
Citation: Liang, Z.; Yang, J.; Liu, H.;

Huang, K.; Cui, L.; Qu, L.; Li, X.

HRER: A New Bottom-Up Rule

Learning for Knowledge Graph

Completion. Electronics 2022, 11, 908.

https://doi.org/10.3390/

electronics11060908

Academic Editor: Wojciech

Mazurczyk

Received: 16 February 2022

Accepted: 11 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

HRER: A New Bottom-Up Rule Learning for Knowledge
Graph Completion
Zongwei Liang *,† , Junan Yang †, Hui Liu, Keju Huang, Lin Cui, Lingzhi Qu and Xiang Li

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
yangjunan@ustc.edu (J.Y.); christ592604@163.com (H.L.); huangkeju@163.com (K.H.); cuilin17@nudt.edu.cn (L.C.);
qulingzhi@nudt.edu.cn (L.Q.); lix20@nudt.edu.cn (X.L.)
* Correspondence: zwliang17@nudt.edu.cn
† These authors contributed equally to this work.

Abstract: Knowledge graphs (KGs) are collections of structured facts, which have recently attracted
growing attention. Although there are billions of triples in KGs, they are still incomplete. These
incomplete knowledge bases will bring limitations to practical applications. Predicting new facts
from the given knowledge graphs is an increasingly important area. We investigate the models
based on logic rules in this paper. This paper proposes HRER, a new bottom-up rule learning for
knowledge graph completion. First of all, inspired by the observation that the known information of
KGs is incomplete and unbalanced, HRER modifies the indicators for screening based on the existing
relation rule mining methods. The new metric HRR is more effective than traditional confidences in
filtering Horn rules. Besides, motivated by the differences between the embedding-based methods
and the methods based on logic rules, HRER proposes entity rules. The entity rules make up for the
limited expression of Horn rules to some extent. HRER needs a few parameters to control the number
of rules and can provide the explanation for prediction. Experiments show that HRER achieves the
state-of-the-art across the standard link prediction datasets.

Keywords: NLP; knowledge graphs; link prediction; reasoning; uneven distribution; reliability; horn
rule; entity rule

1. Introduction

Large scale knowledge graphs (KGs) such as Freebase [1], DBpedia [2], NELL [3],
and YAGO [4], have achieved significant development in recent years. These KGs contain
considerable facts stored in the form of triples (h, r, t), where h, r, t represents the heads,
the relations, and the tails, respectively. KGs play a crucial role in intelligent question
answering, search engines, and smart healthcare applications. However, KGs cannot
exhaust all triples. Although there are billions of triples in KGs, they are still incomplete.
The incomplete KGs will cause limitations to practical applications. For example, over
70% of people included in Freebase have no known place of birth, and 99% have no known
ethnicity, which will significantly limit our search and answering. Therefore, knowledge
graph reasoning, which infers new knowledge based on incomplete KGs, has received
increasing attention.

Link prediction is a fundamental task of knowledge graph reasoning. Link prediction
means that, given (?, r, t), predict the missing head entity based on the existing knowledge
graphs or given (h, r, ?), predict the missing tail entity based on the existing knowledge
graphs, where ? represents unknown entities. This paper divides the methods of link pre-
diction into two types based on the characterization [5–7]: one is the embedding methods,
which utilize latent features, and the other is the traditional methods based on logic rules
which employ observed features.

Embedding methods are mainstream approaches [1,8–15]. These methods learn the
embeddings of entities and relations simultaneously, then measure the rationality of triples
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through specific score functions between entities and relations. These methods can achieve
better performances because they are free from the restrictions of rule representation.
However, these methods have two shortcomings. The first weakness is the unexplainable
inference, which means that the error prediction cannot be modified in practical application.
Another defect is that these models have different parameters and are sensitive to specific
parameters, making them hard to compare the pros and cons.

Logic-rule methods originated from inductive logic programming (ILP) in semiotics.
Although these methods [5,16–18] do not perform well on standard datasets, practical
applications are more inclined to adopt these methods for their interpretability. In practical
applications [5–7], people can artificially modify the biased results of the interpretable models.

In this paper, our overarching interest is explainable inferences, i.e., the method of
logic rules. However, the current logic-rule methods have the following two drawbacks.

The first one is that the models ignore the incomplete and unbalanced facts in KGs.
Most traditional studies were designed based on the closed world assumption, such as
Standard Confidence. However, the KGs are the open domain datasets, which may have
more incomplete facts in open domain knowledge bases. Although some methods, such
as AMIE [5] and RuleN [18], consider this incompleteness, their rule metrics are still
inappropriate. These inappropriate metrics severely limit the number and quality of logic
rules mined, which drives us to design more reasonable metrics.

