
����������
�������

Citation: Tian, K.; Chai, H.; Liu, Y.;

Liu, B. Edge Intelligence Empowered

Dynamic Offloading and Resource

Management of MEC for Smart City

Internet of Things. Electronics 2022,

11, 879. https://doi.org/10.3390/

electronics11060879

Academic Editor: Rashid Mehmood

Received: 29 January 2022

Accepted: 8 March 2022

Published: 10 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Edge Intelligence Empowered Dynamic Offloading and
Resource Management of MEC for Smart City Internet
of Things
Kang Tian 1, Haojun Chai 1, Yameng Liu 1 and Boyang Liu 2,*

1 China Mobile System Integration Co., Ltd., Xi’an 710077, China; tiankang@cmict.chinamobile.com (K.T.);
chaihaojun@cmict.chinamobile.com (H.C.); liuyameng@cmict.chinamobile.com (Y.L.)

2 College of Communications and Information Engineering, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China

* Correspondence: liuboyang@xupt.edu.cn

Abstract: Internet of Things (IoT) has emerged as an enabling platform for smart cities. In this
paper, the IoT devices’ offloading decisions, CPU frequencies and transmit powers joint optimization
problem is investigated for a multi-mobile edge computing (MEC) server and multi-IoT device
cellular network. An optimization problem is formulated to minimize the weighted sum of the
computing pressure on the primary MEC server (PMS), the sum of energy consumption of the
network, and the task dropping cost. The formulated problem is a mixed integer nonlinear program
(MINLP) problem, which is difficult to solve since it contains strongly coupled constraints and
discrete integer variables. Taking the dynamic of the environment into account, a deep reinforcement
learning (DRL)-based optimization algorithm is developed to solve the nonconvex problem. The
simulation results demonstrate the correctness and the effectiveness of the proposed algorithm.

Keywords: Internet of Things; mobile edge computing; mixed integer nonlinear program; deep
reinforcement learning

1. Introduction

Smart city is a promising city paradigm, which improves the quality of experience
(QoE) of citizens through advanced information and communication technologies (ICTs)
infrastructure and enormous Internet of Things (IoT) devices [1–3]. A practical problem
is that the IoT devices are usually low cost with limited computing powers and storage
capacities. Therefore, it is hard to complete compute-intensive and latency-sensitive tasks
independently by the IoT devices. An intuitive method to alleviate this problem is to adopt
the cloud computing technology for remote task computation. However, most of the cloud-
ing computing servers are deployed far away from the IoT devices, in which offloading
the tasks of the IoT devices will cause severe transmission delay. Hence, traditional cloud
computing technology is difficult to satisfy the latency requirements of applications in
smart cities. To solve the issue mentioned above, researchers have proposed the concept of
mobile edge computing (MEC).

In MEC systems, MEC servers are deployed at the edge of network to provide cloud-
like computing services for the IoT devices [4,5]. IoT devices offload their compute-intensive
tasks to the MEC servers for task execution. Since MEC servers are deployed around the
IoT devices, the latency for task offloading is significantly reduced compared with the
cloud computing. Hence, MEC has been considered as a promising solution to provide
ultra-latency computation service for smart cities [1–3].

There have been a lot of works focused on the researches of the resource allocation
and caching problems in MEC systems in IoT or IoT related areas. A multi-user MEC
network consisting of a MEC server and multiple wireless devices was considered in [6].
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The weighted sum computation rate of all the wireless devices maximization problem was
studied. The computing mode and the system resource allocation were jointly optimized
by a proposed alternating direction method of multipliers decomposition technique-based
algorithm. In [7], a MEC system with a multiple antenna access point (AP) and K single
antenna users was studied. The beamforming vector of the AP, the CPU frequencies, the
numbers of offloaded bits and the time allocation of the users were jointly optimized
to minimize the energy consumption of the AP. A device-to-device (D2D)-MEC system
including one MEC server and multiple user devices was considered in [8]. The goal
of this paper was to maximize the number of devices serviced by the system under the
communication and computation resources constraints. Unlike the cloud computing, the
MEC server has limited computing power. Hence, in single base station (BS) or MEC server
scenarios, the IoT devices may have the problem of long service response time and even
failure during periods of peak demand. The authors in [9] studied a heterogeneous network
consisting of a multi-antenna macro-cell BS and multiple small-cells BSs. The offloading
decision, offloading and computation resources allocation were optimized to minimize
the total energy consumption of the devices within the coverage of the BSs. In [10], a
dense small-cell network was concerned, which had multiple MEC servers. The spatial
demand coupling, service heterogeneity, and decentralized coordination problems were
solved by a proposed collaborative service placement algorithm. In [11], the weighted
sum of the difference of the observed delay and its corresponding delay requirement at
each slice was minimized through optimizing the offloading decisions of the users and the
communication and computing resource allocation in a multi-cell MEC server network.

