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Abstract: Binary neural networks (BNNs) have been proposed to reduce the heavy memory and
computation burdens in deep neural networks. However, the binarized weights and activations
in BNNs cause huge information loss, which leads to a severe accuracy decrease, and hinders the
real-world applications of BNNs. To solve this problem, in this paper, we propose the information-
enhanced network (IE-Net) to improve the performance of BNNs. Firstly, we design an information-
enhanced binary convolution (IE-BC), which enriches the information of binary activations and
boosts the representational power of the binary convolution. Secondly, we propose an information-
enhanced estimator (IEE) to gradually approximate the sign function, which not only reduces the
information loss caused by quantization error, but also retains the information of binary weights.
Furthermore, by reducing the information loss in binary representations, the novel binary convolution
and estimator gain large information compared with the previous work. The experimental results
show that the IE-Net achieves accuracies of 88.5% (ResNet-20) and 61.4% (ResNet-18) on CIFAR-
10 and ImageNet datasets respectively, which outperforms other SOTA methods. In conclusion,
the performance of BNNs could be improved significantly with information enhancement on both
weights and activations.

Keywords: binary neural networks; deep learning; information enhancement; image classification

1. Introduction

In recent years, due to great representational power and the good ability to process
image data, deep convolutional neural networks (DCNNs) have been used in various
computer vision tasks, such as image classification [1,2], object detection [3,4], and semantic
segmentation [5,6]. It is reported that most of the modern, powerful DCNNs need a
considerable number of learnable parameters and computation requirements, which impose
high demands on the hardware that supports their running. However, with the advent of
the Internet of Things, how to deploy high-performance DCNNs on embedded devices
with limited hardware resources has become an urgent problem. To solve this problem,
many model compression methods which reduce the model size and computational burden
have been proposed, such as network quantization [7,8], model pruning [9], knowledge
distillation [10,11], and lightweight model design [12].

Among them, network quantization is regarded as a simple yet effective solution,
where the activations and weights are represented by the lower bits. Binary neural networks
(BNNs) [13] are the extreme versions of the quantized neural networks, which binarize both
the activations and weights within the network to discrete values {+1, −1}. Through this
method, one could store the model parameters with only 1-bit representations. Moreover,
the floating-point operations (FLOPs) in DCNNs can be replaced with the cheap logic
operations (XNOR and POPCOUNT), due to the 1-bit advantage. In summary, BNNs could
reduce the memory and computation requirements of DCNNs significantly, which shows a
great potential to solve the problem of model deployment on embedded devices.
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However, the BNN methods often induce a large performance drop compared with
the full-precision counterparts. For example, directly applying the normal binary tech-
nology [13] on the AlexNet model causes 28.7% Top-1 accuracy loss on the ImageNet
dataset [14]. The reason for the accuracy decrease is that the 1-bit representation of the
activations and weights reduces the representational power of the BNNs, and leads to
huge information loss during both training and inference time. To tackle the problems,
a lot of related works have been proposed. IR-Net [15] proposes to use the balance and
standardization operations before binarizing the weights to maximize the information
entropy of weights and activations. ReActNet [16] adopts the sign function with learnable
thresholds (RSign) to binarize the activations, which reduces the information loss of the
activation features. Furthermore, ABC-Net [17], BENN [18], GroupNet [19], and CBCN [20]
improve the representational power and increase the information of the BNNs by adopting
more binary bases, which leads to extra memory and computation costs. Although the
above methods alleviate the information loss and enlarge the representational power, the in-
formation of the binary models could be enhanced even further. Firstly, the ReActNet only
uses a single RSign function to generate the binary activations, which may lose some useful
and diverse information from original feature maps. Secondly, the approximated function
error decay estimator (EDE) proposed by IR-Net does not provide a strong gradient signal
enough to help the weights decide their signs, which leads to the suboptimal results of the
information increase and the quantization error reduction. Finally, due to the additional
binary bases, the methods like BENN harm the hardware-friendly properties of BNNs.

In this work, we propose to build the information enhanced network (IE-Net) with
binary weights and activations. Figure 1 shows the forward and backward processes of the
proposed binary neural network.
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Figure 1. Overview of the proposed IE-Net. The information enhanced binary convolution (IE-BC) is
used to enrich the information of binary activations and boost the representation power of binary
convolution. The information enhanced estimator (IEE) is proposed to help maximize the information
entropy of weights and minimize the quantization error to reduce the information loss.