Besides, the second one is that the limited characterizable rules restrict the performance.
The current methods only mine the Horn rules, which are relatively simple and cannot
describe the complicated relations of entities. The limited representation limits the model,
thus we need to mine other non-Horn rules

In order to alleviate the above two drawbacks of the current logic-rule methods, this
paper proposes HRER, a knowledge graph reasoning model based on the logic rule and
entity rules. The specific strategies of HRER to these drawbacks are as follows.

First of all, since current filtering indicators ignore the incompleteness and biased
distribution of information in KGs, we propose a new index—Horn rule reliability (HRR).
The index HRR takes into account the incompleteness of the knowledge graph and the
biased distribution of the facts, which can screen Horn rules more reasonably. Experiments
on benchmark datasets show that the indicator HRR performs better in mining Horn rules.

Besides, to solve the problem that the limited form of logic rules restricts the per-
formance, this paper first analyzes the differences between the logic rule methods and
the embedding-based methods. Embedding-based methods learn to represent entities
and relations simultaneously, which learn the equivalence of relations and the relevance
of entities. Inspired by this observation, this paper proposes entity rules based on Horn
rules. Entity rules can mine the inclusion and equivalence relations of entities on attributes.
Experiments on benchmark datasets show that entity rules can effectively improve the
performance of models based on Horn rules.

As shown in Figure 1, this is the architecture of HRER. HRER contains two main parts.
The first part is relation rules (i.e., Horn rules) mining, and the second part involves mining
entity rules. The upper part of Figure 1 shows the mining of Horn rules with Horn rule
reliability and the lower part of Figure 1 shows the searching of entity rules. Then we
achieve special weights of two types of rules based on the overall performance of training
data. Finally, we apply the special weights to merge the two types of rules and perform
link predictions.

In summary, the main contributions of this paper are as follows.

• This paper proposes the new index—Horn rule reliability (HRR), which alleviates the
problem caused by incompleteness and biased distribution. Experiments show that
the Horn rule based on this metric HRR achieves state-of-the-art performance in the
link prediction task.

• This paper proposes the reasoning of entity rules, which makes up for insufficient
representation of relation rules to some extent. Experiments show that the inference
based on entity rules can improve link prediction by at least 2% on Hit@10.
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• HRER is explainable, providing the basis for the prediction. Unlike the embedding
models, which are sensitive to parameters, HRER has only a few parameters for
controlling the number of rules.

The rest of this paper is structured as follows. Section 2 presents a brief overview
of related work. Section 3 introduces the problem formulation, including definitions and
preliminaries. Section 4 is the central part of the model, which mainly explains the design
of the Horn rule reliability index and the realization of entity rules. Section 5 describes the
new evaluation metric and experiments. Finally, we summarize our findings along with
the future directions in Section 6.

Search Horn 
Rules

Search Entity 
Rules

Based on HRR

Based on ERR
Prediction

Combination

Test Data

Train Data HRER Model

Train Data

HRER

1 2RuleR w ERR w HRR   

Figure 1. Model Architecture.

2. Related Work

This section describes related works and the critical differences between them. We
divide knowledge graph models into two families: methods based on latent features and
methods based on observed features.

2.1. Methods Based on Latent Features

Methods based on latent features (i.e., the embedding methods) belong to numerical
reasoning. These methods first design the corresponding representation (including the rep-
resentation of entities and relations, and the score function of triples) and train to make the
matching score of the correct triples get the maximum value (i.e., make the matching func-
tion of the error triples achieve the minimum). Finally, the trained models are applied for
link prediction. We divide embedding methods into three types according to the matching
function: geometric models, tensor factorization models and deep learning models.

Geometric Models utilize the relations as the transform between heads and tails
in latent spaces. TransE [1] directly selects the euclidean distance of the entities and the
relation vectors to measure the matching degree of triples. However, TransE cannot describe
the 1-N, N-1, N-N relationship well. TransH [19] revises the representation of entities and
proposed that entities have different representations in different relations. TransR [12]
thinks that using the same semantic space cannot adequately represent knowledge. TransR
imports a mapping matrix to map entity vectors to different attribute spaces. RotatE [14]
proposes the rotation of complex vectors to characterize the rules between relations better.
Inspired by the fact that concentric circles in the polar coordinate system can naturally
reflect the hierarchy, HAKE [20] maps entities into the polar coordinate system. HAKE can
effectively model the semantic hierarchies in knowledge graphs.