The above works focused on the MEC problems in static environment, which is a
particular case of dynamic environment. In dynamic environment, the MEC system state
changes randomly and unpredictable, which is more approximate to the practical scenarios.
In static environment, the MEC systems mainly concern about the short-term utility, while
in dynamic environment, the long-term utility are concerned. Edge intelligence empowered
by artificial intelligence (AI) is promising way to optimize the system performance in the
field of the smart city IoT [12–14]. In [15], the power control and computing resource
allocation optimization problem in Industrial Internet of Things MEC network was studied,
a deep reinforcement learning (DRL)-based dynamic resource management algorithm
was proposed to minimize the long-term average delay of the tasks. In [16], a content
caching problem was investigated, and an actor-critic DRL-based algorithm was studied to
maximize the cache bit rate. In [17], the task migration problem was studied in multi-MEC
server and multi-user network, a multi-agent DRL task migration algorithm was proposed
to solve the formulated problem. In [18], a multi-user end-edge-cloud orchestrated network
was proposed and a DRL-based computation offloading and resource allocation strategy
was designed to minimize the energy consumption of the system.

In practical scenarios, there are many metrics to measure the performance of a MEC
system, hence, the system requirements are always multifaceted. The works mentioned
above mainly considered single-objective optimization scenarios, which may be not gener-
alized and universal for some practical MEC systems. Motivated by these facts, we propose
a multi-MEC server and multi-IoT device cellular network structure and investigate a
weighted sum of multiple objectives minimization optimization problem in this paper. The
weighted sum of multiple objectives optimization problems in dynamic MEC systems were
also studied in [19–21], but the optimization objectives and system models are different to
ours. The key differences between the relevant works and our work are shown in Table 1.
The main contributions of this paper are summarized as follows:
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Table 1. Comparison of relevant works.

Work Objective Method Environments

Our work Weighted sum of computing
pressure on the PMS, energy

consumption, and task
dropping cost

DRL Dynamic

[6] Computation rate of the wireless
devices

Convex optimization Static

[7] Energy consumption of the AP Convex optimization Static

[8] Number of serviced devices Convex optimization Static

[9] Total energy consumption of the
devices

Convex optimization Static

[10] System utility Game theory Static

[11] Latency Convex optimization Static

[15] Long-term average delay of the
tasks

DRL Dynamic

[16] Cache bit rate DRL Dynamic

[17] Average completion time of tasks DRL Dynamic

[18] Energy consumption of the
system

DRL Dynamic

(1) A multi-MEC server and multi-IoT device cellular network structure is proposed.
A high-cost and high-performance primary MEC server (PMS) with relative strong
computing power is deployed in the BS, and multiple low-cost secondary MEC servers
(SMSs) with relative weak computing powers are deployed within the coverage area
of the BS.

(2) An optimization problem is formulated. The problem considers the weighted sum of
multiple optimization objectives, including the minimization of the weighted sum of
the computing pressure on the PMS, the sum of energy consumption of the network,
and the task dropping cost. The formulated problem is a nonconvex mixed integer
nonlinear program (MINLP) problem, which is solved by our proposed DRL-based
optimization algorithm.

(3) Simulation results are presented to evaluate the performance of the proposed algo-
rithm. The correctness and effectiveness of the proposed algorithm are demonstrated
by the simulation results.

The remainder of this paper is organized as follows. Section 2 presents the system
model and formulates the optimization problem. The proposed DRL-based optimization
algorithm is described in Section 3. The complexity and convergence analysis is given
in Section 4. Simulation results are provided in Section 5. Finally, Section 6 concludes
this paper.

2. System Model

In this section, we first introduce the proposed multi-MEC server and multi-IoT device
cellular network, the channel model, and the computation model, respectively. Then, based
on these we establish the optimization problem of our paper.

