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Abstract: A one-dimensional plasma medium is playing a crucial role in modern sensing device
design, which can benefit significantly from numerical electromagnetic wave simulation. In this study,
we introduce a novel lattice Boltzmann scheme with a single extended force term for electromagnetic
wave propagation in a one-dimensional plasma medium. This method is developed by reconstructing
the solution to the macroscopic Maxwell’s equations recovered from the lattice Boltzmann equation.
The final formulation of the lattice Boltzmann scheme involves only the equilibrium and one non-
equilibrium force term. Among them, the former is calculated from the macroscopic electromagnetic
variables, and the latter is evaluated from the dispersive effect. Thus, the proposed lattice Boltzmann
scheme directly tracks the evolution of macroscopic electromagnetic variables, which yields lower
memory costs and facilitates the implementation of physical boundary conditions. Detailed conduc-
tion is carried out based on the Chapman–Enskog expansion technique to prove the mathematical
consistency between the proposed lattice Boltzmann scheme and Maxwell’s equations. Based on
the proposed method, we present electromagnetic pulse propagating behaviors in nondispersive
media and the response of a one-dimensional plasma slab to incident electromagnetic waves that
span regions above and below the plasma frequency ωp, and further investigate the optical properties
of a one-dimensional plasma photonic crystal with periodic thin layers of plasma with different layer
thicknesses to verify the stability, accuracy, and flexibility of the proposed method.

Keywords: lattice Boltzmann scheme; plasma medium; one-dimensional plasma photonic crystal;
electromagnetic wave

1. Introduction

Recently, plasma media have been widely used in current photonic topological insula-
tor studies [1–3], particularly in one-dimensional (1D) plasma photonic crystals (PhCs) [4–7],
two-dimensional (2D) PhCs [8,9], and three-dimensional (3D) PhC construction. Never-
theless, owing to their complex design and manufacturing, the potential applications of
topological photonics in 2D and 3D PhCs are very limited. Consequently, 1D PhCs are pre-
ferred because of their great maneuverability and ease of manufacture [10,11]. 1D plasma
PhCs are used to realize the surface impedance and bulk band. Furthermore, 1D plasma
PhCs have been employed to manipulate the light-matter interactions by tuning the plasma
layer thickness in PhCs.

Owing to the advantages of 1D plasma medium applications, researchers are strongly
motivated to investigate the electromagnetic response on plasma dispersive media to design
more efficient 1D PhCs sensing devices. In recent decades, several numerical methods
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have been proposed to solve the electromagnetic (EM) wave propagation problem [12–14].
Among these, the finite-difference time-domain (FDTD) method has been proven to be one
of the most effective approaches [14]. This method, first proposed by Yee [15], is mainly
based on the finite-difference scheme to discretize time-dependent Maxwell’s equations.
This method works well in the media of linear, homogeneous, isotropic, and non-dispersive
materials, but is not suitable for the simulation of EM wave in frequency-dependent
dispersive media [16,17]. In addition to organic matter, the more common water film is
also a dispersive material. Alternative methods have been introduced for EM waves in
dispersive media, for example, recursive convolution [17,18] and the auxiliary differential
equation method [19,20]. The FDTD method proposed by Luebbers and Kunz is the most
promising method for solving dispersive media problems [21,22].

In the last two decades, the lattice Boltzmann method (LBM) has been used as an
alternative for the simulation of partial differential equations (PDEs) [23]. It has been widely
used for various types of linear and non-linear PDEs, such as diffusion [24], flow [25],
waves [26], quantum mechanics [27–29] and heat transfer [30,31]. Moreover, with advanced
LBM technique, such as the immersed boundary-LBM method, LBM has also been used
to determine hydrodynamic force and energy exchange problems among particle and
flow [32,33]. Given the paramount role of EM phenomena in science and technology, it is of
great interest to investigate whether the LBM is able to improve simulations of complex EM
phenomena. LBMs have been used to simulate EM propagation in non-dispersive media
based on the scalar distribution function [29,34] and vector distribution function [35,36].
However, to the best of our knowledge, few approaches have been implemented to solve the
EM problem in dispersive media with LBM. Chen et al. [16] developed a lattice model with
pseudo permittivity and two force terms for terahertz electromagnetic waves propagation
in one-dimensional dispersive media, but the accuracy of the pseudo permittivity in their
model is related to the time step value, and each of the two force terms needs to be
calculated based on a two-step iteration algorithm.

