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Abstract: This paper describes a novel approach to assess detection mechanisms and their diagnostic
coverage, implemented using embedded software, designed to identify random hardware failures
affecting digital components. In the literature, many proposals adopting fault injection methods are
available, with most of them focusing on transient faults and not considering the functional safety
standards requirements. This kind of proposal can benefit developers involved in the automotive
market, where strict safety and cost requirements make the adoption of software-only strategies
convenient. Hence, we have focused our efforts on compliance with the ISO 26262 automotive
functional safety standard. The approach concerns permanent faults affecting microcontrollers and it
provides a mapping between the failure mode described in part 11 of the Standard and the chosen
fault models. We propose a test bench designed to inject permanent failures into an emulated
microcontroller and determine which of them are detected by the embedded software. The main
contribution of this paper is a novel fault injection manager integrated with the open-source software
GCC, GDB, and QEMU. This test bench manages all the assessment phases, from fault generation to
fault injection and the ISA emulation management, up to the classification of the simulation results.

Keywords: fault injection; functional safety; automotive applications; fault tolerance

1. Introduction

Nowadays, the growing complexity of the embedded systems employed in different
industries to implement safety or mission-critical applications, such as the aerospace,
automotive, and defense industries, has increased the interest in making them more reliable.
The number of safety-related systems installed inside vehicles is steadily growing within
the automotive industry. Due to the nature of these systems, it is vital to prove that they
implement the correct functionality with sufficient safety.

When dealing with safety-critical systems, it is necessary to develop them in compli-
ance with international functional safety standards. Functional safety is a part of the overall
safety of a product or process, focusing in particular on guaranteeing that the system can
perform its task without unreasonable risks related to the electrical and electronics (E/E)
devices, and hence in a correct way and within the specified time constraints (in a hard
real-time system), or at least that it can bring the controlled physical process into a safe
state. All the current functional safety standards are derived from IEC 61508. In particular,
the one to be followed for automotive applications is ISO 26262.

To guarantee that such systems do not expose their users to an unacceptable level
of risk, they must be developed to be reliable. For the sake of this paper, the meaning of
reliability is twofold. The first consideration is the absence of systematic design errors,
whereas the second is hardening the system against random hardware failures (RHFs).

In general, hardening the system means adding a sort of redundancy, implemented
in the hardware, by adding extra components, or in the software. In any case, the goal
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is to guarantee that any RHF affecting the system will not cause dangerous misbehavior.
Software strategies rely on statements to monitor the correct execution of the payload
application.

In cases in which both methods are equivalent from the safety point of view, a general
rule is that since hardened components are more expensive with respect to their other
counterparts, it is more convenient to adopt a hardware approach in those cases where the
design has to be produced in a small number of pieces. It is possible to buy hardened hard-
ware in a commercial-off-the-shelf (COTS) form, reducing development costs. However,
when the design has to be produced in many pieces, the software strategy is preferable.
This approach allows one to buy cheaper hardware components, and it is possible to split
the high cost of developing the software across the entire the production effort.

Considering automotive applications characterized by significant production volumes,
software strategies are preferable. However, although hardware hardening components are
sold with a type of certification that makes it possible to assume that they have a certain
reliability level under certain assumptions (contained in the safety manual), as will be
described in Section 2.2, software-implemented hardening methods must be tested inside
the specific application context.

For this purpose, the critical point is to assess the method’s performance in RHF
detection, referred to in the ISO 26262 standard as diagnostic coverage.

Herein, we propose a novel test bench to aid developers in this assessment process,
injecting permanent failures into an emulated microcontroller. Its core is a fault injection
manager (FIM) integrated with the open-source software GCC, GDB, and QEMU. This
test bench manages all the assessment phases from fault generation to fault injection, as
well as performing the instruction set architecture (ISA) emulation management, up to the
classification of the simulation results.

Moreover, we focused our efforts on compliance with the ISO 26262 automotive
functional safety standard, by providing a mapping between the failure modes described
in part 11 of the Standard and the chosen fault models.

The rest of the paper is organized as follows.

Section 2 presents the state of the art. Section 2.1 focuses on fault injection, whereas
Section 2.2 provides a brief description of the ISO 26262 standard.