2.1. Network and Channel Model

As shown in Figure 1, a multi-MEC server and multi-IoT device cellular network
is considered, which consists of a high-performance PMS, M SMSs with relative weak
computing powers, and K IoT devices. The computing power of the PMS is much stronger
than the SMSs. The PMS is deployed at the BS, and the SMSs are deployed in the APs, which
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are distributed in different locations within the coverage area of the BS. A specific scenario
of this network is a UAV-assisted MEC system, in which the PMS is the BS and the SMSs can
be the UAVs equipped with limited computing power MEC servers. To avoid repetition,
the notations used below do not distinguish between PMS and BS, the SMS and the AP.
We assume each SMS’s cost is low and can be easily deployed and removed according
to the requirements of the MEC system. LetM = {0, 1, 2, . . . , M} denote the set of the
MEC servers, where 0 denotes the PMS and others denote the SMSs. Let K = {1, 2, . . . , K}
denote the set of the IoT devices. We assume that all of the IoT devices and MEC servers
are equipped with one single antenna. By adopting multi-antenna technologies, our work
can be extended to multi-antenna scenarios [7,9,22,23].

PMS BS SMS IoT Devices Offloading/Downloading Link

Figure 1. The illustration of the multi-MEC server cellular network.

It is assumed that the system is operated in a time-slotted manner with time-slot length
∆. In this paper, we concern about the long-term return during T consecutive time-slots.
The set of the time-slots is denoted as T = {1, 2, . . . , T}. Let hk,m,t denote the channel
power gain between the IoT device k and the MEC server m at time-slot t. Similar to [7,24],
we assume that the wireless channels between the IoT devices and the MEC servers remain
unchanged at each time-slot and vary at different time-slots. Motivated by the works
in [25,26], we adopt a Zk-element channel power gain state set to capture the time-varying
characteristics of the hk,m,t, denoted asHk,m =

{
h(k)1,m, h(k)2,m, . . . , h(k)Zk ,m

}
, i.e., hk,m,t ∈ Hk,m.

2.2. Computation Task Model

At time-slot t, the computation task of the IoT device k is denoted as βk,t, which is de-
fined by a tuple (lk,t, ck,t, τk,t), where lk,t denotes the size (in bits) of the task βk,t, ck,t denotes
the number of required CPU cycles for computing 1-bit of the task βk,t (i.e. the computa-
tional complexity), and τk,t is the latency requirement of the task βk,t. Similar to the assump-
tion in [27], we assume that at the beginning of each time-slot t, each IoT device k has a new
task arrival, lk,t is randomly generated from the set Lk =

{
L(k)

1 , L(k)
2 , . . . , L(k)

Nk

}
, and the cor-

responding computational complexity ck,t belongs the set of complexity

Ck =
{

C(k)
1 , C(k)

2 , . . . , C(k)
Nk

}
. For simplicity, the latency requirement for each task is set

to τk,t = ∆, ∀k ∈ K, t ∈ T .
To facilitate the resource management, a virtual system operator (VSO) is deployed at

the BS, which is responsible for collecting the network information (e.g., the channel state
information, size of the each IoT device’s task, each IoT device’s task computational com-
plexity, etc.) and allocating computation resources for the IoT devices. As the computing
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powers of the IoT devices are always weak, we assume that the tasks of each IoT device
must be entirely offloaded to a certain MEC server for computation through wireless link.
The task offloading decision variable of the IoT device k is denoted as µk,m,t ∈ {0, 1}, where
µk,m,t = 1 denotes the IoT device k’s computation task is offloaded to the MEC server m for
execution at time-slot t.

Let τk,m,t denote the time duration of task offloading from the IoT device k to the MEC
server m at time-slot t. The offloaded task is processed by the MEC server m in remaining
time duration ∆− τk,m,t. The rate of task data offloaded by the IoT device k to the MEC
server m at time-slot t can be expressed as

Rk,m[t] = Bk,mlog2

(
1 +

hk,m,t pk,m,t

σ2
m

)
, k ∈ K, m ∈ M, t ∈ T (1)

where Bk,m denotes the available channel bandwidth between the IoT device k and the
MEC server m; pk,m,t denotes the transmit power of the IoT device k at the time-slot t, σ2

m
is the noise power at the MEC server m. The energy consumption of the IoT device k at
time-slot t for task offloading is expressed as

Eo
m,k[t] = pk,m,tτk,m,t, k ∈ K, m ∈ M, t ∈ T (2)

The corresponding computation energy consumption of the MEC server m can be ex-
pressed as

Ec
m,k[t] = ρm f 3

m,k,t(∆− τk,m,t), k ∈ K, m ∈ M, t ∈ T (3)

where fm,k,t denotes the CPU frequency of the MEC server m allocated to the IoT device
k’s task at time-slot t; ρm is the effective capacitance coefficient of the MEC server m at
time-slot t, which is determined by the chip architecture [6,7].