In this study, we introduce a different expression form for the Maxwell’s equation
in an isotropic dispersive medium and propose a new frequency-dependent LBM with
only a single extended force term (LBM-SEF) for electromagnetic waves propagation in a
plasma medium. Thereafter, two numerical validation models are executed by comparing
the analytical and existing FDTD solutions. Furthermore, we studied the ability of the
proposed lattice Boltzmann scheme to generate electromagnetic waves propagation in a
1D PhC.

2. Materials and Methods

The LBM is a general method for describing the evolution of the particle distribution
in discrete space and time [23]. The density and moments calculated based on particle
distributions can precisely represent the density and velocity to be modeled [24,25]. In
this study, an extended LBM equation with a forcing term for capturing conductivity
characteristics is proposed. Thereafter, the consistency between the Maxwell and the LBM
equations is demonstrated through the Chapman–Enskog multi-scale expansion technique.

2.1. Theoretical Model of Plasma Media

To describe the dispersive behavior of the plasma medium, we start by describing the
motion of a free electron in such media:

m
d2x
dt2 + mϑc

dx
dt

= −eE0 exp(iωt) (1)

where x is the displacement of the electron, m is the electron mass, ϑc is the damping
frequency, e is the charge of the electron, E0 is the amplitude of the external electric field,
and ω is the angular frequency of the external electric field. By solving Equation (1), we
obtain the Drude model of the plasma media as:
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ε(ω) = 1−
ω2

p

ω(ω− iϑc)
(2)

where ωp stands for the plasma frequency.

2.2. Governing Equations

The governing time-dependent Maxwell’s equations for dielectric materials at a par-
ticular location x and time t are as follows [29]:

∇× E(x, t) = −∂B
∂t

, ∇×H(x, t) = −∂D(x, t)
∂t

(3)

where H and E are the magnetic field intensity and electric field intensity, respectively, and
B and D represent the magnetic induction and electric displacement, respectively. The
relationship between B and H, D, and E is given by B = µH, D = εE, where µ and ε are the
permittivity and permeability of the media, respectively. µ and ε are defined with relative
constants µr, εr as µ = µrµ0, ε = εrε0.

For a linear isotropic dispersive medium, the dielectric constant is expressed as
ε(ω), and the relationship between D and E in the frequency domain is expressed as
D(ω) = ε(ω)E(ω). The relationship in the time domain of D(x, t) and E(x, t) could be
written as

D(x, t) = ε∞ε0E(x, t) + ε0

∫ t

0
E(x, t− τ)ζ(τ)dτ (4)

where ε∞ is the infinite-frequency permittivity, and ζ(τ) is the electric susceptibility in the
time domain. Compared with Chen et al. [16], we use a different expression form for the
Maxwell’s equation based on Equation (3):

ε∞ε0
∂E(x, t)

∂t
= ∇×H(x, t)− ε0

∂

∂t

∫ t

0
E(x, t− τ)ζ(τ)dτ

∂B
∂t

= −∇× E(x, t) (5)

In the studies by Chen et al. [16], it is necessary to calculate the pseudo permittivity
in advance before simulating the terahertz electromagnetic wave propagation, while the
accuracy of the pseudo permittivity is related to the simulation time step ∆t used in special
cases [16]. Based on Equation (5), it is no longer necessary to use pseudo permittivity. It
can be observed from the following mathematical derivation process that only one force
term is needed, without the use of pseudo permittivity.

For 1D dispersive media, we can obtain an additional simplified model for planar
electromagnetic wave propagation:

ε∞ε0
∂Ey(x, t)

∂t
=

∂Hz(x, t)
∂x

− ε0
∂

∂t

∫ t

0
Ey(x, t− τ)ζ(τ)dτ

µ
∂Hz(x, t)

∂t
= −

∂Ey(x, t)
∂x

(6)

It is worth noting that with Equation (6), we obtain not only one stricter model, but
also a more simplified LBM model, which will be discussed in the following section.

2.3. The Extended LBM

Herein, we propose a dimensionless LBM involving a new special force term for linear
dispersive media. The proposed LBM is expressed as:

fi(x + ei∆t, t + ∆t)− fi(x, t) = −∆t
τ

(
fi(x, t)− feq

i (x, t)
)
− ∆tFi(x, t) i = 0, 1, 2, . . . , b (7)
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where fi(x, t) is the particle distribution function in direction i, location x, and time t.
ei is the lattice velocity vector in the i-th direction, ∆t is the lattice time step, and τ is the
relaxation time. EM wave equation has no dissipation term, i.e., kinematic viscosity is zero,
this is achieved by setting the relaxation time τ = 1/2, which is same with the proposed
value in the studies by Chen et al. [16] and Dhuri and Hanasoge (2017) [34]. b is the lattice
vector number, which is 2 for 1D media.feq

i (x, t) is the local equilibrium distribution. Fi(x, t)
is the dispersive forcing term proposed in this study.