Section 3 describes the proposal, focusing on the implemented fault models and their
mapping with the ISO 26262 in Section 3.1 and on the test bench in Section 3.2.

Finally, Section 4 draws some conclusions.

2. State of the Art
2.1. Fault Injection

According to FIDES/UTEC 80 811:2011 and [1], a fault is the adjudged or hypothesized
cause of an incorrect system state, which is called an error. A failure is an event that occurs
when an incorrect service is delivered or, in other words, it is an error perceived by users or
external systems.

Fault injection (FI) techniques to investigate the effect of random hardware failures
have been studied over the years. Several methodologies have been proposed for this
purpose, and numerous tools have been developed.

Some of them are hardware-implemented: fault injection is performed with physical
tools such as an external power supply or a neutron beam on the ifem to modify a physical
parameter within it (such as a voltage or current).

These techniques can be costly (for example, the use of neutron beams is usually
possible only to investigate the susceptibility of an entire technology (e.g., 45 nm) to radia-
tion), and the use of lasers or the injection of voltages/currents requires other expensive
experimental equipment and a high number of specimens.

Another weak point of these strategies is that they require the hardware implementa-
tion of the design.
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In any case, physical manipulation is fundamental to determine failure mode rates
(the ways or modes in which a component might fail) and probability distributions.

To overcome these weak points, especially regarding the costs and the need for hard-
ware implementation, various simulation-based techniques have been proposed over
the years.

Regardless of the kind of injection chosen to inject faults, it is necessary to define
fault models.

These describe the fault that the system can experience during its operations. Three
aspects define a fault model: what to inject, describing the kind of fault; when to inject; and
where to inject, to determine the part of the system targeted by the injection.

According to [2] a fault injection system has to be composed of the following compo-
nents: a controller, load generator, injector, monitor and, of course, a target.

The controller generates the commands, which are conveyed to the monitor, load generator,
and the injector. The latter reads a faultload library and generates the fault description (a
translation of the chosen fault model to be injected that is suitable for actually injecting it
into the target).

The load generator reads the workload library and produces the input stimuli acting
as the target input signals, whereas the monitor logs the readouts (target output signals) to
produce the fault effects analysis. If the target implements a closed-loop control system,
the load generator implements a physical or behavioral model of the controlled process hat
is capable of reacting to the target control commands.

Fault injection requires the execution of several experiments (or runs), which form,
alongside the fault models and the workload libraries, a fault injection campaign.

To assess the results of an experiment, readouts are usually compared to the ones
obtained from fault-free experiments (referred to as golden or fault-free runs).

Other important characteristics of a proposal (in terms of the approach and adopted
fault models) are representativeness, usability, and efficiency [3].

Representativeness is the ability of the faultload library to represent the real faults that
the target will experience during operation. This indicates that the method will be able
to provide appropriate stimuli to the target. From this point of view, it is fundamental
to consider the types and distribution of injected corruptions and failure modes. The
effectiveness of the injected corruption can be guaranteed by properly tuning the what,
where, and when aspects of the chosen fault models to achieve a match between the models
and real faults, whereas the types and distribution of failure modes have to be evaluated in
terms of the capability of the chosen library to generate realistic failure modes and hence to
evaluate the fault tolerance.

Usability is the ability to use FI on a new target system. It has been assessed by taking
into account the system’s portability, in terms of the possibility to use the tool across different
target systems; its intrusiveness, or the capability of the proposed approach not to introduce
significant perturbations into the target, which can distort the results of the experiments;
and its flexibility, in terms of modularity of the approach and possibility of customizing or
adding newer fault models.

The efficiency can be defined considering the required number of experiments and the
activation and propagation of injected faults/errors. The first is needed to minimize the required
time and obtain a statistically significant evaluation of the system. At the same time, the
second emerges since faults that are not propagated to errors and then to failures are latent
by definition, so no further experimental results are needed to investigate their effects.