2.3. Problem Formulation

If the computing pressure of the PMS is too high, i.e., if the VSO allocates too many
tasks to the PMS, the PMS may have higher probability for crashing. As the PMS has much
stronger computing power than the SMSs, the crashing of the PMS has serious impact
on the reliability of the MEC system. Meanwhile, the energy consumption and the task
completion rate are also very important to the MEC system. Therefore, in this paper, we
aim to minimize the weighted sum of the computing pressure of the PMS, the sum energy
consumption of the MEC servers and the IoT devices, and the task dropping cost. The
corresponding optimization problem is formulated as
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P1 : min
{µk,m,t},{τk,m,t},{ fm,k,t},{pk,m,t}

E

[
T

∑
t=1

γt−1

{
ω0ψ0

K

∑
k=1

µk,0,t

+ω1

[
ψ1

M

∑
m=0

K

∑
k=1

µk,m,t

(
E0

m,k[t] + Ec
m,k[t]

)
+ ψ2

M

∑
m=0

K

∑
k=1

µk,m,tΓk,t Ik,t(βk,t)

]}]
(4a)

s.t.
M

∑
m=1

µk,m,t = 1, µk,m,t ∈ {0, 1}, k ∈ K, m ∈ M, t ∈ T , (4b)

τk,m,tRk,m[t] ≥ µk,m,tlk,t, k ∈ K, m ∈ M, t ∈ T , (4c)
µk,m,tlk,tck,t

fm,k,t
≤ ∆− τk,m,t, k ∈ K, m ∈ M, t ∈ T , (4d)

pk,m,t ≥ 0, pk,m,t ≤ pk,max, k ∈ K, m ∈ M, t ∈ T , (4e)

fm,k,t ≥ 0, fm,k,t ≤
fm,max

K
∑

k=1
µk,m,t

, k ∈ K, m ∈ M, t ∈ T (4f)

0 ≤ τk,m,t ≤ ∆, k ∈ K, m ∈ M, t ∈ T , (4g)

ωi ∈ {0, 1}, i = 0, 1, k ∈ K, m ∈ M, t ∈ T , (4h)

where the first term of the objective function represents the computing pressure of the
PMS, the second term represents the sum of energy consumption of the network and
the task dropping cost; ω0 and ω1 are the weights of the two terms above, respectively;
ωi = 0, i = 0, 1 means the corresponding objective is not considered; ωi = 1, i = 0, 1 means
the corresponding objective is considered; ψi > 0, i = 0, 1, 2 is the normalization factors
to normalize each term. γ ∈ [0, 1] is the discount factor, which denotes the difference on
importance between the future rewards and the present reward [28]; pk,max and fm,max
denote the maximal transmit power of the IoT device k and the maximal available CPU
frequency of the MEC server m, respectively. Γk,t > 0 is task dropping cost of the IoT device
k at time-slot t. Ik,t is the indicator function, which is given as

Ik,t =

{
0, βk,t is completed
1, βk,t is dropped.

(5)

(4b) is the offloading decision variable constraint, which guarantees each IoT device’s task
has been allocated to a MEC server. (4c) and (4d) are the IoT devices’ computation tasks
constraints to make sure that each IoT device’s task can be offloaded and completed. (4e) is
the transmit power constraint of the IoT devices. (4f) is the CPU frequency constraint, we
assume that IoT devices equally share the CPU at the MEC server m, m ∈ M. (4g) and (4h)
are the constraints of task offloading time and weights, respectively.

Due to the binary variable µk,m,t and high coupling constraints, problem P1 is a non-
convex MINLP problem. Furthermore, the computation tasks of the IoT devices and the
channel gains are randomly varying during T consecutive time-slots. Hence, it is impossible
to solve the problem at the beginning of the T consecutive time-slots. Thus, traditional
optimization-based methods are not suitable to solve the problem P1.

3. Proposed DRL-Based Optimization Algorithm

In order to address the above issue, we propose a DRL-based optimization algorithm
in this section. Specifically, we utilize the importance sampling based parameterized policy
gradient approach (PPGA) DRL algorithm [28]. In order to apply the DRL-based algorithm,
we first give the system state, action, reward, and the policy of the MEC system as follows:

(1) System state S(t): The system state at time-slot t is characterized by the chan-
nel power gain, the size (in bits) of computation task data, and the corresponding task
complexity, i.e., S(t) =

{
(hk,m,t, lk,t, ck,t), k ∈ K, m ∈ M, t ∈ T

}
.
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(2) Action A(t): A(t) is the set of the offloading decisions of the IoT devices, i.e.,
A(t) =

{
µk,m,t, k ∈ K, m ∈ M, t ∈ T

}
.