The macroscopic quantities in Equation (6) are defined by:

ε∞ε0Ey(x, t) = ∑i fi(x, t) Hz(x, t) = ∑i ei fi(x, t) (8)

To solve for the EM wave, we refer to the LBM model for calculating the bandgap of
photonic materials and feq

i (x, t) is written as

feq
i (x, t) = Aiε∞ε0Ey(x, t) + BieiHz(x, t) (9)

where Ai and Bi are distribution weights. Considering the 1D physical symmetry, we have

Ai = A, Bi = B, i > 0 (10)

and the equilibrium distribution feq
i (x, t) is chosen as

feq
i (x, t) = A0ε∞ε0Ey(x, t), i = 0

feq
i (x, t) = Aε∞ε0Ey(x, t) + BeiHz(x, t), i > 0 (11)

Based on Equations (8) and (10), the following equation is obtained:

∑i Ai = 1 ∑i>0 Bi = 1 (12)

Next, we used the Chapman–Enskog expansion method to determine distribution weights.

2.4. Chapman–Enskog Expansion

Based on the Chapman–Enskog expansion technique, the particle distribution fi(x, t)
can be expanded up to the second order with the expansion parameter θ:

fi(x, t) = feq
i (x, t) + θf1

i (x, t) + θ2f2
i (x, t) + O(θ3) (13)

It is worth noting that in Equation (10), f1
i (x, t) and f2

i (x, t) could be treated as formal
expansion functions representing the distribution function at different scales. We do not need
the exact formula of these functions when using the Chapman–Enskog expansion technique.

Using Equations (11) and (13), we obtain the following equations:

∑
i

fi(x, t) = ∑
i

f0
i (x, t) + θf1

i (x, t) + θ2f2
i (x, t) + O(θ3) = ∑

i
feq
i (x, t)

∑
i

ei fi(x, t) = ∑
i

eif
0
i (x, t) + θeif

1
i (x, t) + θ2eif

2
i (x, t) + eiO(θ3) = ∑

i
eif

eq
i (x, t) (14)

where f0
i (x, t) = feq

i (x, t). Since e0 is a zero vector and θ is an arbitrarily small value, we
can obtain the following:

∑i fk
i (x, t) = 0

∑i eifk
i (x, t) = 0, for k > 0 (15)
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Using the Taylor expansion technique, we obtain the following equation based on the
left-hand side of Equation (7):

fi(x + ei∆t, t + ∆t)− fi(x, t)
= ∆t(∂t + eiα∂xα)fi(x, t) + ∆t2

2 (∂t + eiα∂xα )2fi(x, t) + O
(
∆t3) (16)

While the forcing term in Equation (7) could also be written as:

Fi(x, t) =
∂

∂t

∫ t

t=0
Fi(x, τ)dτ =

∂

∂t
F̃i(x, t) (17)

Using the Chapman–Enskog expansion technique, the scales of the derivations in time
∂t and space ∂xα in Equation (16) can be written as

∂t = θ∂t(0) + θ
2∂t(1) + O(θ3)

∂xα = θ∂xα(1) + O(θ2) (18)

While the forcing term is assumed as:

F̃i(x, τ) = θF̃i(1)(x, τ) + O(θ2) (19)

Using the aforementioned scales and substituting Equations (16) and (18) into Equation (7),
we obtain:

∆t(∂t + eiα∂xα)fi(x, t) + ∆t2

2 (∂t + eiα∂xα )2fi(x, t) + O
(
∆t3)

= −∆t
τ

(
fi(x, t)− f0

i (x, t)
)
− ∆tFi(x, t)

= −∆t
τ

(
θf1

i (x, t) + θ2f2
i (x, t) + O(θ3)

)
− ∆t

(
θ∂t(0) + θ

2∂t(1) + O(θ3)
)(
θF̃i(1)(x, t) + O(θ2)

)
= −∆t

τ

((
f0
i (x, t) + θf1

i (x, t) + θ2f2
i (x, t) + O(θ3)