In the forward process, the information-enhanced binary convolution (IE-BC) has been
proposed to improve the representational power of the binary convolutional layers. The
IE-BC adopts multiple sign functions with learnable thresholds to enrich the information
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of the binary activations. Besides, the multiple binarized activations are processed by the
shared binary convolution. To generate more diverse features from the same convolution,
we employ scaling factors on the output feature maps, which adds minor memory and
computation costs. In the backward process, we propose the information-enhanced estima-
tor (IEE) to optimize the standardized balanced weights, which helps latent weights decide
their signs to minimize the quantization error and maximize the information entropy of the
binary weights. With the help of the proposed IE-Net, one could train an accurate binary
neural network with information enhancement.

In summary, the main contributions of the proposed method are threefold:

1. To enhance the information of binary activations and improve the representational
power of the binary model, we present the novel binary function IE-BC, which em-
ploys multiple sign functions with different learnable thresholds, a shared binary
convolution, and following scaling operations. The diverse binary activations gener-
ated by IE-BC retain the information of the original input, and the novel convolution
in IE-BC could combine the multiple binary features effectively with information
enhancement. In addition, the IE-BC improves the model performance with minor
memory and computation requirements increase.

2. To help weights decide their signs and achieve better information gain on binary
weights, we propose to replace the STE method with the IEE fucntion that approxi-
mates the original sign function as training proceeds. With the help of the proposed
method, the gradients of the weights are adapted according to different training stages
and strong enough to help the weights update. The IEE could shape the weights
distributions around +1 and −1, which reduces the quantization error that introduces
information loss and maximizes the information entropy of weights in each layer.

3. The experimental results show that our proposed IE-Net increases the mean accuracy
of the baseline model Bi-Real [21] by 2.8% and outperforms the other state-of-the-art
(SOTA) BNN methods on the CIFAR-10 dataset. Besides, we evaluate our method
with the ResNet-18 and ResNet-34 [1] structures on the ImageNet dataset and the
results show that the IE-Net achieves the best performance compared with other
SOTA models, which proves the effectiveness of the proposed method.

2. Materials and Methods
2.1. Binary Neural Networks

The BNN [13] firstly proposes the method to binarize the activations and weights in
deep neural networks and introduces the strategy for training the BNNs. This kind of
model compression technology could reduce the memory and computation requirements
significantly. Technically, for most recent BNN methods, both the weights and activation
inputs in the convolutional layers are binarized with a sign function, and their specific
formulas are shown as follows:

bw = sign(w) =

{
+1 if w ≥ 0
−1 otherwise

, bx = sign(x) =

{
+1 if x ≥ 0
−1 otherwise

(1)

where the x and w are the elements of full-precision activations X and full-precision
weights W, and bx and bw are the elements of binary activations BX and binary weights
BW respectively. According to Equation (1), the weights and activations could be binarized
to {+1, −1}, which saves the memory storage by 32× in theory. By taking advantage of
the binary representations, the energy-hungry floating-point operations in the original
full-precision convolution are replaced with efficient logical operations.

Y = (BW ⊗ BX) · α (2)

where the⊗ is denoted as a bitwise operation XNOR and POPCOUNT and the α is a scaling
factor that is used to reduce the quantization error caused by the binarization. In recent
years, a lot of BNN methods have been proposed to improve the performance of binary
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models by minimizing the quantization error in either magnitude [14,21] or angular [22,23]
aspects. Finally, in the forward inference time, the binary neural networks could save the
memory and computation costs significantly.

During the training process, the parameters in BNNs are hard to update since the
gradients of the sign function are nearly zero almost everywhere. To solve this problem,
the straight through estimator (STE) [24] has been adopted to back-propagate the gradient
through the sign function as follows:

∂L
∂W

=
∂L

∂BW

∂BW
∂W

≈ clip
(

∂L
∂BW

,−1,+1
)

, (3)

where the clip function is a piece-wise linear function, L is the loss function of the binary
neural network and W is used as the latent weights to be updated in the backward process.
However, the approximated gradients using STE lead to the gradient mismatch problem,
which influences the training of BNNs. Previous methods [15,21,22] propose to use alterna-
tive functions which approximate the sign function to reduce this mismatch problem and
help train the BNNs.

2.2. Information Enhanced Binary Convolution (IE-BC)

Due to the very limited representations of weights and activations, the normal BNNs
show a large performance degeneration compared with the full-precision counterparts.
In particular, activations are more sensitive to the binarization process. BinaryConnect [25]
only binarizes the weights in DNNs and finds that the final model with 1-bit weights and
32-bit activations achieves comparable results with the full-precision model on small-scale
datasets due to the regularization effect of binary weights. Furthermore, the experiments of
IR-Net [15] also show that the models that only binarize the weights and keep activations in
full-precision improve the accuracy significantly compared with the normal BNNs. There-
fore, directly binarizing activations may bring a large information loss, which decreases
the final accuracy of binary models. To solve this problem, we propose the information
enhanced binary convolution IE-BC to reduce the information loss in activations.