(3) Reward R(t): After executing an action A(t) under system state S(t) at time-
slot t, the VSO will receive a reward R(t). The reward of a DRL model is direct related
with the optimization objective of the system. Therefore, the reward of our DRL model
is determined by the objective function value of the problem P1 at time-slot t. With
given

{
µk,m,t, k ∈ K, m ∈ M, t ∈ T

}
(A(t)), the optimization problem for reward R(t) are

given as

P2 : −R(t) =

min
{τk,m,t},{ fm,k,t},{pk,m,t}

γt−1

{
ω0ψ0

K

∑
k=1

µk,0,t

+ω1

[
ψ1

M

∑
m=0

K

∑
k=1

µk,m,t

(
E0

m,k[t] + Ec
m,k[t]

)
+ ψ2

M

∑
m=0

K

∑
k=1

µk,m,tΓk,t Ik,t(βk,t)

]}
(6a)

s.t. (4b)− (4h). (6b)

The standard form of the DRL-based optimization problem is to maximize the accumulated reward,
hence, we add a minus sign before the R(t). Obviously, when

{
µk,m,t, k ∈ K, m ∈ M, t ∈ T

}
are determined, the computing pressure of the PMS is determined too. Therefore, solving
the problem P2 is equal to solve the problem P3 below

P3 : min
{τk,m,t},{ fm,k,t},{pk,m,t}

ω1

[
ψ1

M

∑
m=0

K

∑
k=1

µk,m,t

(
E0

m,k[t] + Ec
m,k[t]

)
+ ψ2

M

∑
m=0

K

∑
k=1

µk,m,tΓk,t Ik,t(βk,t) (7a)

s.t. (4c)− (4g). (7b)

Based on the primal decomposition theory [29], the problem P3 can be decomposed
into K sub-optimization problems. Specifically, for the IoT device k and the MEC server m,
k, m ∈

{
k, m|µk,m,t = 1

}
, the corresponding sub-optimization problem can be expressed as

P3,km : min
{τk,m,t},{ fm,k,t},{pk,m,t}

ψ1

[
E0

m,k[t] + Ec
m,k[t]

]
+ ψ2Γk,t Ik,t(βk,t) (8a)

s.t. (4c)− (4g). (8b)

If the problem P3,km is solvable, i.e., there exist feasible solutions of τk,m,t, fm,k,t, and
pk,m,t to meet the constraints (4c)–(4g). The optimal value of P3,km is equal to the optimal

objective value of ψ1

[
E0

m,k[t] + Ec
m,k[t]

]
. On the other hand, if there exist no feasible solu-

tions of τk,m,t, fm,k,t, and pk,m,t, we let the objective value of P3,km be equal to Γk,t. It is worth
noting that, if not all the IoT devices’ tasks can be completed, our work can not be applied to
minimize the sum of energy consumption of the system. According to P3,km, if we set ψ2 = 0,
the optimal solutions for µk,m,t is to set µk,m,t = 0, k ∈ K, m ∈ M, t ∈ T, which are pointless
solutions. Hence, the conditions ψ1 > 0 and ψ2 > 0 must be satisfied simultaneously when
ω1 = 1. If the problem P3,km has feasible solutions, the problem P3,km is transformed into
P4,km, which is given as

P4,km : min
{τk,m,t},{ fm,k,t},{pk,m,t}

[
E0

m,k[t] + Ec
m,k[t]

]
(9a)

s.t. (4c)− (4g). (9b)

Problem P4,km is still non-convex and intractable due to the complex coupling among
the variables τk,m,t, fm,k,t, and pk,m,t. To address this issue, we adopt block coordinate



Electronics 2022, 11, 879 8 of 15

descending (BCD) algorithm to optimize τk,m,t, fk,m,t, and pk,m,t alternately. For any given
feasible τk,m,t, the optimization problem P4,km is transformed into P5,km, which is given as

P5,km : min
fm,k,t ,pk,m,t

pk,m,tτk,m,t + ρm f 3
m,k,t(∆− τk,m,t) (10a)

s.t. (4c)− (4f). (10b)

The above optimization problem can be further decomposed into the following two man-
ageable sub-problems, namely,

P5,km,1 : min
pk,m,t

pk,m,tτk,m,t (11a)

s.t. (4c), (4e). (11b)

P5,km,2 : min
fm,k,t

ρm f 3
m,k,t(∆− τk,m,t) (12a)

s.t. (4d), (4f), (12b)

Theorem 1. For a given τk,m,t, the optimal pk,m,t and fk,m,t can be given as

f ∗m,k,t =
µk,m,tlk,tck,t

∆− τk,m,t
, (13a)

p∗k,m,t=
σ2

m
hk,m,t

2
µk,m,t lk,t

τk,m,t Bk,m − σ2
m

hk,m,t
, (13b)

respectively.