)
− f0

i (x, t)
)
− ∆tθFi(1)(x, t)

(20)

Grouping terms based on Chapman–Enskog order θ and θ2, leading to:

∂t(0) f
0
i (x, t) + eiα∂xα(1) f0

i (x, t) = − 1
τ

f1
i (x, t)

∂t(1) f
0
i (x, t) +

(
−τ+ ∆t

2

)
(∂t(0) + eiα∂xα(1) )2f0

i (x, t)

= − 1
τ f2

i (x, t)− ∂t(0) F̃i(1)(x, t)
(21)

Summing Equation (21) over i and using Equations (11) and (15), we obtain:

∂t(0)∑
i

f0
i (x, t) + ∂xα(1)∑

i
eiαf0

i (x, t) = − 1
τ ∑

i
f1
i (x, t)

= ∂t(0)ε∞ε0Ey(x, t) + ∂xα(1)Hz(x, t) = 0
(22)

and

∂t(1)ε∞ε0Ey(x, t) +
(
−τ + ∆t

2

)( ∂t(0)∂t(0)ε∞ε0Ey(x, t)
+2∂t(0)∂xα(1)Hz(x, t) + ∂xα(1)∂xα(1)2Aε∞ε0Ey(x, t)

)
= −∂t(0) ∑i F̃i(1)(x, t)

(23)
Multiplying Equations (22) and (23) by eiα, and considering (15), we have

∂t(0) ∑
i

eiαf0
i (x, t) + ∂xα(1) ∑

i
eiαeiαf0

i (x, t) = − 1
τ ∑

i
eiαf1

i (x, t)

∂t(0)Hz(x, t) + ∂xα(1)2Aε∞ε0Ey(x, t) = 0 (24)

and
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∂t(1)Hz(x, t) +
(
−τ + ∆t

2

)(
Hz(x, t) + 4∂t(0)∂xα(1)ε∞ε0Ey(x, t) + ∂xα(1)∂xα(1)Hz(x, t)

)
= −∂t(0) ∑i eiαF̃i(1)(x, t)

(25)

By comparing with Maxwell’s Equation (6), we can use the following constraints:

∑i F̃i(1)(x, t) = ε0

∫ t

0
Ey(x, t− τ)ζ(τ)dτ

2Aε∞ε0 =
1
µ

τ =
∆t
2

∑i eiαF̃i(1)(x, t) = 0 (26)

and the coefficients in Equation (10) are determined as:

A =
1

2ε∞ε0µ

A0 = 1− 2A =
ε∞ε0µ− 1
ε∞ε0µ

B =
1
2

(27)

By taking (θ × Equation (22) + θ2 × Equation (23)), we have:

ε∞ε0∂tEy(x, t) = −∂xHz(x, t)− ε0∂t
∫ t

0 Ey(x, t− τ)ζ(τ)dτ + O(∆t3)

+O(θ3)

µ∂tHz(x, t) = −∂xEy(x, t) + O(∆t3) + O(θ3) (28)

From Equation (28), it can be proven that with the newly proposed lattice Boltzmann
forcing term, we can recover the Maxwell’s equations as ∆t and θ approach zero.

The introduced integrate forcing term F̃i(1)(x, t) is determined to be:

F̃1(x, t) = F̃2(x, t) = 0)

F̃0(x, t) = ε0

∫ t

0
Ey(x, t− τ)ζ(τ)dτ (29)

Based on Equation (29), we can calculate the forcing term:

F1(x, t) = F2(x, t) = 0

F0(x, t) = ε0∂t
∫ t

0 Ey(x, t− τ)ζ(τ)dτ

= ε0Ey(x, 0)ζ(t) + ε0
∫ t

0 ∂tEy(x, t− τ)ζ(τ)dτ
(30)

We refer to the Drude model used in the time domain (Chen et al., 2013) [16]:

ζ(t) =
ω2

p

ϑc
(1− exp(−ϑct))U(t) (31)

where ϑc is the damping frequency, and ωp stands for the plasma frequency.
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Based on Equations (30) and (31), the forcing term is determined by P(x, t):

P(x, t) =
∫ t

0 ∂tEy(x, t− τ)ζ(τ)dτ =
∫ n∆t

0 ∂tEy(x, n∆t− τ)ζ(τ)dτ

=
n
∑

m=0
∂tEy(x, (n−m)∆t)