In the forward process of most BNN methods, the input activations of the binary
convolution are binarized to {+1, −1} with a sign function. Due to the limited values
in activations, the input features become redundant and uninformative. To reduce the
degradation of activations, ReActNet [16] proposes the RSign function which is defined as
a sign function with channel-wise learnable thresholds. However, as shown in Figure 2,
the thresholds within each channel may not find the appropriate value, and the binary
activation generated by the sign function with a bad threshold leads to huge information
loss which harms the model performance. Thus, we propose to adopt the multiple RSign
functions with different channel-wise learnable thresholds, which is formulated as follows:

Activations

1

1

Binary ActivationsGood Threshold

Bad Threshold

0

0

1

1

Figure 2. The visualization of the binary activations generated by different sign functions. The sign
function above with a negative threshold generates the informative binary activation which retains
the information of the original input. The sign function below with a small positive threshold
generates the meaningless binary activation which causes huge information loss.
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bx
i,k = hk(xi) =

{
+1 if xi ≥ βi,k

−1 if xi < βi,k (4)

where the bx
i,k is the ith channel binary activation element generated by the kth sign

function hk with its ith channel learnable threshold βi,k, and we denote K as the total
number of the RSign function used in IE-BC. According to Equation (4), we derive multiple
groups of binary activation inputs. After that, a simple way is to use different binary
convolutions on different generated binary activations, respectively. However, this method
causes the linear growth of memory and computation burdens when the K goes larger.
To alleviate the extra complexity, we propose to use a shared binary convolution to deal
with all these binary activations as follows:

Yk = BConv(BW , BX
k) = (BW ⊗ BX

k) · α (5)

where the BX
k is the kth binary activation, Yk is the kth output and BW is the shared convo-

lutional weights. Although the shared convolution saves the memory and computation
costs, the same convolutional filters could harm the diversity of the output features, which
influences the representational power of the binary model. To tackle this challenge, we
propose to apply the channel-wise scaling factors to compensate for the diversity loss and
enrich the information that outputs contain. Then the final output Y is computed as follows:

Y = Y1 +
K

∑
k=2

Yk · λk (6)

where the λk is the compensation factor that scales the kth output generated by the shared
convolution with the kth binary activation. It is worth noting that the first output is
considered as the base output activation which has no need to use the compensation factor.
In addition, the experiment section will analyze the influence of the hyperparameter K and
the results show that the K = 2 is the best choice which achieves the highest accuracy with
little complexity increase.

In summary, the whole structure of the IE-BC (K = 2) is illustrated in Figure 3. As the
figure shows, the sign functions with two different thresholds generate two binary activa-
tions which contain completely different information. With this novel binary convolution,
we could enhance the information of binary activations and improve the representational
power of binary neural networks.

Figure 3. The structure of the IE-BC when K = 2. The 32 × 32 input activation X is binarized to the
different binary activations B1

X and B2
X by two RSign functions. Then, a shared binary convolution

is used to process the binary activations and generates the outputs Y1 and Y2. In the end, the final
output is derived by the summation of Y1 and Y2 · λ2, according to Equation (6).
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2.3. Information-Enhanced Estimator (IEE)

In binary neural networks, the process of binarization always introduces the large
quantization error, which leads to huge information loss. To reduce the loss, many binary
works [7,14,21,26] have been proposed to minimize the quantization error with different
optimized methods. Besides, IR-Net [15] proposes that only aiming to narrow the difference
between full-precision and binary weights will harm the information entropy of binary
weights, which hurts the training performance. For maximizing the information entropy
of the weights in BNNs, IR-Net proposes to balance and standardize the weights, before
binarizing them as follows:

wstd =
ŵ

σ(ŵ)
, ŵ = w− w (7)

where w denotes the mean value and σ(·) means the standard deviation.
As shown in Figure 4, different from the Bi-Real [21], the IR-Net optimizes the weights

to form a bimodal distribution which increases the information entropy. However, from the
figure, we could find that the two peaks of the weight distribution in IR-Net are not
centered on +1 and −1, and there are still some of the weights around the zero value. Thus,
the quantization error is relatively large which causes additional information loss that
influences the final performance.