Proof. It is easy to prove that problem P5,km,1 and P5,km,2 are both convex optimization
problem and can be efficiently solved by using the Karush-Kuhn-Tucker (KKT) condi-
tions [30].

Substituting the above results into P5,km, we have

P6,km : min
τm.k,t

σ2
m

hk,m,t
τk,m,t2

µk,m,t lk,t
τk,m,t Bk,m + ρm

(µk,mlk,tck,t)
3

(∆− τk,m,t)
2 −

σ2
m

hk,m
τk,m,t (14a)

s.t. τmin
k,m,t ≤ τk,m,t ≤ τmax

k,m,t, (14b)

where

τmin
k,m,t =

µk,m,tlk,t

Bk,mlog2

(
1 + hk,m,t pk,max

σ2

) , (15a)

τmax
k,m,t = ∆− µk,m,tlk,tck,t

M
∑

k=1
µk,m,t

fm,max
. (15b)

According to Theorem 1, the optimal solution of the problem P5,km have closed-form
optimal solutions, which are determined by the value of τm.k,t. Therefore, if τmin

k,m,t ≤ τmax
k,m,t,

solving the problem P4,km is equivalent to solving the problem P6,km, which has one opti-
mization variable τm.k,t. If τmin

k,m,t > τmax
k,m,t, the problem P6,km is unsolvable.

Theorem 2. The optimization problem P6,km is convex.

Proof. See Appendix A.
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Based on the convexity illustrated in Theorem 2, we can adopt the bisection method to
solve the problem P6,km. The bisection based optimization algorithm for solving problem
P6,km is summarized in Algorithm 1, where g(τk,m,t) denote the objective function of P6,km.

(4) Policy πθθθ [A(t)|S(t) ]: The policy πθθθ [A(t)|S(t) ] denotes the mapping from the state
S(t) to the action A(t) of the MEC system, i.e., πθθθ [A(t)|S(t) ] : S(t)→ A(t), where θθθ is the
parameter of the policy.

The parameter of the policy πθθθ [A(t)|S(t) ] is obtained through gradient based method.
The performance measure Y(θθθ) of the PPGA is defined as [28]

Y(θθθ) = Vπθθθ [A(t)|S(t) ][S(0)] (16)

where Vπθθθ
[S(0)] is the value function for policy πθθθ starting from initial state S(0) and θθθ is

the parameter of the policy. An analytic expression for the gradient of Y(θθθ) is provided by
policy gradient theorem [28], which is given as

∇Y(θθθ) ∝ ∑
S(t)

µ[S(t)] ∑
A(t)

qπθθθ [A(t)|S(t) ][S(t), A(t)]∇πθθθ [A(t)|S(t) ] (17)

where µ[S(t)] is the on-policy distribution over states, qπθθθ [A(t)|S(t) ][S(t), A(t)] is the value
of taking action A(t) in state S(t) under policy πθθθ [A(t)|S(t) ].

Algorithm 1: A Bisection Algorithm for Solving P6,km

1: Initialization:
2: The bisection algorithm iteration index i = 1, maximum number

of iterations Imax,
[
τmin

k,m,t, τmax
k,m,t

]
, ∀k ∈ K, m ∈ M, the tolerance errors ξ.

3: for: i = 1 : Imax

4: Update c =
τmin

k,m,t+τmax
k,m,t

2 .
5: if g′(c) = 0 then
6: The optimal value of τk,m,t is τ

opt
k,m,t = c;

7: break;
8: end if
9: if g′

(
τmin

k,m,t

)
g′(c) < 0 then

10: Update τmax
k,m,t = c;

11: end if
12: if g′(c)g′

(
τmax

k,m,t

)
< 0 then

13: Update τmin
k,m,t = c;

14: end if
15: if

∣∣∣τmax
k,m,t − τmin

k,m,t

∣∣∣ < ξ or i == Imax then

16: The optimal value of τk,m,t is τ
opt
k,m,t = c;