Tensor Factorization Models define the dot product of tensors as the matching func-
tion. RESCAL [21] designs the relations as the full rank matrixs. On this basis, DistMult [22]
proposes the mapping matrix to be a diagonal matrix. ANALOGY [23] improves the
mapping matrix to a standard matrix. ComplEx [15] introduces complex-valued matrixes
to represent the relations based on DistMult, which describes the asymmetric and anti-
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sense rules better. TuckER [13] imports tucker decomposition, and this model achieves
state-of-the-art results on some datasets. SimplE [24] is a simple enhancement of CP
to allow the two embeddings of each entity to be learned dependently. HolE [25] is a
multiplicative model that is isomorphic to ComplEx [15]. Inspired by the recent success
of automated machine learning (AutoML), AutoSF [26] proposes to automatically design
scoring functions for distinct KGs by the AutoML techniques.

Deep Learning Models use deep neural networks to perform knowledge graph com-
pletion. ConvE [27] and ConvKB [28] employ convolutional neural networks to define score
functions. CapsE [29] embeds entities and relations into one-dimensional vectors under
the basic assumption that different embeddings encode homologous aspects in the same
positions. CompGCN [30] utilizes graph convolutional networks to update the knowledge
graph embedding. Neural Tensor Network (NTN) combines E-MLP with several bilinear
parts. Nathani [31] proposes a novel attention-based feature embedding that captures both
entity and relation features in any given entity’s neighborhood.

The representation of triples ranges from one-dimensional vectors to multi-dimensional
tensors, and the matching function ranges from simple distance to hyperplane mapping.
Together, these studies make improvements to have a better description of knowledge.
Although such methods perform better on basic datasets, they are unexplainable and
sensitive to parameters.

2.2. Methods Based on Observed Features

The methods based on observed features belong to symbolic reasoning. They mine
relevant relation rules based on observable statistical features and then accomplish rea-
soning with these relation rules. Collectively, these methods generally apply association
algorithms to mine Horn rules in the knowledge base, and there are also methods mining
rules with experts.

Such methods originated from inductive logic programming. Sherlock [17] is a typi-
cally unsupervised method for mining logic rules. It extracts first-order Horn rules from
network text and reasons with probabilistic graphical models (PGMs) Similar ILP methods
are WARMR [16] and ALEPH [32]. However, these methods, which are not designed for
open-domain knowledge bases, are not suitable for knowledge graph reasoning. Pang-
Ning Tan [33] studies the association mining method, and most subsequent rules mining
adopts this association method. PRA mines paths with a high probability of occurrence
through random routing and incorporated path features as matrix features into machine
learning. AMIE [5] is a typical method for mining association rules based on the partially
complete assumption (PCA). RuleN [18] improves AMIE, which mines rules on the part
of the knowledge base. RuleN integrates the method of path search and AMIE. Any-
BURL [34,35] proposes an anytime bottom-up technique for learning logical rules from
large knowledge graphs. AnyBURL [34,35] applies the learned rules to predict candidates
in the context of knowledge graph completion.

Overall, these approaches mine the closed Horn rules existing in knowledge bases and
use them to accomplish reasoning. These approaches perform poorly on standard datasets,
but they are explainable.

3. Background

In this section, we introduce Horn rules and related concepts.
Let E denote the set of all entities andR the set of all relations present in KGs. In the

following, we utilize the notation (h, r, t) (head entity, relation, tail entity) to identify a triple
in KG, with h, t ∈ E , r ∈ R denoting the subject(head) ,the object(tail) and the relation
between them, respectively.
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Horn Rule. An atom is a fact that has variables at the subject or object position. A
Horn rule consists of a head and a body, where the head is a single atom and the body is a
set of atoms. The paper denotes rule with head r(x, y) and body {B1, . . . , Bn}:

B1 ∧ B2 ∧ · · · ∧ Bn ⇒ r(x, y) (1)

where B1 represents the atom r1(x, z1), Bi represents the atom ri(zi−1, zi) and Bn represents
the atom rn(zm, y). Horn Rules can be abbreviated as ~B ⇒ r(x, y). An instance of the
rule is:

hasChild(p, c) ∧ isCitizen(p, s)⇒ isCitizen(c, s) (2)

In this paper, relation rules mined by HERE are Horn rules. We reason the head of the
rule based on the body.