Figure 4. Weight distributions (before binarization) of the Bi-Real, IR-Net, and IE-Net in
layer1.0.conv1 of binary ResNet-20. The weights in Bi-Real are gathered around zero value, which is
far from the binary values +1 and −1, leading to large quantization error. The IR-Net alleviates this
problem while there are still a relatively large number of weights existing around zero. The IE-Net
proposes the IEE to shape the two distributions around +1 and −1, which enhances the information
of binary weights by reducing the quantization error.

To solve this problem, we propose to combine the idea from IR-Net with a novel
training-aware estimator and optimizes the weights to be distributed like the third subfig-
ure in Figure 4, which enhances the information of binary weights. For maximizing the
information entropy, we balance and standardize the full-precision weights according to
Equation (7) before the binarization, which modifies the weight distributions. For minimiz-
ing the quantization error, we propose that the IEE could give the weights strong gradients
to help them decide their signs and gradually approximate the sign function to reduce the
gradient mismatch problem. Additionally, to make the model training more stable, various
approximated functions have been proposed to help update the parameters in BNNs, such
as STE [24], piecewise polynomial function [21], EDE [15], and so on.

In this paper, without using existing estimators, we propose a gradually adapted
function IEE with the training processes which formula is shown as follows:

F(x) =

{
r(−sign(x) 3q2x2

4 +
√

3qx) if |x| < 2
√

3
3q

rsign(x) otherwise
(8)
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where the r and q are the variables that control the shape of the IEE during the training:

q = 10Tmin+
e
E (Tmax−Tmin), r = max(

1
q

, 1) (9)

where we set Tmin = −2, Tmax = 1 in this work, e and E denote the current training epoch
and the total number of epochs respectively. According to the Equations (8) and (9), the F(x)
could gradually approximate the sign function with the training process which is indicated
by the value of e

E . In the backward pass, the gradient of IEE concerning the input x could
be computed by the following formula:

F′(x) =
∂F(x)

∂x
=


r(
√

3q + 3q2x
2 ) if − 2

√
3

3q ≤ x < 0

r(
√

3q− 3q2x
2 ) if 0 ≤ x < 2

√
3

3q

0 otherwise.

(10)

Then, we could derive the gradients of the loss function L with respect to weights W:

∂L
∂W

=
∂L

∂BW
F′(W) (11)

Besides, to intuitively understand the proposed IEE, we visualize the function shape
of F(x) and F′(x) with growing value of e

E in Figure 5. As the figure demonstrates, at the
beginning of the training phase, the gradients exist almost everywhere and have a larger
value than 1 compared with the other estimators [21,24], which encourages the weights to
flip their signs and help optimize the binary model. As the training goes on, the shape of
the F′(x) gradually fits with the gradients of the sign function, which reduces the gradient
mismatch problem. Furthermore, the magnitude of the gradients becomes even larger,
which helps the weights decide their signs. After training the model, the weights in
BNNs are pushed to gather around +1 and −1, resulting in the minimized quantization
error. Meanwhile, due to the balance and standardization operations before binarization,
the information entropy is also optimized at the same time.

10 5 0 5 102
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80%
90%
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(a) F(x) (b) F′(x)

Figure 5. Visualization of the IEE in the different training stages which are indicated by e
E × 100%.

(a) The function shape of F(x). (b) The derivative shape of F′(x).

3. Experiments and Discussion
3.1. Experimental Settings
3.1.1. Datasets

CIFAR-10: CIFAR-10 [27] is a computer vision dataset collected by the students of the
Hinton group for pervasive object recognition, which contains 10 categories. The dataset
consists of 60,000 color images of size 32 × 32, of which 50,000 images are used for training
the models and 10,000 images are used for evaluating the model performance. Like most
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previous works, the data augmentation methods including random crop and flipping are
adopted during the training phase, while dataset normalization is used in both the training
and testing phases.

ImageNet: ILSVRC 2012 ImageNet [28] is a large-scale and high-resolution image
dataset which contains 1000 classes for image recognition. The dataset includes 1.2 million
natural RGB images used for training and 50,000 RGB images for evaluation. The com-
monly used data augmentation strategies such as random crop and random flipping are
adopted during the training process. In the testing phase, we evaluate our models on
224 × 224 center-cropped images from the testing set.

3.1.2. Implementation Details

All the experiments in this section are implemented with the powerful and flexible
Pytorch library and conducted on a single computer with an Intel Xeon E5-2680 CPU and
4 NVIDIA RTX 3090 GPUs. Following the compared binary neural networks, we binarize
all the convolutional layers and fully connected layers, except the first and last layers.
Besides, our source code is accessed on 17 March 2022 at https://github.com/Alexrich961
210/IE-Net.