17: end if
18: end for

An action-independent baseline b[S(t)] is always introduced to decrease the variance
in the training process. Then, the analytic expression for the policy gradient with baseline
is denoted as

∇Y(θθθ) ∝ ∑
S(t)

µ[S(t)] ∑
A(t)

[
qπθθθ [A(t)|S(t) ][S(t), A(t)]− b[S(t)]

]
∇πθθθ [A(t)|S(t) ]. (18)

Off-policy method adopts an exploratory behavior policy ψ[A(t)|S(t) ] to generate
behavior, while the target policy πθθθ [A(t)|S(t) ] learns about the behavior and finally become
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the optimal policy. Importance sampling technique is widely used by off-policy methods,
which weights the returns by importance-sampling ratio [28]. The parameter θθθ is updated as

θθθt+1 = θθθt + αγt 1
ψ[A(t)|S(t) ] (G− b[S(t)])

∇πθθθt [A(t)|S(t) ]
πθθθt [A(t)|S(t) ] (19)

where α is the learning rate, G is the return following time-slot t, θθθt is the estimate of θθθ at
time-slot t. We adopt the estimate of the state value v[S(t); w] as the baseline, where w is
the weight vector of the state value function. Then, the DRL-based algorithm is summarized
in Algorithm 2.

Algorithm 2: The proposed DRL-based algorithm.

1: Initialization:
2: θθθ, w, target policy πθθθ [A(t)|S(t) ], behavior policy ψ[A(t)|S(t) ]

maximal number of iterations Kmax, discount factor γ, the learning
rate of policy αp > 0, the learning rate of the baseline αb > 0;

3: for k = 1 : Kmax:
4: Using ψ[A(t)|S(t) ] and Algorithm 1 to generate trajectory

S(0), A(0), R(1), S(1) . . . S(T − 1), A(T − 1), R(T),
S(T) by action policy ψ;

5: for t = T − 1, T − 2, . . . , 0:
6: Update G: G ← γG + Rt+1;
7: Update w: w← w + αb[G− v[S(t); w]]∇v[S(t); w];
8: Update θθθ by (18) with α = αb;
9: end for
10: end for

4. Complexity and Convergence Analysis

According to [31], the computation complexity of a training step for a full-connection

deep neural network (DNN) is O

(
J

∑
j=1

Nrj−1Nrj

)
, where J is number of the layers, Nrj

is the number of the neural in j-th layer. Considering Algorithm 1 and Algorithm 2, the

total complexity of our proposed algorithm is O

(
2TU

J
∑

j=1
Nrj−1Nrj Imax

)
, where U is total

training episodes.
The convergence guarantee of the DRL algorithm is still an open issue [27], which

are influenced by many factors, such as the setting of the hyperparameters and the initial
value of the DNN parameters. The convergence performance of our proposed algorithm is
shown in Section 5.

5. Simulation Results

In this section, simulation results are provided to evaluate the performance of the
proposed DRL-based algorithm. We conduct the simulations through python 3.8 and
Tensorflow 2.5.0. Fully-connected hidden layer with 10 neurons in both the baseline
and policy networks are employed. The learning rates αb and αp are set as 8e−3 and
2e−3, respectively. The channel bandwidth between each IoT device and each MEC
server is 200 KHz. The maximum CPU frequency of the SMS and the PMS are set as
1 GHz and 5 GHz, respectively. The length of time-slot ∆ is set as 100 ms. Hk,m is
set as

{
2× 10−6, 4× 10−6, 6× 10−6, 8× 10−6}, k ∈ K, m ∈ M. Without loss of general-

ity, ck,t, k ∈ K, m ∈ M, t ∈ T are all set as 1000. ρm is set as 1 × 10−27. Lk is set as{
1.5× 104, 3× 104, 4.5× 104, 6× 104} bits, k ∈ K. T is set as 40.

Figure 2 shows the impacts of the initial values of θθθ and w on the accumulated reward.
The iterative algorithms are susceptible to the initial value of variables. In our paper, the
initial value of θθθ and w are randomly given, which is a common way in DRL algorithms. It
can be seen from Figure 2 that different initial values of θθθ and w have deep influences on
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the convergence performance of the our DRL based algorithm. In order to guarantee the
performance of the algorithm, we must run the algorithm multiple times and select the one
has best performance as the final output.

Training episodes
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Figure 2. The impacts of the initial value of θθθ and w on the accumulated reward.

