bed board, CMOS microdevice and the bias resistor
previously described. The power supply management is not displayed. Moreover, this setup is
composed of a jar filled with a saline solution and by a tip with an array of electrodes. The tip is
fabricated by additive manufacturing with 3D printing of PLA (polylactic acid) and filaments



Electronics 2022, 11, 939 16 of 24

with a diameter of 1.75 mm. The array of electrodes comprises a pair of injection electrodes
and a pair of reading electrodes. It was performed a frequency sweep applied to a sinusoidal
wave injected in the two injection electrodes. Then, the signals were sensed from the saline
solution with the reading electrodes and further amplified by the LNA. Figure 14b illustrates a
photograph of the tip with the array of electrodes.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 25 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 14. (a) Schematic of the saline solution setup. The inset shows the setup photograph. (b) 
Photograph of the 3D printed tip with the array of electrodes. (c) Measured gain of the LNA. 

G
ai

n 
[d

B
]

Figure 14. (a) Schematic of the saline solution setup. The inset shows the setup photograph. (b) Pho-
tograph of the 3D printed tip with the array of electrodes. (c) Measured gain of the LNA.



Electronics 2022, 11, 939 17 of 24

Figure 14c illustrated the measured gain of the LNA when subjected to these tests. It
can be observed that the gain behavior is the same observed in the first tests for frequencies
above 100 Hz, and it is slightly lower at frequencies below 100 Hz. The amplitude of the
signals injected in the saline solution has 40 mVpp for all frequencies, while the amplitude
of the signal sensed in the pair of reading electrodes was also 18 mVpp for all frequencies.

Another set of tests were performed to evaluate the transient responses of the LNA.
These tests consisted of the injection of two square waves into the input of the LNA. The
amplitudes of these waves were settled to 20 mVpp, while their frequencies were settled to
1.15 kHz and 200 Hz. Figure 15a,b shows the signals at the output of the LNA for these
frequencies, respectively.
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selected for this reason. The plot vfitted,H(t), in red, illustrates the effect of the upper cutoff
frequency f H and it was fitted to:

v f itted,H(t) = V0,H + AH ×
(

1− e−
t

τH

)
(15)

where V0,H = 0.24 V, AH = 1.32 V. The time constant τH was calculated in order to vfitted,H(t)
agree the best as possible with the rising portion of the output signal. The estimation
of this time constant resulted on τH ≈ 69 µs, meaning an upper cutoff frequency of
f H = 1/(2πτH) ≈ 2.31 kHz, which is practically equal to the −3 dB frequency in Figure 11.

Figure 15b shows the high-pass effect due to the lower cutoff frequency f L of the LNA.
The frequency of 200 Hz was selected due to be close to the lower cutoff frequency of the
LNA. The plot vfitted,L(t), in red, illustrates the effect of the lower cutoff frequency f L and
was fitted to:

v f itted,L(t) = V0,L + AL × e−
t

τL (16)

where V0,L = 1.35 V, AL = 0.37 V. The time constant τL was also calculated in order to vfitted,L(t)
agree the best as possible with the falling portion of the output signal. The estimation
of this time constant resulted on τL ≈ 562.9 µs, meaning a lower cutoff frequency of
f L = 1/(2πτL) ≈ 282.7 kHz. It is interesting to observe that the plot v′fitted,H(t) with the pink
trace still illustrates the effect of the upper cutoff frequency f H and this time was fitted to:

v′ f itted,H(t) = V′0,H + A′H ×
(

1− e−
t

tH

)
(17)

where V′0,H ≈ 0.41 V, A′H ≈ 1.35 V. The red and pink plots illustrate the effects of the lower
and the higher cutoff frequencies, respectively.

To finish, the common-mode voltage at the output of LNA was measured to be 898 mV
(≈0.9 V or Vdd/2) in all measurements with the input common-mode VCM equal to 0.9 V.