∫ (m+1)∆t
m∆t ζ(τ)dτ

=
n
∑

m=0
∂tEy(x, (n−m)∆t)[

ω2
p

ϑc
τ +

ω2
p

ϑ2
c

exp(−ϑcτ)]|(m+1)∆t
m∆t

=
n
∑

m=0
∂tEy(x, (n−m)∆t)[

ω2
p

ϑc
∆t +

ω2
p

ϑ2
c

exp(−ϑcm∆t)(exp(−ϑc∆t)− 1)]

(32)

The above method is constructed for 1D EM wave simulation problem, where we do
not need to consider the anisotropic heterogeneity problem. However, when it is necessary
to solve 2D or 3D problems, the method proposed in this paper cannot be directly applied
to anisotropic heterogeneity problems, but we can use permeability tensors ε(ω) of 2D or
3D anisotropic material and calculated the force terms for 2D and 3D anisotropic dispersion
materials by following Equations (4) and (29)–(32). In this study, we focus on 1D EM wave
simulation problems.

A new issue in this study that one must perform conversion between LBM and physical
spaces. Using light speed as a critical unit conversion parameter, Table 1 summaries the
conversion rules between LBM quantities (superscript “LB”) and their corresponding
physical values (superscript “py”).

Table 1. Conversion between LBM and physical space.

Denomination LBM Context Physical Context

Space step ∆xLB = 1 ∆xpy = ∆xLB DL
L

Time step ∆tLB = 1 ∆tpy = ∆tLB ∆xpy

∆xLB
cLB

cpy

Light speed cLB = 1 cpy = c
Electric field density ELB = 1 Epy = ELBθV

Frequency f LB = 1 f py = f LB ∆tLB

∆tpy

(c is the light speed, DL is the domain length, and L is the cell number, θV = 1 kV/m).

3. Results

The accuracy of the proposed LBM is validated and demonstrated using a new forcing
term. Three typical cases, with available analytical or numerical solutions, are considered.
The simulations showed that the proposed model reproduced the correct electromagnetic
propagation in non-dispersive and dispersive media.

3.1. Electromagnetic Pulse in Non-Dispersive Media

As the first benchmark, we simulate the propagation of a terahertz electromagnetic
Gaussian pulse crossing a dielectric interface in a 1D array of L cells with periodic boundary
conditions. One half of the simulation space, x < L/2 is a vacuum (ε = ε0), and the other
half, x > L/2, represents a non-dispersive medium with a dielectric constant of εr = 2.0.
Referring to previous studies [16,36], the pulse is described by

E(x, t) = EM exp (−[(x− xc)/α]2), H(x, t) = HM exp (−[(x− xc)/α]2) (33)

where the constant α fixes the pulse width, and EM and HM are the pulse amplitudes of the
electric and magnetic field intensities, respectively. We chose L = 800, c = 1, EM = 1000,
α = 30, and xc = 250. The initial conditions and electric field after 300 cycles are shown
in Figure 1.

The theoretical predictions for the amplitude of the transmitted E′M and reflected
pulses E′′M can be computed from the incident pulse E0

M [36,37]:
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E′M
E0

M
=

2√
ε′r
ε0

r
+ 1

,
E′′M
E0

M
=

√
ε′r
ε0

r
− 1√

ε′r
ε0

r
+ 1

(34)

Electronics 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

3.1. Electromagnetic Pulse in Non-Dispersive Media 
As the first benchmark, we simulate the propagation of a terahertz electromagnetic 

Gaussian pulse crossing a dielectric interface in a 1D array of L cells with periodic bound-
ary conditions. One half of the simulation space, x ൏ L/2 is a vacuum (ε =  ଴), and theߝ
other half, x > L/2, represents a non-dispersive medium with a dielectric constant of ߝ௥ =2.0. Referring to previous studies [16,36], the pulse is described by E(ݔ, (ݐ = ݔ)]−) ெexpܧ − ,ݔ)ଶ), H[ߙ/(௖ݔ (ݐ = ݔ)]−) ெexpܪ − ଶ) (33)[ߙ/(௖ݔ

where the constant ߙ fixes the pulse width, and ܧெ and ܪெ are the pulse amplitudes of 
the electric and magnetic field intensities, respectively. We chose L = 800, c = 1, ܧெ ߙ ,1000= = 30, and ݔ௖ = 250. The initial conditions and electric field after 300 cycles are 
shown in Figure 1. 