In our case, the goal is to perform verification of the various software-hardening
techniques against RHFs, such as those in [4], in which this process was applied to verify
the effectiveness of software-based self-testing techniques; in [5], in which FI was adopted
to prove the effectiveness of the software testing libraries proposed by the authors for an
automotive microcontroller, and in [6], in which this process was proposed as a way to
determine the presence of on-line functionally-untestable faults.
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Other applications have been proposed to demonstrate the effectiveness of software-
based testing strategies for the on-line testing of artificial neural networks [7] and there is
even a new trend in civil engineering to use them to monitor the health state of concrete
composite materials [8]. Moreover, thanks to the adoption of two different abstraction
levels, they have been used to assess the capability of the embedded software to control a
complex mechatronic system to mitigate RHFs [9].

The proposal on which we based the development of the novel test bench presented
herein is that of [10].

This paper proposes a fault-injection system based on QEMU to determine the effects of soft
errors on embedded system behavior. This paper also proposes a flowchart for performing
the injection and a description of the faults.

Simular Contributions on SIHFT

QEMU has already been adopted in the past by various scholars for the implementa-
tion of simulation-based fault injection systems at the ISA level, in particular to investigate
software-implemented hardware fault tolerance (SIHFT).

QEMU (Quick Emulator) [11] is an open-source machine emulator and virtualizer,
written by Fabrice Bellard.

It can be used for CPU emulation for user-level processes, enabling applications to
run on an architecture that is different from the one for which they have been compiled.

The main reason that QEMU has been used in our proposal is to make the test bench
agnostic with respect to the specific instruction set, since it can emulate many different ISAs.

Although the authors of [10] decided to modify the emulator to perform fault injection,
our approach is not to intervene at this level but to focus only on how to implement fault
injection via debugging instruments.

More recent work is presented in [12]. As in the latter study, the authors decided to
modify QEMU. Their purpose was to verify the robustness of Linux v.4 syscalls against
possible x86 CPU soft errors. To speed up the campaign, the authors chose to use GNU
Parallel to execute more instances of QEMU, while improving its performance on multi-
core systems.

On the other hand, the authors of [13] designed a system of which the purposes are
similar to those of our system, but used Bochs, OpenOCD, and Gemb5 as emulation systems.

In our proposal, neither QEMU nor GDB are modified. We made this choice for two
main reasons.

The first one is to make the fault injection system capable of injecting in all the
instruction set architectures, whereas the second is that, in this way, it is possible to leave
room, in future improvements, to use these techniques for real hardware components as
well by using external debug and trace tools.

The first reason is motivated by the high number of ISAs available in the microcon-
troller market, whereas the second is to allow the possibility of experimentally determining,
through techniques such as hardware-in-the-loop, the timing overhead effects of the chosen
hardening techniques when the hardened application runs in the target [14].

2.2. ISO 26262

ISO 26262 is a functional safety standard designed for automotive applications. It was
released in 2011. The current edition is the second one, released in 2018 [15]. The core of
this Standard is the safety lifecycle, which is a process to be followed to achieve functional
safety. Its main idea is to prevent dangerous situations, hence avoiding systematic errors in
the design. Furthermore, designers must guarantee these requirements when RHFs, which
are impossible to avoid, affect the design.

The Standard refers to a design that performs one or more safety-related functions
within a motor vehicle as an item.
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Like all International Standard Organization (ISO) documents, ISO 26262 (the version
released in 2018) is divided into parts. It is composed of 12 parts, and six of them describe
the safety lifecycle.

Part 3, called the Concept Phase, focuses on hazard analysis and risk assessment,
item definition, and the preparation of the functional safety concept (FSC), a document
containing all the safety requirements described at the functional level. This document also
defines the safety goals (SGs) for the considered item. For the concept phase, a simulation-
based approach is proposed to aid in the processes of hazard analysis and risk assessment,
and the interested reader can find details of this in [16].

Part 4, called product development at the system level, defines the technical safety concept
(TSC) and technical safety requirements (TSR). TSC describes, as its name says, the safety
requirements at the technical level. Moreover, safety validation and the system and item
integration and testing are covered, such as the definitions of hardware/software interfaces
(HSIs). HSI is the conceptual bridge between parts 5 and 6 of the Standard.

Part 5 describes the product development at the hardware level. It specifies the hardware
safety requirements, how to design the hardware to prevent defects (design flaws), how
to evaluate its architectural metrics, and outlines safety goal violations due to RHFs.
Furthermore, it describes how to perform hardware integration and verification.

