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Abstract: High-definition (HD) maps determine the location of the vehicle under limited visibility
based on the location information of safety signs detected by sensors. If a safety sign disappears or
changes, incorrect information may be obtained. Thus, map data must be updated daily to prevent
accidents. This study proposes a map update system (MUS) framework that maps objects detected
by a road map detection system and the object present in the HD map. Based on traffic safety
signs notified by the Korean National Police Agency, 151 types of objects, including traffic signs,
traffic lights, and road markings, were annotated manually and semi-automatically. Approximately
3,000,000 annotations were trained based on the you only look once (YOLO) model, suitable for
real-time detection by grouping safety signs with similar properties. The object coordinates were
then extracted from the mobile mapping system point cloud, and the detection location accuracy was
verified by comparing and evaluating the center point of the object detected in the MUS. The perfor-
mance of the groups with and without specified properties was compared and their effectiveness
was verified based on the dataset configuration. A model trained with a Korean road traffic dataset
on our testbed achieved a group model of 95% mAP and no group model of 70.9% mAP.

Keywords: autonomous driving; YOLOv3; traffic sign; traffic dataset; HD map; object detection

1. Introduction

One of the important elements in an automated driving system (ADS) is the high-
definition (HD) map embedded in a vehicle. When sensors installed in autonomous
vehicles do not detect the surrounding situation, high-definition maps that include spatial
information on roads and road facilities should be used. A method for maintaining and
rapidly updating changes in object data contained within the HD map is a major challenge.
The equipment required to update HD maps usually involves an MMS equipped with light
detection and ranging (LiDAR), a global navigation satellite system (GNSS), an inertial
navigation system (INS), and vision sensors [1,2]. Unfortunately, equipment related to map
renewal is very expensive, costing up to hundreds of millions of dollars. Furthermore,
much of the work, such as processing and matching the information acquired from the
MMS equipment, and extracting and converting spatial objects, is performed manually.
Therefore, an update system that can acquire road images and quickly update them by
installing industrial cameras on many vehicles is required. Figure 1 shows the proposed
update scenario. For example, in order to utilize vehicle resources such as public route
buses, taxis, and express buses, the cost of the equipment has to be considered [3]. An
increasing number of domestic and foreign companies have started acquiring road image
information from vehicles and automating HD map updates using camera-based mobile
mapping technology to provide rapid updates.
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Figure 1. HD map generation and update scenario.

High detection rates and precision localization are essential for the automation of HD
map updates. Commercial map providers, such as Mobileye [4], HERE [5], CARMERA [6],
and TomTom [7], have already produced HD maps annotated with 3D geographic and
semantic information on traffic landmarks with an accuracy of 10 cm [8].

In South Korea, the National Geographic Information Institute (NGII) built HD maps
with an accuracy comparable to that of the HD maps provided by HERE and TomTom [9].
It is necessary to develop a detector that is as robust as possible to the environment for
detecting road facilities in order to update the HD map generated with MMS equipment.
In previous studies, the detection of traffic signs, road markings, and traffic lights have
traditionally been developed based on computer vision.

Typically, traffic signs, lights, and road markings are designed to be easily distin-
guished from their surroundings [10].

The computer vision algorithms used to detect traffic signs, lights (signals), and
road markings are commonly divided into three types. As shown in Figure 2, extensive
research has been conducted using color-based methods (e.g., color thresholding, region
growing, color indexing, dynamic pixel aggregation, and CIECAM97 model), shape-based
methods (e.g., Hough transformation, similarity detection, distance transform matching,
edge detection features, and Haar-like features), and hybrid methods (i.e., color- and shape-
based features) [11]. However, these algorithms lack robustness because their detection
performance depends on the climatic conditions, such as weather, sunsets, and sunrises.
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To overcome this limitation, a detector based on deep learning was applied rather
than a computer vision algorithm in order to increase the robustness of the detector to
environmental conditions.
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Extensive research has been conducted to improve the detection performance by
applying various deep learning algorithms to object detection systems, owing to the rapid
development of deep learning techniques [12].

He et al. [13] applied a dual-view convolution neutral network framework for lane
detection and road markings. The dataset was composed of 47 batch images, where
20,000 images were included in each batch. Eight batches with a total of 10,000 images were
randomly chosen for the experiments.

Additionally, Zhang et al. [14] detected small traffic signs in real scenes using YOLOv3.
They proposed a new detection scheme to improve the detection efficiency. Zhou et al. [15]
proposed an ice environment traffic sign detection benchmark, ITSRB detection benchmark
(ITSDB), and an attention network based on high-resolution traffic sign classification. The
benchmarks included 5806 images with 43,290 traffic sign instances with different climates,
lights, times, and occlusion conditions. They tested the robustness of the Libra-RCNN and
HRNetv2p on the ITSDB compared with Faster-RCNN. The German traffic sign detection
dataset is the newest and most effective network.