For the experiments on the CIFAR-10 dataset, we use the Bi-Real method based on
ResNet-20 as the baseline model to conduct the ablation studies. Besides, we also evaluate
our method on VGG-Small and ResNet-18 network topologies, respectively. In the training
time, we choose the SGD optimizer with the momentum of 0.9 as the default optimizer.
The weight decay is set as 1 × 10−4 and the batch size is 128. The initial learning rate is set
as 0.1 and we adopt the cosine annealing strategy to adjust the learning rate as the training
processes. In addition, we train all the models 400 epochs in total.

For the experiments on the ImageNet dataset, we evaluate our method based on
ResNet-18 and ResNet-34 network structure, respectively. During the training process,
the SGD optimizer with the momentum of 0.9 is adopted, the weight decay is set as
1 × 10−4, and the batch size is set as 512. The initial learning rate is set as 0.1. and the
cosine annealing scheduler is used to adjust the learning rate. The warm-up strategy is also
used to help the binary models converge. All the models are trained for 120 epochs.

3.2. Ablation Study

In this part, we explore and analyze the effects of the proposed IE-BC and IEE on
binary neural networks. We use the ResNet-20 based Bi-Real as the baseline model which
applies double skip connections and we evaluate all the models on the CIFAR-10 dataset.
Additionally, we set the hyperparameter K which denotes the number of used modified
sign functions as 2 by default.

3.2.1. Effectiveness of Information Enhanced Binary Convolution (IE-BC)

Based on the Bi-Real Net with ResNet-20 network, we replace the binary convolution
within the baseline model with the proposed enhanced binary convolution (EBC) to test
its influence on the model performance. Besides, to verify the advantages of the proposed
EBC method on the representational power improvement, we compare our method with
the RSign technology proposed by ReActNet [16].

Table 1 lists the classification accuracy of the Bi-Real baseline, the Bi-Real+RSign,
and the Bi-Real+IE-BC on CIFAR-10, respectively. All of them use the same training settings
and network structures. RSign inserts a learnable shift parameter before the sign function
to improve the quality of the binary feature maps. The IE-BC applies the sign functions
with multiple learnable thresholds to generate diverse binary patterns. From the table, it
is clear to see that our proposed IE-BC method improves the performance of the baseline
model significantly, increasing the mean accuracy by 2.60%. In addition, the proposed
Bi-Real+IE-BC outperforms the Bi-Real+RSign method by a mean accuracy of 1.46%, which
proves the superiority of the novel binary convolution method.

https://github.com/Alexrich961210/IE-Net
https://github.com/Alexrich961210/IE-Net
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Table 1. Comparison of the different methods that use modified sign function on the baseline model.
We run each model three times and report the mean accuracy and standard deviation on the CIFAR-10
test dataset.

Bi-Real Baseline [21] Bi-Real+RSign [16] Bi-Real+IE-BC

Mean Accuracy (%) 85.74 86.88 88.34
Std (%) 0.19 0.27 0.15

Furthermore, to display the reason why the IE-BC brings a large performance gain in-
tuitively, we visualize the feature maps within the first binary convolutional layer. Figure 6
shows the binary activation inputs at the first 4 channels after multiple sign functions with
different learned thresholds inserted in the IE-BC module. As the figure demonstrates, we
can find that:

1. For the same full-precision inputs, the binarized inputs generated by the sign functions
with different thresholds present diverse features. In particular, the information of
binary inputs in the 1th channel is completely different, which helps the binary model
learn more meaningful patterns.

1th Channel 2th Channel 3th Channel 4th Channel

Full-Precsion 
Inputs

Binary Inputs
Threshold 1

Binary Inputs
Threshold 2

Figure 6. Visualization results of the feature maps in the first binary convolutional layer of Bi-Real+IE-
BC based on ResNet-20. The rows indicate the full-precision inputs and binary inputs with different
learned thresholds. The columns indicate the feature maps from the first four channels. The quality
of the binary activations is measured by the visual difference between the same full-precision input
and different binarized inputs.

2. Meanwhile, as feature maps from the 2th channel show, the sign function with a
bad threshold will generate meaningless binary activations as shown in the third
row which induces large information loss. By using the IE-BC method, the binary
activations from another sign function with a different threshold could compensate
the missing feature as shown in the second row at 2th channel, which proves the
effectiveness of the proposed technology.

3. In conclusion, the different activation binarized functions could generate multiple
diversified binary patterns to help enhance the information of binary activations and
boost the representational power of the normal binary convolution, which increases
the final classification accuracy of the binary models.
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3.2.2. Influence of Hyperparameter K

Considering the great improvement from using 2 modified sign functions with their
thresholds in the IE-BC, a natural question is whether more modified sign functions lead to
better model performance. We denote the number of the used modified sign function as K,
which is consistent with the last method section.