Support. The support of a rule quantifies the number of correct predictions, i.e., the
number of distinct pairs of subjects and objects in the head. We calculate support as:

supp(~B⇒ r(x, y)) := ∃z1, . . . , zm : ~B ∧ r(x, y) (3)

Head Coverage. Support is an absolute quantitative indicator. The same number
of supports in knowledge bases with different scales have different meanings, so the
literature [5] designs the relative indicator Head Coverage. Head Coverage is the proportion
of pairs from the head relation that are covered by the predictions of the rule:

hc(~B⇒ r(x, y)) :=
supp(~B⇒ r(x, y))
#(x′ , y′) : r(x′ , y′)

(4)

with #(x
′
, y
′
) : r(x

′
, y
′
) as an abbrivation for |{(x

′
, y
′
) : x, y ∈ E , r(x

′
, y
′
)}|.

Standard Confidence. The standard confidence measure takes all facts that are not in
the KGs as negative evidence. Thus, the standard confidence of a rule is the ratio of its
predictions that are in the KGs, i.e., the share of A in the set of predictions:

con f (~B⇒ r(x, y)) :=
supp(~B⇒ r(x, y))

#(x, y) : ∃z1, . . . , zm : ~B
(5)

The standard confidence is blind to the distinction between “false” and “unknown”.
Thus, it implements a closed world setting. It mainly describes the known data and
penalizes rules that make a large number of predictions in the unknown region. Reasoning,
in contrast, aims to maximize the number of true predictions that go beyond the current
knowledge. We do not want to describe data but to predict data.

Partial Completeness. AMIE [5] proposes to generate negative evidence by the partial
completeness assumption (PCA). This is the assumption that if r(x, y) in KBtrue for some x,
y, then

∀y′ : r
(
x, y′

)
∈ KBtrue ∪ NEWtrue⇒ r

(
x, y′

)
∈ KBtrue (6)

In other words, AMIE assumes that if the database knows some r-attribute of x, then it
knows all r-attributes of x. This assumption is valid for functional relations r, such as birth
dates, capitals, etc. These usually contain either all r-values or none for a given entity. The
assumption is also valid in the vast majority of cases for relations that are not functional,
but that have high functionality. Even for other relations, the PCA is still reasonable for
knowledge bases that have been extracted from a single source (such as DBpedia and
YAGO). These usually contain either all r-values or none for a given entity.

PCA Confidence. AMIE [5] proposes the partial completeness assumption: if specific
R attributes about entity x appear in the given knowledge base, then the model assumes
that the knowledge base includes all R attributes of x. There is no R attribute of entity x
in the triples needed to be inferred. AMIE changes the denominator as the set of facts we
know correct, together with the facts which we assume are false.
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Under the PCA, AMIE [5] normalizes the confidence not by the entire set of facts but by
the set of facts which we know are true, together with the facts which we assume are false. If
the head atom of the rule is r(x, y), then this set is just the set of facts {r(x, y′) : r(x, y′) ∈ K}.
Thanks to the FUN-Property, the PCA is always applied to the first argument of the
head atom:

pcacon f (~B⇒ r(x, y)) :=
supp(~B⇒ r(x, y))

#(x, y) : ∃z1, . . . , zm, y′ : B ∧ r(x, y′)
(7)

AMIE. AMIE [36] implements rule mining through a parallel search, which has high
computing efficiency. AMIE [36] utilizes language bias to limit the search space, i.e., each
atom in the rule is related to other atoms through the head entity or tail entity. AMIE
defines that a rule is closed if every variable appears at least twice. AMIE only mines closed
rules. This paper mines Horn rules through the rule mining algorithm in AMIE.

4. HRER Model

This section introduces HRER—a knowledge graph reasoning model based on Horn
Rule and Entity Rule. Section 4.1 introduces the overall framework of the model. Section 4.2
introduces the implementation method of relation rules, which mainly explains the key
indicator: Horn rule reliability. Section 4.3 introduces the implementation of entity rules.

4.1. Model Overview

Figure 1 shows the overall implementation process of HRER. HRER consists of mining
the Horn rules and the entity rules in KGs. Then we combine the two rules with different
weights and perform the link prediction.

For the fast searching, we adopt the rule mining algorithm in AMIE [36] to mine Horn
rules upon the Horn rule reliability (HRR), which will be described in detail in Section 4.2,
in the first part of the rule mining step. The second part is similar to the first part. We apply
association algorithms in mining entity rules. Finally, we combine two types of rules by
special weights based on the overall performance of the training dataset and perform link
prediction on the test dataset.

4.2. Reasoning Based on Relation Rules

As the common methods based on logic rules [36], the first step is mining the Horn
rules. This paper only mines closed Horn rules with the associated algorithms. For a better
understanding, we take the following 2-hop closed Horn rule as the instantiation analysis:

MotherO f (p, c) ∧MarryTo(p, s)⇒ FatherO f (c, s) (8)

Figure 2 shows the mechanism of the association search method. By traversing all
relations, we filter triples crossing heads/tails to build a closed-loop, i.e., the closed Horn
rule needed to mine. The specific implementation can be seen in AMIE [36].