Li et al. [16] proposed a multi-scale MobileNeck module and an algorithm to improve
the performance of an object detection model by outputting a series of Gaussian parameters.
Based on the above two methods, a new confidence aware mobile detection (MobileDet)
model was proposed. They tested MobileDet on the KITTI and VOC datasets.

Moreover, Lee et al. [8] proposed a semi-automatic method that speeds up the an-
notation by a factor of 3.19 in comparison to manual annotation. The dataset consists
of approximately 150,000 images and includes approximately 470,000 annotated traffic
landmarks. They trained a deep neural network on their dataset to detect traffic landmarks,
and its performance was evaluated using a novel evaluation metric.

Zhu et al. [17] also applied a robust end-to-end convolutional neural network (CNN)
and created a large traffic sign benchmark from 100,000 Tencent Street View panoramas,
which provided 100,000 images containing 30,000 traffic sign instances. These images
covered large variations in the illuminance and weather conditions. They called this
benchmark Tsinghua Tencent 100K and confirmed its effectiveness. Because HD maps
require a high positional precision, the positioning performance of the detector plays an
important role.

Deep learning detectors are usually divided into CNN-based one- and two-stage
detectors. The two-stage family proceeds sequentially with the region proposals and
classification. The earliest object detection method based on an RCNN [18] is a two-
stage detector.

The backbone of RCNN uses AlexNet [19], the winner of the ILSVRC2012 competition.
Although the two-stage detectors achieve a good detection performance, the training
and testing speeds are extremely slow. Fast R-CNN [20] and Faster R-CNN [21] have
been proposed, along with the two-stage families SPPNet [22], FPN [23], and Cascade
R-CNN [24], to solve these problems.

Real-time detection requires a minimum of 15 to 30 fps, and Faster-RCNN is usually
approximately 5fps. Therefore, they are unsuitable for real-time applications.

To solve this speed problem, a one-stage method has been proposed, which simultane-
ously proceeds with region proposal and classification. A typical detector is the you only
look once (YOLO) detector proposed in 2015 [25]. YOLO divides the input image into a grid
and synchronously predicts the confidence score and probability values for each region
of the bounding boxes. YOLO has shown a fast detection speed, although its accuracy
is reduced. Joseph et al. has since made some incremental improvements and proposed
YOLOv2 [26] and YOLOv3 [27]. In addition to the YOLO family, SSD [28], Retina-Net [29],
EfficientDet [30], and RefineDet [31] are representative state-of-the-art models.

In this study, a device equipped with Jetson AGX Xavia, vision sensor, global position-
ing system (GPS), and an inertial measurement unit (IMU) was developed at a low cost
to quickly update facilities, such as traffic signs, in HD maps. This device is termed the
road map detection system (RMDS). Additionally, the YOLOv3 model was adopted for fast
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detection, and a study was conducted to determine the method of configuring the dataset
to achieve an optimal detection performance.

Furthermore, the detection performance, which was varied based on the dataset
configuration, was evaluated. The construction of an accurate training dataset was the most
crucial aspect of the research and development of deep learning-based detection systems.

The remainder of this paper is organized as follows. Section 2 describes the system
and the contents of the annotation data. Section 3 describes the experimental method used,
while Section 4 discusses the experimental results. Lastly, Section 5 presents the conclusions
of the study.

2. Materials and Methods

The majority of the research conducted in this field in Korea is based on the open
datasets KITTI [32], BBD100K [33], GTSDB [34], LISA [35], PASCAL VOC [36], and MS
COCO [37], rather than Korean-specific datasets.

This research has mainly focused on the evaluation of the improved algorithm per-
formance based on open datasets, or the dataset has been constructed by selecting only
portions of the traffic signs. As the road transportation environments vary from country to
country, the composition of the datasets should also vary.

In our dataset, 151 types of objects were applied as road objects for the HD-map
updates based on the list of road traffic safety signs notified by the Korean National Police
Agency (4 July 2014).

The image datasets were collected at 4K (3840 × 2160) and 30 fps for more than
40,000 km, including Seoul, Busan, and highways with more than four lanes.

Additionally, the data were constructed using the most suitable method for a road
environment in order to analyze the degree of improvement in the detection performance
based on data balancing and augmentation.