Part 6 focuses on the software safety requirements, its architectural design, and the
design and implementation of the software units.

Part 7 describes the production, operation, service, and decommissioning of the item.

Part 11 contains guidelines on applying ISO 26262 to semiconductors.

For the sake of this work, we are interested in parts 5 and 11. In any case, the SIHFT
algorithms shall be developed in compliance with Part 6.

Part 5 describes the failure mode, effects, and diagnostic analysis (FMEDA). The core
idea of FMEDA is to quantify the effects of all the possible failure modes (FMs) that can
affect the hardware design on the safety requirements of the considered item.

The interested reader can find a more detailed description of a fault injection system
designed to perform FMEDA on discrete components installed on the PCB of the item
in [17].

If an FM is not detected in every circumstance, it is possible to define its diagnostic
coverage (DC), defined as the percentage where the FM is detected over all the conditions
where it is present.

Thanks to the DC, it is possible to compute the rates based on the ISO 26262 classifica-
tions (latent, residual, single point and multi-point perceived) of the hardware design.

The experimental determination of the DC is the primary purpose, from an ISO 26262
perspective, of the test bench proposed in this paper.

Part 11 has been added to version 2018 of the Standard. As its title says, it contains
guidelines on how to apply the analysis described in part 5 to the peculiarities of semi-
conductor components. In general, this part of the Standard provides hints to address
failure modes and a corresponding analysis for digital and analog components, memories,
programmable logic devices, and other silicon IPs used in automotive applications.

We highlight that the classifications obtained by the proposed approach cannot be
used directly to compute the RHF metrics required by ISO 26262 part 5, since the probability
distributions of the root causes have to be obtained from the safety manual provided by
the digital component manufacturer, or from the literature [18].

3. Proposed Approach

The proposal of this paper places itself into a more extensive activity performed by
our research group.

On the one hand, our main end goal is to define transformation rules to harden the code
against the effects of possible RHFs but, to achieve this result, it is necessary to design a
way to assess the performance of the proposed hardening strategies in terms of DC.
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3.1. Fault Models

The fault models considered in the current version of the tool were obtained by
analyzing table 30 contained in part 11 of the Standard.

This table contains a list of exemplary FMs for common IP blocks usually integrated

into digital components. The contained element failures are modeled in terms of function
omissions (not delivered when needed), commissions (executed when not needed), timing,
and values (delivered with incorrect values).
It is composed of three columns: part/subpart (e.g., CPU, DMA, interrupt controller unit),
function (the role of the part/subpart in the overall system functionality) and aspects to
be considered for failure mode (a textual description of the considered part/subpart failure
model, e.g., an omission of the CPU corresponds to a given instruction flow that has not
been executed).

The current version of the FIM features two fault models: Permanent and Perma-
nentStuckAt.

As described in Section 2.1, a fault model is described by three aspects, what to inject,
when inject it, and where (target) to inject.

A Permanent fault is described in accordance with the definition commonly found in
the literature relating to the analysis of errors generated by faults at the electrical or gate
level [19], i.e., as the replacement of a bit inside the affected register or memory location
word with a fixed value (permanently stuck at 0 or 1) from the moment of injection up to
the end of the simulation.

It is neessary to specify which bits can be affected by the fault. These are indicated by
the bits set to 1 inside a field which we decided to call bitPosMaks.

A PermanentStuckAt fault is described as an entire affected register, which remains
permanently stuck at the value set in the bitPosMask field.

For both the fault models, at the moment, the target is the program counter (PC) regis-
ter, whereas the injection time is defined as a rectangular probability distribution between
a minimum and a maximum time (specified as the number of machine instructionsfrom
the start of the application).

These two fault models can be mapped with with the failure modes (FMs) reported in
table 30 of ISO 26262 part 11, concerning the central processing unit (CPU), the interrupt
handling (INTH), the memory management unit (MMU), and the interrupt control unit
(ICU). In italics we indicate the FM descriptions provided by the Standard, followed by the
justification for the Permanent fault model (affecting the PC) found by the authors.