The theoretical predictions for the amplitude of the transmitted ܧெᇱ  and reflected 
pulses ܧெᇱᇱ can be computed from the incident pulse ܧெ଴  [36,37]: 

ாಾᇲாಾబ = ଶඨഄೝᇲഄೝబାଵ, ாಾᇲᇲாಾబ = ඨഄೝᇲഄೝబିଵ
ඨഄೝᇲഄೝబାଵ (34)

 
Figure 1. Distribution of electric pulse crossing a dielectric interface. The shadow zone is the dielec-
tric media, with dielectric constant ߝ௥ = 2.0 and the other one corresponds to the media with ߝ௥ =1.0. The curves are the intensity of the electric field at t = 0 (dashed line), and t = 300 (solid line). 

Based on Equation (32), the amplitude ratio of the transmitted pulse to the incident 
pulse is theoretically ாಾᇲாಾబ = 0.82843, whereas that for the reflected pulse to the incident 

pulse should be ாಾᇲᇲாಾబ = 0.17157. Based on the proposed model, the computed values for 

these two ratios were 0.82761 and 0.17153, respectively. Thus, the computed values agreed 
well with the theoretical values, and the relative errors were less than 1%. 

Inspired by the method proposed by Dhuri et al. (2017) [38], we further analyze the 
dispersion characteristics of the proposed 1D LBM method by studying the response of 
the scheme to plane waves in homogeneous non-dispersion media. Figure 2 compares the 

Figure 1. Distribution of electric pulse crossing a dielectric interface. The shadow zone is the dielectric
media, with dielectric constant εr = 2.0 and the other one corresponds to the media with εr = 1.0.
The curves are the intensity of the electric field at t = 0 (dashed line), and t = 300 (solid line).

Based on Equation (32), the amplitude ratio of the transmitted pulse to the incident

pulse is theoretically E′M
E0

M
= 0.82843, whereas that for the reflected pulse to the incident

pulse should be E′′M
E0

M
= 0.17157. Based on the proposed model, the computed values for

these two ratios were 0.82761 and 0.17153, respectively. Thus, the computed values agreed
well with the theoretical values, and the relative errors were less than 1%.

Inspired by the method proposed by Dhuri et al. (2017) [38], we further analyze the
dispersion characteristics of the proposed 1D LBM method by studying the response of
the scheme to plane waves in homogeneous non-dispersion media. Figure 2 compares the
dispersion relations in the FDTD [39] and proposed LBM method with the exact dispersion
relations for a one-dimensional problem. In these figures, the normalized wave number
K = 2k∆x is shown as a function of the normalized frequency W = ω∆t.

Figure 2 shows that the dispersion relation of proposed LBM method in this study
agrees very well with the theoretical exact solution curve. Furthermore, Figure 2 also
implies that the proposed LBM method has smaller dispersion error than FDTD method
under very high wave number condition (K > 2.0), which is another potential advantage of
the LBM over FDTD method for the particular problem discussed in this study. However,
the 1D LBM method proposed in this study used three particle distribution functions
( f0(x, t), f1(x, t), f2(x, t)) to represent two physical fields (H and E); thus, compared with
the 1D FDTD method, the LBM method uses one-third more memory resources.
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3.2. Effects of Plasma Frequency on EM Waves

In this study, a pulse propagating in free space upon the plasma was considered.
The properties of plasma from silver are used in Sections 3.2 and 3.3, with a plasma
frequency ωp = 2000 THz and a damping frequency ϑc = 50 THz. Figure 3 shows
that at a low frequency ω

2π = 500 THz, the permittivity of the plasma medium is in the
negative permittivity region, and at a high frequency ω

2π = 4000 THz, the plasma medium’s
permittivity is close to that of vacuum.
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We further investigated the phenomenon of plasma frequency of the plasma medium
to an incoming electromagnetic wave to demonstrate the adaptability of the proposed
LBM-SEF method. A pulse propagating in air that came upon the plasma medium was
considered in this study. As shown in Figure 4, the entire simulation domain, with a
length of 10 µm, is evenly divided into 10,000 lattice cells, and the size of the lattice is
uniform, as each had a length of 1 nm. The EM pulse in the air domain is assumed to be a
Gaussian-modulated sinusoidal pulse with amplitude expressed as follows:

E(x, t) = EM sin(2π fct) exp (−[(x− xc)/α ]2) (35)

where the constant α fixes the pulse width, EM is the pulse amplitude of the electric field
intensity and magnetic field intensity, fc is the frequency of the sine function in factor
which is used to modulate the center frequency of the EM pulse. fc is taken to be either
500 THz for the low-frequency case or 4000 THz for the high-frequency case. The incident
wave propagates from the right air medium, passes through the middle film of the plasma
medium domain, and returns to the air medium again, as shown in Figure 3.
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We further analyzed the effect of frequency on the EM wave propagation behavior.
The simulation results for the low- and high-frequency Gaussian-modulated sinusoidal
pulses are presented in Figures 5 and 6. Figure 5a shows that at time t = 0 fs, the initial
Gaussian-modulated sinusoidal pulse at a frequency of 500 THz is in the air zone. It then
starts to touch the air-plasma interface at approximately t = 11 fs, as shown in Figure 5b. At
t = 21 fs, Figure 5c shows that the EM waves are completely reflected back by the plasma
slab. When the frequency of the incoming EM waves is 4000 THz, the propagating EM
waves in the computational domain are as shown in Figure 6. At time t = 0 fs, the initial
Gaussian-modulated sinusoidal pulse at a frequency of 500 THz was in the air zone. At time
t = 17 fs, Figure 6b shows that when the EM waves propagate through the left boundary
of the plasma slab, only a very small part of the incoming EM waves is reflected back
into the air domain, and most of the other parts penetrate the plasma. Figure 6c shows
that at t = 23 fs, the EM waves pass through the left boundary of the plasma slab and still
move toward the right. Thus, if the frequency of the EM waves is low, the incoming EM
waves are completely shielded, and the plasma slab shows the screening effect. When the
frequency of the EM waves is sufficiently high, the plasma slab becomes a transparent
medium. These simulations further demonstrate that the proposed LBM-SEF method can
accurately capture the fundamental characteristics of EM waves in dispersive media.

As we are dealing with conservative equations in differential form, we must calculate
the order of convergence of the model. We tracked how the accuracy of a physical vari-
able changed when the resolution of the lattice grid increased, while the time resolution
remained the same. The electromagnetic energy density is used to track the changes.
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Figure 5. Simulation of a wave propagating in air and striking a plasma medium. The plasma has the
properties of silver: ωp = 2000 THz, ϑc = 50 THz. The propagating wave has a center frequency of
500 THz. (a,b) show electric field in the computational domain at different times (a) = 0 fs, (b) = 11 fs,
and (c) = 21 fs. (Left side with film thickness of 1000 cells, right side with film thickness of 2000 cells).
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Figure 6. Simulation of a wave propagating in air and striking a plasma medium. The plasma has the
properties of silver: ωp = 2000 THz, ϑc = 50 THz. The propagating wave has a center frequency of
4000 THz. (a,b) show electric field in the computational domain at different times (a) = 0 fs, (b) = 17 fs,
and (c) = 23 fs. (Left side with film thickness of 1000 cells, right side with film thickness of 2000 cells).
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Figure 7 shows the electromagnetic energy density U as a function of the LBM grid cell
number, ranging from 100 to 100,000 cells. Richardson’s method [36] was used to compute
the convergence error of our proposed method and the exact solution of the electromagnetic
energy density is estimated by

E = lim
δx→0

E(δx) ≈
2nE

(
δx
2

)
− E(δx)

2n − 1
+ L

(
δxn+1

)
(37)

with an error L
(
δxn+1) of order n + 1, where δx = L

N , as L is the length of the computational
domain, and N is the number of cells. Here, we analyze the errors in the order n = 2. Thus,
the relative errors are computed as

L1 =
1
N

N

∑
i=1
|E(δx)− E

E
| (38)
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Figure 7 shows that the relative error decrease with the increase of LBM grid cell
number as δx1.92. The decrease in errors verifies that the present scheme has a second-
order convergence.

3.3. Effects of Layer Thickness on EM Waves in 1D Plasma PhCs

In this section, by using the proposed lattice Boltzmann scheme, we analyze the
EM wave propagation behaviors in 1D plasma PhCs, demonstrate the adaptability of
the proposed method, and present an interesting phenomenon of the plasma medium to
incoming EM waves. By tuning the layer thickness d of the 1D plasma PhCs, we can change
the EM wave propagation behavior in 1D plasma PhCs.