As there are traffic signs that do not exist in the datasets, several types of signs have
been made in this study with the support of the Korea Automobile Testing and Research
Institute. The traffic signs were installed in the K-City facility and additional data were
collected (a test facility for autonomous vehicle experiments) [38].

2.1. Dataset Construction System (DCS) Description and Data Collection

The dataset construction system (DCS) hardware was developed to build the road
traffic datasets. The vision sensor is the most important part of a DCS. A vision sensor
manufactured by the CIS company that can quickly control environmental changes was
installed, as the illuminance varied according to the time and place in the outdoor envi-
ronment and a lens with a wide horizontal angle was selected. Additionally, the exposure
and sensitivity could be adjusted within a maximum period of 1 s after automatic metering
during shooting. The specifications for the vision sensor, lens, and installation method are
listed in Table 1 and Figures 3 and 4.

Table 1. DCS camera and lens specifications.

Parameters Specification

Image sensor SONY IMX255 CMOS Sensor
Sensor size 1”
Aspect ratio 16:9
Resolution 4K, 3840(H) × 2160(V)

Shutter Global shutter
Frame rate 60 fps

Lens Focal length 8 mm
Angle of view 85.7 × 67.5

Lens resolution 2.5 µm
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Figure 4. (a) DCS vehicle and (b) 3D model of the camera lens housing.

Our image dataset included day, night, sunset, sunrise, snow, and rain images of Seoul,
Busan, and highways with more than four lanes (Figure 5). Table 2 presents the number
of annotations for each class. The routes were set to areas with as many traffic signs as
possible. The Pangyo District in Gyeonggi Province was selected as the testbed road and
ground truth for the annotation.
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Table 2. Number of annotations for each class in the dataset.

Objects Number of Annotations Percentage

Warning sign 177,069 5.2%
Prohibition sign 316,690 9.2%
Mandatory sign 339,347 9.9%
Road marking 1,847,541 53.8%

Traffic light 494,311 14.4%
Rubber cone 60,480 1.8%

Manhole Cover 195,506 5.7%

Total 3,430,944 100%
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Additionally, performance tests were conducted in the testbed region to verify the
detection performance. Table 3 presents the total number of annotated data for the Pangyo
District ground truth annotation configuration.

Table 3. Testbed ground truth.

Objects Number of Annotations Percentage

Warning sign 634 3.2%
Prohibition sign 1842 9.4%
Mandatory sign 1919 9.8%
Road marking 12,349 63.1%

Traffic light 1783 9.1%
Rubber cone 61 0.3%

Manhole Cover 998 5.1%

Total 19,586 100%

2.2. Data Annotation and Classification Structure

A total of 151 types of annotation data objects were selected based on the Traffic Safety
Sign List of the Korea National Police Agency (Figure 6). However, it was difficult to
balance the number of objects.
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Figure 6. Total of 151 types were selected, including: (a) warning signs, (b) prohibition signs,
(c) mandatory signs, (d) road markings, (e) traffic lights, (f) rubber cones, and (g) manholes.

For example, imbalance occurred mainly because other objects such as crosswalks and
stop lines existed together where the traffic lights were present. This imbalance resulted in
a poor detection performance. Additionally, there were frequent signs for approximately
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40,000 km, while there was only one specific sign or none on the actual road. An assumption
was made to address the problem of data imbalance.

Assumption:
If the shapes and colors are similar, the algorithm will not be biased during training.
As shown in Figure 7, the dataset was divided into seven groups based on this

assumption. The dataset was distinguished by the warning signs of group 1, prohibition
signs of group 2, mandatory signs of group 3, road markings of group 4, traffic lights of
group 5, rubber cones of group 6, and manholes of group 7.
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Figure 7. Training dataset group.

The rubber cone of group 6 was selected to check the dynamic data (to update the
data when construction or critical issues suddenly occur on the road), and the manholes of
group 7 were added for use as future ground control points in the HD map. The detection
results were provided, and groups were created with at least 40,000 objects in constant
quantities. However, all the imbalances in the datasets with groups could not be resolved.
Thus, HD maps could not be easily achieved, even if only seven groups were detected well.
A CNN network was added to the final classification map update server to classify the
properties of each group specific detected object.

A CNN is added to improve the performance of the classifier. Therefore, a structure
was designed to classify the object properties using a CNN classifier by extracting the
detected region of interest (ROI) from the group-trained detectors (Figure 8). A dataset
was further trained to classify the 151 types of objects by using the Darknet-53 convolution
network. However, in the collected image data, 93 types (Figure 9) of data with no or
insufficient target object data were created for less than 1000 and additionally collected by
the K-CITY facility (Figure 10) for each time period [38]. K-City is a facility for conducting
autonomous driving experiments.
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Figure 10. Image data collection field photography in K-CITY facility.