 !"#$%&$'"!"()*+"$!,"$,"-.$/0$1/(+23$

(45"

 !"#$6&$'"!"()*+"$!,"$("5-!*/+$/0$!,"$

3478"9!$7-3".$/+$!,"$"+!*!:$;$*+$,"-.&$

<-((:=/

 !"#$>&$'"!"()*+"$!,"$("5-!*/+$7-3".$

/+$!,"$"+!*!:$?$$*+$,"-.$-+.$!,"$"+!*!:$

;$*+$3478"9!&$</!,"(@0

A$B$C$B$D EF$$G-!,"(@0 H;$C$?I

A<-((:=/ H;$C$JI$C$B$D EF$$G-!,"(@0 H;$C$?I

A<-((:=/H;$C$JI$C$</!,"(@0 HJ$C$?ID$EF$$

G-!,"(@0 H;$C$?I

Figure 2. This is a toy example of mining closed Horn rules.
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The reliability of Horn rules mined by different facts is different. For the excavated
Horn rules, we need to measure the reliability of the rules. Traditional methods utilize
indicators such as Standard Confidence and PCA Confidence to rank the rules. However,
the design of these indicators do not consider the uncertainty of incomplete information
and the uneven distribution of facts in KGs. The following part focuses on the motivation
and the design of the index—Horn Rule Reliability (HRR).

The incompleteness of the KGs is uncertain. The existing KG commonly satisfies
that the number of known triples is more than that of unknown triples. However, for some
special logic rules, the number of unknown triples may exceed that of known triples. As
shown in Figure 3, the area of unknown triples exceeds known triples in the KGs. The
traditional rule indexes do not consider this phenomenon, and they utilize the total number
of triples in KGs. For example, Standard Confidence consideres all entity pairs involved
in the relations, and the rationality of rules will reduce as the proportion of unknown
knowledge increases.

Known  

Triple

Unknow  Triple

Figure 3. There may be more unknown triples in the knowledge base.

Given the uncertainty of the incomplete information in the knowledge base, this paper
does not consider all the information of the head relation (i.e., the total number of entity
pairs involved in the head relation) in indicator design and only measures the number
of entity pairs involved in the Horn rules. As the toy example shown in Figure 4, the
number of Horn rules in the example is smaller than that of entity pairs with the same head
relation in the rule. There is only one Horn rule, but the relation (i.e., f atherO f ) involves
four entity pairs. When measuring rule reliability, this paper only considers the triple (i.e.,
f ather(C, B)) involved in Horn rules and ignores the other three entity pairs of the relation
(i.e., f ather ).

 !"# $%&"

'!()%* '&**# +&()%*

,  , - -  

. / / 0

1 2 2 3

4 5 6 5

Figure 4. The number of Horn rules is much lower than the number of head relationships.

Biased distribution of facts. The KGs are collections of triples extracted from the texts.
The triples described in the text cannot be roughly uniformly distributed like datasets in
other domains, such as signal processing. Even the standard dataset cannot guarantee the
uniform distribution of the entities involved in each rule. The knowledge base constructed
by the actual application cannot guarantee the balance even more. As shown in Figure 5,
there may be different bodies pointing to the same head. In order to eliminate the imbalance
of bodies in Horn rules, this paper only considers the number of head-to-tail pairs involved
in the body. For instance, this paper only counts the types of head-to-tail pairs in Figure 5,
i.e., the number of Horn rules is three.
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Figure 5. There may be different bodies pointing to the same head.

Considering the uncertainty of the incomplete information and the biased distribution
of facts, this paper designs a preliminary rule reliability index HRRini based on the Standard
Confidence:

HRRini =
supp(~B⇒ r(x, y))

#(x, y′) : ~B ∧ r(x, y′) + #(x′, y) : ~B ∧ r(x′, y)− supp(~B⇒ r(x, y))
(9)

where #(x, y′) : ~B ∧ r(x, y′) as an abbrivation for |{(x, y′) : (x, y′) ∈ ~B ∧ r(x, y′)}|, which
refers to the number of all head-to-tail pairs that satisfy r(x, ?), x ∈ X (where X refers to
the head entity that appears in the Horn rule ~B ⇒ r(x, y)). #(x′, y) : ~B ∧ r(x′, y) as an
abbrivation for |{(x′, y) : (x′, y) ∈ ~B ∧ r(x′, y)}|, which refers to the number of all head-to-
tail pairs that satisfy r(?, y), y ∈ Y (where Y refers to the tail entity that appears in the Horn
rule ~B⇒ r(x, y)) . The value of HRRini changes on the interval (0, 1].