Figure 8 shows a schematic of the proposed topological PhCs. 1D PhCs comprised
alternating layers of plasma and air, with a plasma layer thickness of d = 200 nm (Figure 9),
d = 20 nm (Figure 10), and d = 2 nm (Figure 11) in the region of x = 0.6 L to x = 0.8 L,
L = 10 µm in this case.
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Figure 9. Simulation of a wave propagating in air and striking 1D plasma PhCs with plasma layer
thickness d = 200 nm. The plasma has the properties of silver: ωp = 2000 THz, ϑc = 50 THz. The
propagating wave has a center frequency of 4000 THz. (a,b) show electric field in the computational
domain at different times (a) = 0 fs, (b) = 15 fs, and (c) = 23 fs. (Left side with film thickness of
1000 cells, right side with film thickness of 2000 cells).
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Figure 11. Simulation of a wave propagating in air and striking 1D plasma PhCs with plasma layer 
thickness ݀ = 2 nm. The plasma has the properties of silver: ߱௣ = 2000 THz, ߴ௖ = 50 THz. The 
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Figure 10. Simulation of a wave propagating in air and striking 1D plasma PhCs with plasma layer
thickness d = 20 nm. The plasma has the properties of silver: ωp = 2000 THz, ϑc = 50 THz. The
propagating wave has a center frequency of 4000 THz. (a,b) show electric field in the computational
domain at different times (a) = 0 fs, (b) = 15 fs, and (c) = 23 fs. (Left side with film thickness of
1000 cells, right side with film thickness of 2000 cells).
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Figure 11. Simulation of a wave propagating in air and striking 1D plasma PhCs with plasma layer
thickness d = 2 nm. The plasma has the properties of silver: ωp = 2000 THz, ϑc = 50 THz. The
propagating wave has a center frequency of 4000 THz. (a,b) show electric field in the computational
domain at different times (a) = 0 fs, (b) = 15 fs, and (c) = 23 fs. (Left side with film thickness of
1000 cells, right side with film thickness of 2000 cells).

The simulation results for the thin, middle, and thick layer thicknesses are presented
in Figures 9–11, respectively. Figure 9a shows that, at time t = 0 fs, the initial Gaussian-
modulated sinusoidal pulse at a frequency of 4000 THz is in the air zone. At time t = 15 fs,
Figure 9b shows that when the EM waves propagate through the two plasma layers on
the left side, only a very small part of the incoming EM waves is reflected back to the
air domain, and most of the other part penetrates the plasma; at time t = 23 fs, Figure 9c
shows that the EM waves pass through the leftmost plasma layer and still move toward
the right, and there are ten pulses with small amplitude propagating left. When the plasma
layer thickness is decreased to d = 20 nm and d = 2 nm, the propagating EM waves in the
computational domain at the same time snap as those in Figure 9 and are correspondingly
shown in Figure 11. At t = 15 fs, Figure 10b shows that when the EM waves pass through
the two plasma layers on the left side, a significant part of it is reflected back into the air
with plasma thickness d = 20 nm, whereas when the EM waves propagate through the
left side of the two plasma layers, only a very small part of the incoming EM waves is
reflected back into the air domain with plasma layer thickness d = 2 nm as shown in
Figure 11b. At t = 23 fs, Figure 10c shows that the EM waves are separated into two parts
in the computational domain, one significantly larger part propagates to the left, and
the other is located in the right air domain, which is the transmitted portion and still
moves forward, while the EM waves almost completely pass through the plasma layers
without an observable reflected part in the left air domain, as shown in Figure 11c. Since
the center frequency fc of the incoming EM waves is 4000 THz, the center wavelength
λc =

c
fc
= 75 nm. The relative permittivity of plasma at 4000 THz is near that of vacuum, as

shown in Figure 3. According to the theory of 1D plasma PhCs with constant permittivity,
the most significant bandgap with fc = 4000 THz is achieved when the plasma layer
thickness d ≈ λc

4 = 18.75 nm. Figures 8–10 show that the proposed lattice Boltzmann
scheme can be used to design the plasma layer thickness of 1D plasma PhCs.
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4. Conclusions

In this study, a novel LBM-SEF method is introduced to simulate electromagnetic
waves propagating in a 1D plasma medium. It is verified that the proposed method
is mathematically consistent with Maxwell’s equations by using the Chapman–Enskog
expansion method. The accuracy of the simulation results from the proposed method
is demonstrated through a comparison with the FDTD method. Two typical cases are
executed to analyze the characteristics of electromagnetic waves that propagate through a
plasma slab and 1D plasma PhCs. The results demonstrated the suitability of the proposed
model for frequency-dependent reflection and transmission at the air–plasma interface.
Moreover, it illustrated how to construct 2D and 3D LBM for electromagnetic waves in 1D
plasma PhCs.
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