CPU:

e CPU_FM1.1—given instruction flow(s) not executed (total omission) due to program counter
hang up and CPU_FM1.2—given instruction flow(s) not executed (total omission) due to
instruction fetch hang up:
fault injected in the PC such that the control flow jumps to a location outside the pro-
gram area or trigger a not handled exception. The program may enter an endless loop.

. CPU_FM2—un-intended instruction(s) flow executed (commission):
fault injected in the PC such that the control flow jumps inside the program area but
to a wrong address, creating an instruction flow that is different to the intended one.

*  CPU_FM3—incorrect instruction flow timing (too early/late):

Fault injected in the PC such that a few instructions of the original program flow are
omitted, leading to early/late program termination.

e CPU_FM4—incorrect instruction flow result:
fault injected in the PC such that the control flow jumps inside the program area but
creating an instruction flow different than the intended one leading to wrong results.

INTH:

e CPU_INTH_FM1—ISR not executed (omission/too few):
upon the interrupt request, the fault injected in the PC does not allow the execution of
the ISR (the PC points to an address other than that of the ISR to be executed).
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e CPU_INTH_FM2—un-intended ISR execution (commission/too many):
a fault has been injected into the PC such that the instruction flow is abnormally
brought to enter an ISR.

*  CPU_INTH_FM3—delayed ISR execution (too early/late):
upon an interrupt request, a fault injected in the PC brings the execution flow to an
address before the ISR, where the memory is initialized with NOPs. The PC then
advances up to the ISR address.

e CPU_INTH_FM4—incorrect ISR execution (see CPU_ FM1/2/4):
Fault injected in the PC such that the control flow jumps inside the program area but
creates an instruction flow that is different from the intended one.

ICU:

o ICU_FM1— Interrupt request to CPU missing:
upon an interrupt request, the fault injected in the PC does not allow the execution of
the ISR (the PC points to an address other than that of the ISR to be executed).

o ICU_FM2—Interrupt request to CPU without triggering event:
fault injected in the PC such that the instruction flow is abnormally brought to enter
an ISR.

o ICU_FM3—Interrupt request too early/late:
fault injected in the PC such that the instruction flow is abnormally brought to enter
an ISR (too early). Upon the interrupt request, the fault injected in the PC brings the
execution flow to an address before the ISR, where the memory is initialized with
NOP. The PC then advances up to the ISR address (too late).

o ICU_FM4: Interrupt request sent with incorrect data:
fault injected in the PC such that a different ISR than the correct one is executed.

3.2. The Test Bench

To perform the performance assessment, we propose the test bench described in the
following.

The core of the system is the FIM (the controller of our proposal), designed for this
purpose by the authors. It interacts with three open-source software platforms: GCC, GDB,
and QEMU.

To implement the test bench, a C/C++ compiler is necessary. Our choice fell on GCC.
It is used for two different purposes.

The first one is to perform the cross-compilation of the hardened source code for the
architecture of the target microcontroller. The result of this compilation process is an .ELF
file, containing both the machine-executable code and the memory map information.

Once the .ELF file has been obtained, QEMU (the emulator used to run the target loads
the machine-executable code), whereas GBD (acting as the injector, load generator, and the log
function of the monitor) loads the memory map information (including debug symbols).

Its second purpose is to compile the classifier (performing the function of the readout
analysis of the monitor), of which the source code is generated by the FIM based on the
configured watches and the models of the faults it has been chosen to inject.

GDB (The GNU project debugger) [20] is the missing piece to complete the puzzle, as
it allows the FIM to interact with the emulation environment offered by QEMU and the
software running within it. Thanks to these interactions, GDB enables the management of
the emulation environment (mainly starting/stopping the execution and set breakpoints)
to monitor the execution of the embedded software. Moreover, it enables the injection of
faults into the program counter (PC), the register file, and the memory locations of the
emulated system.

An overall description of the proposed test bench is shown in Figure 1.

The assessment process is as follows:

1.  The software developers compile their source code for the target platform (in this
case, an RISC-V RV32I microcontroller [21]) using one of the available toolchains, such
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N

as [22]. We chose to use RISC-V since it is an open-source ISA that is gaining interest
for automotive and space applications [23].