To explore this question, we conduct a group of experiments using Bi-Real+IE-BC with
K tuned from 1 to 5, and the experimental results are shown in Figure 7. It could be seen
that the performance improvement on the baseline model is significant when K changes
from 1 to 2, and gradually becomes smaller when K is greater than 2. The lowest mean
error rate 11.66% is achieved when K = 2. The experimental phenomenon means that a
more number of the modified sign functions may be redundant for the good performance
of the binary model. Besides, the redundant sign functions will introduce more memory
cost and computational complexity due to the learnable thresholds, which influences the
hardware-friendly nature of the binary neural networks to some extent. Therefore, we
choose K as 2 to build the final binary neural network, which improves the performance
greatly and introduces minor memory and computation burdens.

K = 1 K = 2 K = 3 K = 4 K = 50

2

4

6

8

10

12

14

Er
ro

r r
at

e 
(%

)

Figure 7. The error rate of Bi-Real+IE-BC with respect to a different number K of modified sign
functions. The error rate is obtained by the difference between 1 and the accuracy rate on the
CIFAR-10 dataset, and the lower error rate indicates better model performance.

3.2.3. Effectiveness of Information-Enhanced Estimator (IEE)

To show the effect of the proposed IEE function on minimizing the quantization
error, we visualize the data distribution of full-precision weights and the derivative of the
proposed approximated function during the training process, where the results are shown
in Figure 8.

At the early stage of the training (10 epoch and 200 epoch), there exist many full-
precision weights outside the range from −1 to +1, which can not be updated using STE
according to Equation (3). To solve this problem, IEE relaxes the truncation threshold to let
the gradients exist for almost all the weights and enlarge the magnitude of the gradients to
help the weights flip their signs which is beneficial for training the binary model. Besides, it
could be seen that the derivative curve of the IEE becomes more similar to the sign function
as the training processes, which reduces the gradient mismatch problem. Meanwhile, in the
last stage of the training (400 epoch), the weights finally gather around the value of +1 and
−1 and shape a clear gap between these two data distributions. As the figure shows, there
are no weights around zero value, which reduces the quantization error effectively and
thus obtain the information gain.

To verify the effectiveness of the proposed IEE on maximizing the information entropy,
we compare the total information entropy of the weights with a Bi-Real baseline model,
IR-Net [15] and Bi-Real+Median Loss (ML) [29] based on the ResNet-20, as shown in
Table 2.
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Figure 8. Visualization of the weight (after balance and standardization) distributions and derivatives
of IEE in different training epochs (10, 200, 280, and 400). The first row demonstrates the distributions,
where the gray vertical lines indicate the −1 and +1 values. The second row demonstrates the
corresponding derivative curves, where the red curve is the proposed IEE, the yellow curve is the
STE and the blue one is the sign function.

As the table demonstrates, the IEE increases the information entropy of the baseline
model from 5.39 to 5.42, which proves the effect of IEE on enhancing the information of
binary weights. In addition, the Bi-Real+IEE achieves the equivalent result compared
with the IR-Net. However, the IEE could enjoy the information gain by minimizing the
quantization error at the same time, which helps improve the model performance, especially
in large-scale datasets.

Table 2. Comparison with other related works on increasing information entropy of binary weights.
We run all the models three times and report the mean information entropy on the CIFAR-10 test
dataset. The evaluation metric is defined as the summation of the information entropy of binary
weights in all the binary convolutional layers.

Metric Bi-Real [21] IR-Net [15] BiReal+ML [29] Bi-Real+IEE

∑19
l=2H(l) 5.39 5.42 5.41 5.42

3.2.4. Ablation Performance

In this part, we demonstrate the effect of different elements in the proposed IE-Net
on the performance of the binary baseline model with ResNet-20 structure, where the
experimental results on the CIFAR-10 dataset are shown in Table 3. From the Table, it is
reported that the IE-BC and IEE modules increase the mean accuracy of the baseline model
by 2.60% and 0.73% respectively, which proves the effectiveness of the proposed methods.
Furthermore, by combining these two components together, we derive the proposed IE-Net
and achieve even better results, increasing the mean accuracy by 2.80% compared with the
baseline model, which proves that enhancing the information of binary activations and
weights could improve the performance of the binary model significantly.

Table 3. Ablation performance on the CIFAR-10 dataset. We run each model three times and report
the mean ± std accuracy on the test dataset.