5. Conclusions

This paper presented a low-noise amplifier (LNA) optimized for application on deep-
brain stimulation (DBS). This LNA was designed and fabricated in the CMOS 0.18 µm from
TSMC. The tests were performed without a buffer in the output of the LNA to achieve the
best and complete characterization as possible. The drawback of the absence of a buffer
was the rise of parasitic capacitances associated with the conditions of how the tests were
performed that were seen by the output of the LNA, more specifically, the contributions of
the internal metals of the microdevice, the PADs that connect to the packaging, the ESD
protections, the tracks in the test-bed board, the wires and the passive voltage probe of the
oscilloscope. Nonetheless, the total contribution was measured and agrees very well with
the simulations, meaning that in a final integration this effect is hugely mitigated. Table 2
compares this LNA with few related key works found in the literature [44–53]. It was
calculated the figure-of-merit (FOM) to better rank and compare this work with the best
state of the art [1,44–53] with respect to thermal power-noise trade-off. The noise efficiency
factor (NEF) was presented in 1987 by Steyaert et al. [57], and since then, it has been widely
used and given by:

NEF = IRN ×
√

2Itotal
π ×UT × (4kT)× BW

(18)

where Itotal is the total current absorbed by the amplifier stage (this current excludes the amount
absorbed by the bias stage), UT is the thermal voltage given by kT/q (≈26 mV at the room
temperature of 300 K), k is the Boltzmann constant given by 1.38064852 × 10−23 m2 kgs−2 K−1,
T the room temperature expressed in Kelvin, and IRN [VRMS] the input-referred noise. It
must be noted that this FOM compares the power-noise trade-off with that of a single
ideal bipolar transistor. The lowest the FOM, the better will be the LNA with relation
to the global noise performance. The figure-of-merit is defined as the ratio of the −3 dB
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bandwidth BWkHz, expressed in kHz, by the product of the power consumption PµW in
µW with the input-referred noise (IRN) in µVRMS. Table 2 lists and compares this LNA
with those found in the literature.

Table 2. Comparison of this low-noise amplifier with the state of the art.

Ref. CMOS
Process

Mid-Band
Gain [dB]

Bandwidth
[kHz] Voltage [V] Power

[µW]
Area

[mm2]
IRN

[µVRMS]
FOM (e.g.,
the NEF)

This work 0.18 µm 38.6 2.3 1.8 2.8 0.035 6.2 6.19

[1] 0.13µm 40.5 8.1 1 12.5 0.047 3.1 4.4

[44] 28 nm 51.3 3 0.5 0.9 N/A 6.85 3.40

[45] 65 nm 47.48 3 0.75 6 N/A 1.40 2.78

[46] 1.5 µm 39.5 7.2 ±2.5 80 0.16 2.2 3.80

[47] 0.5 µm 40.85 5.32 2.8 7.5 0.16 1.66 3.21

[48] 65 nm 15 10 0.5 1.1 0.004 6.5 3.71

[49] 0.18 µm 50 9.2 1.2 8.6 0.05 5.6 4.90

[50] 0.13 µm 40 10.5 1 12.1 0.072 3.2 2.90

[51] 0.18 µm 40 7.5 1.2 4.8 0.022 3.87 3.44

[52] 0.5 µm 49.26 12.9 3.3 26 0.014 3.16 2.53

[53] 0.18 µm 40 7.4 1 3.44 0.012 4.27 3.07

To finish, Figure 16 shows a photograph of the fabricated CMOS microdevice, which
occupies 1660 µm × 1660 µm of area. Moreover, this figure also makes an emphasis to the
LNA presented in this paper and an emphasis to one of the ESD protections for a better
illustration and understanding.
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Figure 16. Photograph of the fabricated CMOS microdevice (1660 µm × 1660 µm), with emphasis on
the LNA presented in this paper and on one of the ESD protections.
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Appendix A

Deduction of the Transfer Function of the LNA

This deduction takes into account VIM = Vin + Vref and VIP = Vref, in a similar way
as stated by Wattanapanitch et al. [47], where both signals include dc and ac components.
According to Figure 3a, the ac output current of the output of the OTA is given by:

Iout = gm × (V+ −V−) = −gmV− (A1)

with V+ = 0 V for ac. This current flows throughout the load impedances Zx = (sCx)−1 and
Z2 = R2/(sR2C2 + 1) in the feedback path, e.g.,

Iout =
Vout

Zx
+

Vout −V−

Z2
(A2)

The voltage V− at the inverting input of the OTA is given by:

V− =
Z2

Z1 + Z2
Vin +

Z1

Z1 + Z2
Vout (A3)

with Z1 = (sC1)−1. Thus,

− gmZ2

Z1 + Z2
Vin −

gmZ1

Z1 + Z2
Vout =

Vout

Zx
+

Vout −V−

Z2
(A4)

replacing the voltage V− in (A3), the previous equation becomes:

− gmZ2

Z1 + Z2
Vin −

gmZ1

Z1 + Z2
Vout =

Vout

Zx
+

Vout

Z2
− Vin

Z1 + Z2
− Z1

Z2(Z1 + Z2)
Vout (A5)

The transfer function can be obtained after few algebraic manipulations, resulting in:

HLNA =
Zx(1− gmZ2)

Zx(1 + gmZ1) + Z1 + Z2
(A6)

The first proof is to check the validity of the previous equation of HLNA. This is
performed by assuming Cx = 0 F, thus, Zx = ∞. The transfer function is then:

HLNA = lim
Zx→∞

[
Zx(1− gmZ2)

Zx(1 + gmZ1) + Z1 + Z2

]
=

1− gmZ2

1 + gmZ1
(A7)

Since gmZ1,2 >> 1 then:

HLNA ≈
−gmZ2

gmZ1
= −Z2

Z1
= −C1

C2
(A8)
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The module of HLNA is equal to the mid-band gain of the LNA Av = |HLNA| = C1/C2.
The transfer function HLNA is negative, but this is not a problem because the input signal
Vin connects to the inverting input. This analysis was conducted under this assumption
to facilitate the demonstration of HLNA. For VIM = Vref and VIP = Vin + Vref, the transfer
function would be HLNA = +C1/C2. The negative signal must be included in the end of this
demonstration.

The fully transfer function in terms of all components present in the LNA can be
further manipulated to obtain:

HLNA(s) =
(

C1
C2

)
×
[

s2R2C2−s(gmR2−1)

s2R2(C1+Cx+
C1Cx

C2
)+s( C1

C2
+gmR2+

Cx
C2

)+
gm
C2

] (A9)

The transfer function can be further simplified taking into account that gmR2 >> 1 and
gmR2 >> Ci/Cj for any combination of {Ci, Cj} equal to {C1, C2, Cx}. In this situation:

HLNA(s) ≈
(

C1

C2

)
×
[

(sR2C2 − gmR2)s

s2R2(C1 + Cx +
C1Cx

C2
) + sgmR2 +

gm
C2

]
(A10)

and finally
HLNA(s) =

(
C1
C2

)
×
[(

R2C2
2

gm

)
×

(
s− gm

C2

)
×s

s2
[

R2(C1C2+C1Cx+C2Cx)
gm

]
+s(R2C2)+1

] (A11)

This transfer function can be simplified in terms of the zeros and poles, resulting in:

HLNA(s) =
(

C1

C2

)
×

( C2
2

C1C2 + C1Cx + C2Cx

)
×

(
s− gm

C2

)
× s(

s + sp1
)
×
(
s + sp2

)
 (A12)

The transfer function contains one zero located in the origin and another located at
f z = gm/(2πC2) and two poles sp1 and sp2. The poles of HLNA(s) are given by:

sp1 = gmC2
2(C1C2+C1Cx+C2Cx)

×
(

1−
√

1− 4(C1C2+C1Cx+C2Cx)

gmR2C2
2

)
sp2 = gmC2

2(C1C2+C1Cx+C2Cx)
×
(

1 +
√

1− 4(C1C2+C1Cx+C2Cx)

gmR2C2
2

) (A13)

A further simplification can be made with the poles relation if we consider gmR2 >> 1.
In this case, we assume that:

4(C1C2 + C1Cx + C2Cx)

gmR2C2
2

<< 1 (A14)

and the poles relations are:

sp1 ≈ gmC2
2(C1C2+C1Cx+C2Cx)

×
(

1−
(

1 + 2(C1C2+C1Cx+C2Cx)

gmR2C2
2

))
= 1

R2C2

sp2 ≈ gmC2
2(C1C2+C1Cx+C2Cx)

× (1 + 1) = gmC2
(C1C2+C1Cx+C2Cx)

= gm

(C1+(
C1
C2

+1)Cx)

(A15)
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