The credibility of rule reliability. In order to compare the relative reliability of Horn
rules, the reliability index HRRini transforms the rules to the same scale. Nevertheless, the
credibility of each rule’s reliability is different. For example, if the Horn rules of the same
relation have different occurrences, then the credibility of distinct Horn rules is different.
The following formula shows that the first rule appears twice, and the reliability is 100%.
The second rule appears 95 times, and its reliability is 95%. However, the second rule is
more credible than the first rule.

HRRini−1 =
2
2
= 100% (10)

HRRini−2 =
95
100

= 95% (11)

In order to measure the credibility of the rule reliability, the model designs a credibility
index: the ratio of the number of Horn rules and the number of head-to-tail pairs involved
in the relation.

RC =
supp(~B⇒ r(x, y))

#(x, y) : r(x, y)
(12)

Horn rule reliability index. Combined with the credibility of the index, the final
reliability index HRR is:

HRR = HRRini × RC (13)

This indicator is a comparison of different Horn rules for the same relation. The
exact relation contains the same number of head-to-tail pairs. Therefore, by removing the
denominator term, the reliability index of Horn rules can be simplified as follows.

HRR =
(supp(~B⇒ r(x, y)))2

#(x, y′) : ~B ∧ r(x, y′) + #(x′, y) : ~B ∧ r(x′, y)− supp(~B⇒ r(x, y))
(14)

In the first part of the HRER model, we calculate HRR of the searched Horn rule. For
the various Horn rules from the same head, we rank the tails predicted by Horn rules
according to HRR.
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4.3. Reasoning Based on Entity Rules

Embedding-based methods are the process of learning the representations of entities
and relations by solving an optimization problem of maximizing the scores of correct triples
while minimizing the scores of error triples. The embeddings in KGs contain the links
between relations and the connections between entities, e.g., the similarity of entities.

Limited representations restrict the performance of logic rules. Such methods only
search for closed Horn rules, accounting for its poor performance in standard datasets. Min-
ing richer representations of relation-rule are our future research route. Unlike embedding-
based methods, logic rules do not consider the links between entities and only mine relation
rules, which accounts for its poor performance. In order to alleviate this problem, this
paper proposes entity rules.

The entity rule discussed in this paper refers to inclusion, i.e., a rule that an entity
contains another entity. As shown in Figure 6, the rule that an entity contains another entity
means the subordinate relationship between the entities. When two entities contain each
other, then the two entities are equal. Given conditions that entity A belongs to entity B, we
can infer that A has the same attributes as B. Entity rules achieve link prediction in this way.

 !"# $%&'#

() * *)+,)(

-) . .) - -)+,)./ .)+,)-

Figure 6. This is the inclusion of properties between entities.

Entity rule mining. Entity rule mining is similar to relation rule mining. This paper
mines entity rules based on the association features of “pseudo triples”. The entity rules
mined in this paper are similar to the single-hop Horn rules, so this paper utilizes the
method of mining single-hop Horn rules to search for entity rules in “pseudo triples”.

We swap the tail and relation in the triple to reconstruct a new “pseudo triple”. See the
example in Figure 7 for the generation of “pseudo triple”, i.e., the actual relation is regarded
as “tail entity”, and the actual tail entity is regarded as “relationship”. In the first step of
the rule mining, “pseudo triples” are input into the relationship rule mining program. We
implement the mining of entity rules by searching for single-hop closed Horn rules.

Head Rel Tail

True Triple Team A football_position/players Player 1

Pseudo Triple Team A Player 1 football_position/players

Figure 7. This is an example for the conversion of triples to pseudo triples.

For the entities predicted by the entity rules, we rank them across the number of
satisfied rules. Similar to the reliability of Horn rules HRR, we utilize the reliability of
entity rules to sort the entity rules.

ERR =
(supp(~B⇒ t(h, r)))2

#(h, r′) : ~B ∧ t(h, r′) + #(h′, r) : ~B ∧ t(h′, r)− supp(~B⇒ t(h, r))
(15)

where h, r, t represent the heads, relation and tail in a triple, respectively. Where #(h, r′) :
~B ∧ t(h, r′) is an abbrivation for |{(h, r′) : (h, r′) ∈ ~B ∧ t(h, r′)}|, which refers to the number
of all head-to-tail pairs that satisfy t(h, ?). #(h′, r) : ~B∧ t(h′, r) is an abbrivation for |{(h′, r) :
(h′, r) ∈ ~B ∧ t(h′, r)}|, which refers to the number of all head-to-tail pairs that satisfy r(?, y).
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5. Experiments and Results

This section verifies the performance of HRER on link prediction tasks through experiments.