Topology Method Bit-Width (W/A) Accuracy (%)

ResNet-20

Bi-Real 1/1 85.74 ± 0.19
+IE-BC 1/1 88.34 ± 0.15

+IEE 1/1 86.47 ± 0.09
+IE-BC+IEE (IE-Net) 1/1 88.54 ± 0.14
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3.3. Comparison with State-of-the-Art Methods

In this section, we comprehensively compare the proposed IE-Net with other SOTA
methods on CIFAR-10 and ImageNet datasets respectively.

3.3.1. Comparisons on CIFAR-10

Table 4 compares the classification accuracy of the IE-Net with other SOTA binary
neural networks on the CIFAR-10 dataset, including RAD [30], IR-Net [15] and RBNN [22]
based on ResNet-18; DoReFa [31], DSQ [32], XNOR+ML+BMA [29], SLB [33], IR-Net and
RBNN based on ResNet-20; XNOR-Net [14], BNN [13], IR-Net, RAD, RBNN and DSQ
based on VGG-Small. As the table shows, our proposed binary model achieves the best
performance in different network structures, which verifies the universality and superiority
of our method. It is worth noting that the IE-Net yields 1.4%, 2%, and 1.6% performance
gains over IR-Net based on ResNet-18, ResNet-20, and VGG-Small respectively due to
the information enhancement. Furthermore, the IE-Net based on ResNet-18 narrows the
accuracy gap between the binary model and the full-precision counterpart to only 1.9%.
Last but not the least, the IE-Net based on VGG-Small also reduces the performance
gap to 2.1%.

Table 4. Accuracy comparison with the SOTA methods on the CIFAR-10 dataset. We evaluate
our proposed IE-Net based on ResNet-18, ResNet-20, and VGG-Small. The proposed networks are
highlighted in bold.

Topology Method Bit-Width (W/A) Accuracy (%)

ResNet-18

Full-Precision 32/32 94.8
RAD 1/1 90.5

IR-Net 1/1 91.5
RBNN 1/1 92.2
Ours 1/1 92.9

ResNet-20

Full-Precision 32/32 92.1
DoReFa 1/1 79.3

DSQ 1/1 84.1
XNOR+ML+BMA 1/1 85.00

SLB 1/1 85.5
IR-Net 1/1 86.5
RBNN 1/1 87.8
Ours 1/1 88.5

VGG-Small

Full-Precision 32/32 94.1
XNOR-Net 1/1 89.8

BNN 1/1 89.9
IR-Net 1/1 90.4
RAD 1/1 90.4

RBNN 1/1 91.3
DSQ 1/1 91.7
Ours 1/1 92.0

3.3.2. Comparisons on ImageNet

We further evaluate the performance of the proposed IE-Net on the large-scale Ima-
geNet dataset. Table 5 compares the Top-1 accuracy and Top-5 accuracy of the IE-Net with
other SOTA methods, such as XNOR-Net, DoReFa, TBN [34], Bi-Real [21], PDNN [35], IR-
Net, BONN [36] and RBNN based on ResNet-18; ABC-Net [17], Bi-Real, IR-Net and RBNN
based on ResNet-34. As can be observed in this table, the proposed IE-Net achieves the best
performance compared with the other SOTA binary neural networks with both ResNet-18
and ResNet-34 structures. In addition, the IE-Net obtains a better result than the networks
with higher-precision representations such as DoReFa and TBN. In the end, the IE-Net
shows the better information gain over IR-Net, which improves the performance of the
IR-Net by 3.3% and 1.7% Top-1 accuracy based on ResNet-18 and ResNet-34 respectively.
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In conclusion, Tables 4 and 5 prove the effectiveness of the proposed method on
enhancing the information of binary neural networks, which could improve the final model
performance in various network structures.

Table 5. Accuracy comparison with the SOTA methods on the ImageNet dataset. We evaluate our
proposed IE-Net based on ResNet-18 and ResNet-34. The proposed networks are highlighted in bold.

Topology Method Bit-Width (W/A) Top-1 (%) Top-5 (%)

ResNet-18

Full-Precision 32/32 69.6 89.2
XNOR-Net 1/1 51.2 73.2

DoReFa 1/2 53.4 -
TBN 1/2 55.6 79.0

Bi-Real 1/1 56.4 79.5
PDNN 1/1 57.3 80.0
IR-Net 1/1 58.1 80.0
BONN 1/1 59.3 81.6
RBNN 1/1 59.9 81.9
Ours 1/1 61.4 83.0

ResNet-34

Full-Precision 32/32 73.3 91.3
ABC-Net 1/1 52.4 76.5
Bi-Real 1/1 62.2 83.9
IR-Net 1/1 62.9 84.1
RBNN 1/1 63.1 84.4
Ours 1/1 64.6 85.2

3.4. Memory and Computation Complexity Analyses

In this part, we analyze the model complexity of the proposed IE-Net based on ResNet-
18 and ResNet-34. Table 6 demonstrates the memory computational costs of different binary
neural networks, including XNOR-Net, Bi-Real, IR-Net, and the proposed IE-Net.