A settings file is prepared, containing information on the campaign to be performed.
The FIM (controller) is launched. It reads the settings file to generate all the scripts
(represented by the CMD file in the figure) needed to perform the injections. Alongside
the scripts, it also prepares the classifier source code.

The scripts are launched. These, by controlling GDB, perform the golden run and then
all the required injections. For the golden run and each one of the injections (injector),
a log file with the output of the program is saved (the log task of the monitor).

The classifier is compiled and run, taking the golden run and each of the fault-affected
logs as its input.

The classifier results (one for each injection) are merged into the ISO 26262 classifica-
tion, as described in Section 3.3.

Source @
Code

(CTINT

elf

Data retrieval

o
Fault injection

15026262
class.
results

Fault-
affected
Runs
Logs

Fault
- Injection 3
G Manager CMD

Figure 1. The proposed test bench architecture. GCC also compiles the classifier, of which the

source code is generated by the FIM. The round numbered boxes and the gray arrows represent the
functional flow of the system.

3.2.1. FIM Settings File

The FIM loads a settings file describing a fault injection campaign. Its structure is

hierarchic, with a campaign on top and lists of watches and fault models as its leaves.

Campaign

A campaign is described by:

A list of watches. One of these, called the end watch, defines the termination condition
that allows the simulation system to determine if the software component under test
finished its task.

A list of faults to be injected.

Watches

A watch can be a variable defined in a high-level programming language or a memory

location to be monitored via GDB.

The following parameters are needed to describe a watch:

Symbol: the name of the variable to be watched. This field can be left blank if we want
to monitor a memory location.

Address: the address of the memory location to be watched. This field is ignored in
case the symbol name has been defined.

Description: a textual description of the watch. This field can be helpful for automatic
report generation but is not required to perform the injection, and is hence left blank.
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® DetectionWatch and DetectedCondition: if DetectionWatch is true, it means that
the variable/memory address contains the results of a RHF detection mechanism. The
DetectedCondition field contains the condition that represents whether or not the
detection occurred in relation to the DetectionWatch variable.

Fault Representation

A fault representation is a way to implement, inside the tool, a fault model in the form
of a semiformal description of the considered RHF effects at the instruction set level.

We call it a semiformal description since each type of fault corresponds to a GDB script
that performs its injection.

The following parameters (required to represent, in a semiformal model, the what,
when, and where aspects) describe each fault model:

¢ Type: the fault model to be injected.

At the moment, two kinds of faults are available: Permanent and PermanentStuckAt.

e Target: the name of the target register.

*  bitPosMaks: a 64-bit mask, used to a perform bitwise-level configuration of the fault.

e  Fault tolerance time interval (FTTI): the maximum allowed assembly instructions that
the emulator can execute from the injection time until the detection occurs. After this
time elapses, an eventual detection is considered invalid and hence not considered in
the diagnostic coverage computation.

*  Minimum injection time: the minimum time (measured as number of machine instruc-
tions) that must elapse from the start of the simulation to the moment when the fault
is injected.

*  Maximum injection time: the maximum time (measured as number of machine in-
structions) that can elapse from the start of the simulation to the moment when the
fault is injected.

*  Permanence time: the number of assembly instructions executed after the fault injec-
tion if the software unit under testing does not set the termination condition.

¢ Number of injections: the number of faults with the previous parameters to be ran-
domly generated and injected.

To set up a meaningful campaign, three watches and a fault are needed. These three
watches are:

*  Anend-watch to let the test bench know when the software unit ended its function: if
it were not specified, the FIM would not know when to finish the golden run.

* A watch configured as a detection one, to enable the classifier to determine whether
or not the detection mechanism has been triggered.

* A watch configured as a normal one to allow the classifier to check if the behavior of
the payload algorithm is the same as the golden run or not.

3.2.2. Classifier

The classifier is the component in charge of analyzing the log files obtained from the
fault injection campaign.

It takes as its inputs the golden run and the considered fault instance log files. It
compares the results of the software component under testing with those obtained during
the golden run to determine if the computation results changed due to the injected failures,
providing classifications for each injection. Moreover, it monitors the detection watches
and the termination one.