5.1. Datasets and Evaluations

Datasets for benchmarking link prediction should be obtained by sampling real-
world KGs. We evaluate HRER using four standard link prediction datasets generated
from actual scenarios (see Table 1). We can access four datasets through this link. (https:
//github.com/ibalazevic/TuckER, accessed on 20 January 2022).

• FB15k [1]. This dataset is a subset of Freebase, a large, growing knowledge base of the
real world.

• FB15k-237 [37]. This dataset is obtained by eliminating the inverse and equal relations
in FB15K, making it more difficult for simple models to do well.

• WN18 [1]. This dataset is a subset of WordNet, a hierarchical database containing
lexical relations between words.

• WN18RR [27]. This dataset is achieved by excluding inverse and equal relations in
WN18.

Table 1. Dataset statistics.

Dataset #Entities #Relations #Triples #Testset

FB15K 14,951 1345 483,142 59,071
FB15K-237 14,541 237 272,115 20,466

WN18 40,943 18 141,442 5000
Wn18RR 40,599 11 86,835 3134

Evaluation Settings. We use evaluation metrics standard across the link prediction
literature: mean reciprocal rank (MRR) and Hits@k, k ∈ {1, 3, 10}. Mean reciprocal rank is
the average of the inverse of the mean rank assigned to the true triple overall candidate
triples. Hits@k measures the percentage of times a true triple is ranked within the top k
candidate triples. We evaluate the performance of link prediction in the filtered setting [1],
i.e., all known true triples are removed from the candidate set except for the current test
triple. In both settings, higher MRR or higher Hits@1/3/10 indicate better performance.

5.2. Parameter Settings

HRER contains two parts: mining Horn rule and entity rule (see Figure 1). The
AMIE algorithm uses parallel computing to accomplish rule mining, which significantly
improves the efficiency of rule mining. Therefore, this paper applies the AMIE algorithm
to mining rules, calculates the corresponding rule reliability HRR and ERR, and performs
link prediction with the combination of two types of rules.

Unlike the embedding-based method with many parameter settings, HRER only sets
one parameter in rule mining to control the number of rules. This paper only uses HRR
between [0 and 1] in the rule mining step. Modifying this indicator will determine the
number of searched rules. When we set the indicator to 0, all Horn rules are mined; if we
take the value as 1, the algorithm will dig a few Horn rules. Generally speaking, the rule
with lower rule reliability is less useful for link prediction. If the AMIE algorithm searches
out all Horn rules, too many rules will affect the efficiency of link predictions. This paper
sets HRR to 0.05 and ERR to 0.01 to control the number of rules.

5.3. Link Prediction Results

The experiments on link prediction mainly compare the following methods: TransE
(i.e., the primary embedding method), STransE, CrossE, TorusE, RotatE, TuckER, DisMult,
ComplEx, ANALOGY, SimplE, HolE, ConvE, ConvKB, ConvR, CapsE, RSN and AMIE.
The parameters used by AMIE are the default parameters: Head Coverage equals 0.01, and
PCA conf equals 0.1. The experiment first performs the link prediction for the first part and

https://github.com/ibalazevic/TuckER
https://github.com/ibalazevic/TuckER
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the second part of the HRER model separately, then the two parts are merged to obtain the
final result of HRER.

Result Comparison. As can be seen from Table 2, the performance of the Horn rules
based on HRR designed in this paper exceed PCA conf in AMIE. Besides, entity rules
obtain a relative improvement of 0.22% and 2.32% in MRR and Hits@10, averaged on
FB15k, FB15k-237, WN18 and WN18RR. Overall, HRER outperforms previous state-of-
the-art models on all metrics across two datasets (apart from FB15K-237, where TuckER
does better).

HRER has only one parameter to control the number of Horn rules. If HRER does
not set this parameter, performance on link prediction may be better. However, to reduce
mining time by eliminating the redundancy of rules, HRER set the threshold to limit the
number of rules. Since the model in this paper only mines closed Horn rules and simple
entity rules, HRER is limited by the form of rule representation. Therefore, HRER cannot
achieve the best Hit@10 on FB15K-237.

Case Study and Interpretability. The most significant feature of HRER is interpretabil-
ity. For all prediction results of HRER, the model can provide the basis. Table 3 shows part
of the reasoning basis for link prediction on FB15K-237.

As can be seen from Table 3, the reasoning basis is consistent with our perception. For
example, we want to reason the releasing area of a specific movie A. It is known that the
release area of A is Region C, and the adjacent region of Region C is Region B, so the model
infers that the movie A will also be shown in Region B.