Table 6. Comparison of memory cost and computation complexity with different methods based on
ResNet-18 and ResNet-34. The memory cost is represented by the number of bits occupied by the
model parameters, and the computational cost is denoted by the floating-point operations within the
binary model. The proposed networks are highlighted in bold.

Topology Method Bit-Width (W/A) Memory Cost (Mbit) FLOPs

ResNet-18

Full-Precision 32/32 374.1 1.81 × 109

XNOR-Net 1/1 33.7 1.67 × 108

Bi-Real 1/1 33.6 1.63 × 108

IR-Net 1/1 33.6 1.63 × 108

Ours 1/1 33.8 1.63 × 108

ResNet-34

Full-Precision 32/32 697.3 3.66 × 109

XNOR-Net 1/1 43.9 1.98 × 108

Bi-Real Net 1/1 43.7 1.93 × 108

IR-Net 1/1 43.7 1.93 × 108

Ours 1/1 44.1 1.93 × 108

Compared with the full-precision counterparts, the IE-Net saves the memory and
computational costs by 11.07×/15.81× and 11.10×/18.96× based on ResNet-18/34 respec-
tively. From the table, it is clear to see that the model complexity reduction of our method is
comparable with other listed BNN methods while our model achieves better performance
for image classification, according to Table 5.

Furthermore, the extra memory and computation requirements introduced by the
IE-BC module are also computed. For the memory cost, the IE-BC in the IE-Net only adopts
two modified sign functions to enrich the information of binary activations, which adds
the 0.2 Mbit and 0.4 Mbit storage costs based on ResNet-18 and ResNet-34 respectively.
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Besides, the compensation factors could be absorbed by the batch norm layers so they will
not introduce other complexity in the inference time. For the computational cost, the IE-BC
increases the efficient binary convolution operations instead of FLOPs, and this kind of
convolution could be implemented in parallel which does not affect the real inference speed.
According to Tables 5 and 6, we find that the IE-Net achieves a good trade-off between
model complexity and model performance.

In summary, although the IE-Net introduces a few computational and memory costs,
the information gain and performance improvement are significant, which benefits the
deployment of the binary neural networks on real-world applications.

4. Conclusions

In this work, we propose a novel binary neural network named IE-Net to enhance the
information and performance of the binary models. Firstly, we propose an information
enhanced binary convolution (IE-BC) to enrich the information of binary activations and
boost the representational power of the binary convolution. The IE-BC applies multiple
sign functions with multiple learnable thresholds to generate diverse binary input features,
which retain more information from original inputs. Then, we employ a shared binary
convolution equipped with the compensation factors to derive the final output activations
with a little additional model complexity. Secondly, to increase the information of weights
at the same time, we proposed the information enhanced estimator (IEE) to gradually
approximate the sign function and provide the weights strong gradients to update and
decide their signs during the training process. After the training phase, the weight distribu-
tions and the information entropy metrics show that the proposed IEE not only reduces
the quantization error to alleviate the information loss but also obtains larger information
entropy compared with the baseline model. With the help of the information enhancement,
the IE-Net based on ResNet-20 achieves an accuracy improvement of 2.8% on the CIFAR-
10 dataset compared with the baseline model. Besides, the IE-Net based on ResNet-18
obtains a 5.0% Top-1 accuracy gain on the ImageNet dataset and outperforms the other
SOTA methods, which demonstrates the superiority of the proposed method. Moreover,
the extra memory and computation costs introduced by the proposed binary model are
proved to be relatively small, which shows a good trade-off between model complexity
and performance.

By enhancing the information within the binary models, our proposed IE-Net could
improve the performance of BNNs significantly. Meanwhile, the performance gains on
different network structures also prove the effectiveness of the proposed method. At last,
there are two aspects worth to be investigated in the future. Firstly, the model complexity
of the IE-Net is able to be further reduced by designing the engineering realization of the
IE-BC module, which is beneficial to the deployment of the IE-Net. Secondly, the accurate
binary model IE-Net could be used as the backbone network in other computer vision tasks
such as object detection and semantic segmentation, which will help the models have a
wider range of application scenarios.
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