Figure 3 shows the impact of the weights on the normalized number of tasks sent
to the PMS per episode. It can be seen from Figure 3 that the case (ω0, ω1) = (1, 0) has
the smallest number of tasks sent to the PMS. This is because the VSO only concerns the
computing pressure of the PMS when (ω0, ω1) = (1, 0). When (ω0, ω1) = (0, 1), the VSO
mainly tries to find a policy to minimize the number of dropped tasks, namely, to make the
problem P3,km solvable. As the PMS has strongest computing power, the VSO will allocate
many tasks to the PMS, which can be proofed by Figure 3. Finally, when (ω0, ω1) = (1, 1),
the VSO must make a trade-off between the computing pressure on the PMS and the task
dropping cost. Hence, when (ω0, ω1) = (1, 1), the number of tasks sent to the PMS per
episode is higher than the case (ω0, ω1) = (1, 0) but smaller than the case (ω0, ω1) = (0, 1).
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Figure 3. The impact of the weights on the normalized number of tasks sent to the PMS per episode.

Figure 4 shows the impact of the weights on the normalized number of dropped
tasks per episode. When (ω0, ω1) = (1, 0), most of the tasks are allocated to the SMSs to
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reduce the computing pressure of the PMS. Since the computing power of the SMSs are
weak, many tasks may be dropped. The case (ω0, ω1) = (0, 1) has the smallest normalized
number of dropped tasks per episode, which is explained in Figure 3. Similar to that in
Figure 3, the case (ω0, ω1) = (1, 1) has middle number of dropped tasks per episode.
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Figure 4. The impact of the weights on the normalized number of dropped tasks per episode.

Figures 5 and 6 show performance comparisons between our proposed algorithm
((ω0, ω1) = (1, 1)) and two benchmark polices: only send to the PMS policy and random
allocation policy. Only send to the PMS policy allocate all the IoT devices’ tasks to the PMS,
which is a policy adopted in typical single MEC server deployment scenario. Random
allocation policy allocates each IoT device’s task randomly to the M + 1 MEC servers. The
two benchmark policies are both short-term optimization policies, we plot the mean value
of the normalized number of tasks sent to the PMS and dropped tasks per episode in
Figures 5 and 6. As shown in Figures 5 and 6, our proposed algorithm achieve superior
performances on computing pressure of the PMS and tasks dropped cost than the only
send to the PMS policy. In order to obtain a lower task dropped cost, our algorithm
has larger computing pressure on the PMS than the random allocation policy. However,
we have significant performance gain in term of task dropped cost compared with the
random allocation policy. Hence, our proposed algorithm is more practical than the random
allocation policy.
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Figure 5. Comparison with benchmark polices in terms of normalized number of tasks sent to the
PMS per episode.
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Figure 6. Comparison with benchmark polices in terms of normalized number of dropped tasks
per episode.

6. Conclusions

We studied the problem of making trade-off among the computing pressure on the
PMS, the sum of energy consumption of the IoT devices and all the MEC servers, and the
task dropping cost. The formulated MINLP problem was solved by a proposed DRL-based
optimization algorithm. The simulation results demonstrated the validity of the proposed
algorithm.
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Appendix A

Proof of Theorem 1. We start the proof by deriving the first and second order derivatives
of the objective function of P6,km to clarify the convexity. Specifically, let g(τk,m,t) denote
the objective function of P6,k, namely,

g(τk,m,t) =
σ2

hk,m,t
τk,m,t2

µk,m,t lk,t
τk,m,t Bk,m + ρm

(µk,mlk,tck,t)
3

(∆− τk,m,t)
2 −

σ2

hk,m,t
τk,m,t. (A1)

Thus, its first and second order derivatives can be respectively given as

g′(τk,m,t) = 2
µk,m,t lk,t

τk,m,t Bk,m

(
σ2

hk,m,t
− σ2

m
hk,m,t

µk,m,tlk,t

τk,m,tBk,m
ln 2
)
+

2ρm(µk,m,tlk,tck,t)
3

(∆− τk,m,t)
3 − σ2

m
hk,m,t

, (A2a)

g′′(τk,m,t) =
σ2

m
hk,m,t

2
µk,m,t lk,t

τk,m,t Bk,m (ln 2)2 µ2
k,m,tl

2
k,t

B2
k,mτ3

k,m,t
+

6ρm(µk,m,tlk,tck,t)
3

(∆− τk,m,t)
4 . (A2b)

It is observed that the second order derivative of the objective function is positive for any
feasible τk,m,t. Thus, the optimization problem P5,km contains a convex objective function
and a linear constraint. Therefore, the optimization problem P5,km is a convex optimization
problem. The proof is completed.
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