After the classifier reads all the logs, its results are accumulated to obtain a classification
compliant with ISO 26262, focusing on the experimental determination of the diagnostic
coverage of the hardening mechanism.

It has been designed as an FSM, of which the state transitions are shown in Figure 2. It
has the following states:

*  Latent: before injection of the fault.
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Latent after injection: fault injected and behavior identical w.r.t. the golden run.
Erratic behavior: behavior different w.r.t. the golden run.

Infinite loop: PC moves in an infinite loop that is not present in the original program
flow, but created by the interaction between the source code and the defective PC
register.

Stuck at some instruction: PC remains stuck pointing to a valid instruction.

(Detected) by SW hardening: detected by the software hardening mechanism.
(Detected) by HW (mechanism): PC pointing outside the FLASH/RAM address-
ing space.

As golden: detected and with an output identical to the golden run.

False positive: detection before a fault is injected.

Moreover, states Undefined and Error indicate internal errors of the classifier. These
states are not indicated in Figure 2.

The transition from the state Latent after injection or any of those in the Danger-

ous/Residual group to a state on the Defected side is allowed only before the FTTI elapses.

In contrast, a transition from the state (detected) by software hardening to the state As

golden is performed when one last line of the log file has been read, although only if the
behavior of the software components remains the same as that of the golden run for the
entire log file.

Latent e
Fal itiv
o alse positive
injection As golden

Erratic h:giesr:li\rﬁ
behavior 9
Infinite Loop
Stuck at some
instruction

Figure 2. The classifier FSM.

3.3. ISO 26262-Compliant Classification

To move from the classifier results, based on the behavior of the application, to one

compliant to part 5 of the ISO 26262.

We focused only on the detection capabilities. Our assessment was based only on

comparisons between the golden (fault-free) runs and the fault-affected ones, with the
following descriptions:

Safe: if the detection mechanism is triggered, and the output is the same as the one
obtained from the golden run (regardless of whether it is due to the type of fault or
the algorithm by itself, or thanks to a software-based mitigation strategy). Of course,
to apply such a hypothesis, it is required that the software component is developed in
compliance with the prescriptions of ISO 26262 part 6.

Latent: if the detection is not triggered, but the output is the same as the one obtained
from the golden run.

Dangerous: the set of failure modes for which the detection mechanism is not triggered
and for which the output is different from the golden run; so, it also includes multiple-
point perceived faults.

Residual: based on the frequency of latent after injection (false negatives) obtained
during the fault injections for a given fault.
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*  False positive: when the detection mechanism is triggered, but no fault has been yet
injected. ISO 26262 does not describe this class (coherently, since it mandates avoiding
the presence of systematic errors, a.k.a., defects in the embedded software), but it is
useful since we want to use this performance assessment system to aid developers of
software detection strategies.

Moreover, as is usually carried out in FMEDA analysis, we are injecting only one fault
per simulation due to the exponential increase of the needed simulations.
Figure 3 summarizes the classification in the form of a confusion matrix.

Safe Detected
False positive
Detected

Latent
F Correct behavior
Dangerous/Residual

Experimental Result
(detection mechanism triggered)

T F
Ground truth
(a fault has been injected)

Figure 3. The confusion matrix of the proposed classification, compliant with ISO 26262.

Starting from the classifier FSM (see Figure 2), the classifications of each injection are
mapped with the ISO 26262 as follows:

*  Safe detected: the percentage of the injections for a given fault that ended up with a
classification of as golden.

®  Detected: the percentage of the injections for a given fault that ended up with a
classification of detected by either the software or a hardware detection mechanism. We
chose to name them Detected since the effectiveness of the mitigation strategy was
not considered.

e Latent: the percentage of the injections for a given fault that ended up with a classifica-
tion of latent after injection.

*  Dangerous: the percentage of the injections for a given fault that ended up with the
classifications stuck at some instruction, erratic behavior, or infinite loop.
These injections are referred to as Residual if they correspond to the same fault with
different parameters found for simulation outcomes classified as Latent, or Detected.