Table 2. Link prediction results on FB15k, FB15k-237, WN18 and WN18RR.

FB15K FB15K-237 WN18 Wn18RR

FHit@1/% FHit@10/% FMRR FHit@1/% FHit@10/% FMRR FHit@1/% FHit@10/% FMRR FHit@1/% FHit@10/% FMRR

TransE 49.36 84.73 0.628 21.72 49.68 0.315 40.56 94.87 0.646 2.70 49.52 0.206
STransE 39.77 79.60 0.543 22.48 49.56 0.315 43.12 93.45 0.656 10.13 42.21 0.226
CrossE 60.08 86.23 0.702 21.21 47.05 0.298 73.28 95.03 0.834 38.07 44.99 0.405
TorusE 68.85 83.98 0.746 19.62 44.71 0.281 94.33 95.44 0.947 42.68 53.35 0.463
RotatE 73.93 88.10 0.791 23.83 53.06 0.336 94.30 96.0 0.949 42.80 57.15 0.476

DistMult 73.61 86.32 0.784 22.44 49.01 0.313 72.60 94.61 0.824 39.68 50.22 0.433
ComplEx 81.56 90.53 0.848 25.72 52.97 0.349 94.53 95.50 0.949 42.55 52.12 0.458

ANALOGY 65.59 83.74 0.726 12.59 35.38 0.202 92.61 94.42 0.934 35.82 38.00 0.366
SimplE 66.13 83.63 0.726 10.03 34.35 0.179 93.25 94.58 0.938 38.27 42.65 0.398
HolE 75.85 86.78 0.800 21.37 47.64 0.303 93.11 94.94 0.938 40.28 48.79 0.432

TuckER 72.89 88.88 0.788 25.90 53.61 0.352 94.64 95.80 0.951 42.95 51.40 0.459
ConvE 59.46 84.94 0.688 21.90 47.62 0.305 93.89 95.68 0.945 38.99 50.75 0.427

ConvKB 11.44 40.83 0.211 13.98 41.46 0.230 52.89 94.89 0.70 95.63 52.50 0.249
ConvR 70.57 88.55 0.773 25.56 52.63 0.346 94.56 95.85 0.950 43.73 52.68 0.467
CapsE 1.93 21.78 0.087 7.34 35.60 0.160 84.55 95.08 0.890 33.69 55.98 0.415
RSN 72.34 87.01 0.777 19.84 44.44 0.280 91.23 95.10 0.928 34.59 48.34 0.395

AMIE 67.40 88.15 0.797 24.47 47.79 0.308 87.21 94.03 0.931 31.05 35.60 0.357

Horn Rule 84.27 89.01 0.861 25.10 48.22 0.312 93.47 95.32 0.941 44.16 50.98 0.465
Ent Rule 13.82 17.37 0.142 10.75 20.03 0.113 15.81 20.74 0.171 10.08 11.87 0.107

HRER 84.87 91.09 0.871 25.39 48.98 0.328 97.52 97.87 0.976 46.94 53.32 0.489

Table 3. Horn rules mined in FB237.

Dataset #Entities #Relations

Rule 1
head (X, /sports/sports_team/roster./American_football/football_roster_position/position, Y)

body (X, /sports/sports_position/players./sports/sports_team_roster/team , Y)

Rule 2
head (X, /award/award_category/winners./award/award_honor/ceremony/football_roster_position/position , Y)

body (X, /award/award_category/category_of, Z)
(Z, /time/event/instance_of_recurring_event, Y)

Rule 3
head (X,/film/film/release_date_s./film/film_regional_release_date/film_release_region, Y)

body (X, /film/film/release_date_s./film/film_regional_release_date/film_release_region, Z)
(Z, /location/location/adjoin_s./location/adjoining_relationship/adjoins, Y)

6. Conclusions

This paper proposes a new bottom-up rule learning model for link prediction—HRER.
The major novelty of HRER is as follows. First, HRER designs a new Horn rule filtering
index HRR to measure the reliability of Horn rules. Furthermore, HRER proposes entity
rules for the limitation of rule expression. In addition, HRER has better interpretability
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and can give a better explanation for the inference. Finally, unlike the embedding-based
method, HRER needs a minimal parameter to control the number of rules. Experiments on
the standard dataset show that HRER achieves state-of-the-art performances. In the future,
our research will no longer be restricted to closed logic rules, and we will study more
representations of rules. Recently, graph neural networks have achieved good performance
on link prediction. In the future, we also plan to leverage the graph attention framework to
capture higher-order relations between entities.
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