The sum of the percentages of Safe Detected and Detected outcomes represents an
experimental value of the diagnostic coverage described by ISO 26262. In contrast, the
dangerous percentage accumulates all the undetected (hence, single points of failure in the
ISO 26262 terminology) or residual percentages of undetected runs for a given fault model.

In addition to these four classifications, as said before, we also considered the percent-
age of false positives.

4. Conclusions

This paper focused on a fault injection system designed to assess the detection mecha-
nisms implemented by the embedded software, designed to recognize random hardware
failures affecting digital components. Our approach can help software developers working
on automotive applications where the trade-off between safety and cost requirements has
led to pushes for the adoption of software-only strategies. Therefore, our test bench has
been developed to comply with the ISO 26262 automotive functional safety standard, parts
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5 and 11, by providing justifications to map the chosen fault models affecting the program
counter with the failure modes described by the Standard.

To allow software developers to assess the diagnostic coverage of their application
experimentally, we have introduced a novel test bench based on a fault injection manager
integrated with the open-source software platforms GCC, GDB, and QEMU.

Using the classification from [3], already presented in Section 2.1, the proposed system
has the following characteristics.

A good presentativeness, since we justified the chosen fault model considering the
types and distribution of injected corruptions: based on our interpretation of the failure modes
described by ISO 26262 (see the Section 3.1), and considering that the ones regarding the
failure modes can be retrieved the safety manual of the digital component.

From the usability perspective, the proposed methodology demonstrates good porta-
bility since the system is based on QEMU and GDB. On the one hand, QEMU emulates
many ISAs, whereas GDB can be used as an injector or monitor in each of these. Using
debug ports, it is possible for injection into real hardware components. It does not require a
modification of the embedded software, so it has a low intrusiveness and a good flexibility, as
the FIM is an open-source product. Each fault model has a relative GDB script acting as its
semiformal model, so to add further fault models is sufficient to define the correspondent
fault classes and script templates.

Considering its efficiency, the number of experiments is lowered thanks to an analysis of
the activation and propagation of injected faults/errors. Moreover, it allows one to achieve
the good activation and propagation of the injected faults/errors, and considering the faults
affecting the program counter, it is possible to define a mask (called the bitPosMask in the
case of permanent fault models) to set which bits can be affected. For this purpose, injection
affecting too significant bits would create jumps that would always lead the PC to point
outside the text segment of the program, whereas, conversely, if the bits involved are too
low, this leads to hardware protection interventions for non-aligned access.

This test bench, integrated with the chosen open-source software, manages all the
assessment phases, from fault generation to fault injection and ISA emulation, up to the
classification of simulation results.

The classifier analyzes the log files obtained from the fault injection campaign, allowing
the determination of diagnostic coverage via the implemented hardening mechanism.

We carried out tests to assess a control flow checking benchmark, obtaining an average
execution time of about 31.2 s per injection (comprising the time needed for logging and
classification). This duration was obtained running 2000 injections inside a virtual machine
on a host computer equipped with an Intel Core i7 4770K CPU, clocked at 3.5 GHz. The
execution time between the golden and fault-affected runs was very similar since most
activities were related to the logging of the software results.
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Abbreviations

The following abbreviations are used in this manuscript:

COTS Commercial Off-The-Shelf

DC Diagnostic Coverage

E/E Eletrical and Electronics

FI Fault Injection

FIM Fault Injection Manager

M Failure Mode

FMEDA  Failure Mode, Effects, and Diagnostic Analysis
FSC Functional Safety Concept

FSM Finite State Machine

FTA Fault Tree Analysis

FTTI Fault Tolerance Time Interval

HSI Hardware/Software Interfaces

IP Intellectual Property

ISA Instruction Set Architecture

ISO International Standard Organization
MBSD  Model-Based Software Design

PC Program Counter

PLD Programmable Logic Device

RHF Random Hardware Failure

RISC Reduced Instruction Set Computing

RSCFEC  Relationship Signatures for Control Flow Checking
SEooC  Safety Element out of Context

SETA Software-only Error-detection Technique using Assertions
SG Safety Goal

SIED Software implemented error detection

SIHFT  Software Implemented Hardware Fault Tolerance
TSC Technical Safety Concept

TSR Technical Safety Requirements

WD Watchdog
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