Despite the imbalance of data for each object in each group, it was judged to be suffi-
cient for machine-learning-based applications because there were more than 10,000 objects
for each group.

Furthermore, for classification using a CNN, insufficient class data were balanced to
approximately 10,000 per object through augmentation and up-sampling for data balancing
and performance improvements (Figure 11).
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YOLO is limited by its poor detection performance for small objects. Although
YOLOv3 has relatively improved with the use of multiple scales, a higher accuracy is
required for HD maps [14]. Essentially, when the object detected in the original image is
reclassified by a CNN, the detection structure is changed to improve the performance when
compared to the classification by using only YOLOv3.

2.3. Augmentation and Balancing

Augmentation is widely used in CNN structures. It is used in this study to reinforce
the balance of our datasets and the relatively insufficient number of object datasets. There is
inevitably an imbalance in the object when annotating the road environment data. It is also
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difficult to build all the objects using real data in every situation. The amount of data are
augmented through brightness, contrast, shifting, noise, distortion, and random erasures
to add an insufficient amount of data. Additionally, in order to set the minimum maximum
limit of parameters for image processing, the parameters were set by testing whether
each processing-specific object detection was available. A data augmentation combination
scenario was also created to perform the CNN performance tests in parallel [41]. As shown
in Table 4 and Figures 12 and 13, augmentation was performed by randomly mixing the
functions from A to G.

Table 4. Augmentation type and parameter range.

No. Function Random Param-1 Random Param-2

A Brightness −30 +30
B Contrast 0.8 1.4
C Translation −15 +15
D Rotation −0.5 +0.5
E Affine −10 +10
F Gaussian blur 1.6 3.8
G Random erasing 18 27
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2.4. Road Map Detection System (RMDS) Based on YOLOv3

The RDMS algorithm for HD map updates was based on YOLOv3. This is because
a fast-paced deep-learning algorithm was required, and a CNN was further applied to
reinforce the poor classification performance.

The processing speed inevitably decreased if multiple algorithms were simultaneously
applied to the RDMS equipment. Therefore, the classification- and judgment-related
algorithms, such as a CNN, were configured to be handled by the map update server.
Figure 14 shows the concept of the RMDS. When a traffic sign is detected by loading the
trained weights into the RMDS, the result of the center point and the recognition area of
the image is transmitted to the map update server.
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In YOLOv3 detection, all the bounding boxes and category probabilities from the
entire image are simultaneously generated by a single convolutional network, as shown in
Figure 15. Firstly, the network divides each image in the training set into S × S grids, where
each grid is given candidate boxes of three different sizes. If the center of the object ground
truth falls in a grid, that particular grid is responsible for detecting the object. Subsequently,
the features are extracted through the convolutional layer, Darknet-53. Lastly, the yolk
layer is used for multi-scale prediction. Each grid predicts the bounding boxes and their
confidence scores, as well as the class conditional probabilities [14,27]. Table 5 presents the
YOLOv3 network structure.
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Table 5. Feature extraction network of YOLOv3 (Darknet-53).

Type Filter Size Output

Convolutional 32 3 × 3 480 × 480
Convolutional 64 3 × 3/2 240 × 240

Convolutional 32 1 × 1
1× Convolutional 64 3 × 3

Residual 240 × 240

Convolutional 128 3 × 3/2 120 × 120

Convolutional 64 1 × 1
2× Convolutional 128 3 × 3

Residual 120 × 120

Convolutional 256 3 × 3/2 60 × 60

Convolutional 128 1 × 1
8× Convolutional 256 3 × 3

Residual 60 × 60

Convolutional 512 3 × 3/2 30 × 30

Convolutional 256 1 × 1
8× Convolutional 512 3 × 3

Residual

Convolutional 1024 3 × 3/2 15 × 15

Convolutional 512 1 × 1
4× Convolutional 1024 3 × 3

Residual 15 × 15

2.5. Map Update System (MUS) Framework

This framework study analyzed the logic of matching the detected object and the object
existing in the HD map for map updates. As shown in Figure 16, the error between the
center point of the three-dimensional (3D) spatial coordinates of the sign object existing in
the HD map and the center point of the object detected by our RMDS was minimized [42,43].
The accuracy of the HD map in matching the detected 2D coordinates increased. If the error
was large, there was a problem in matching between the objects, and it was impossible
to know which object was updated on the map. MUS calculated the errors and updated
the changes.
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3. Experiments

The evaluation metrics that are most widely used for evaluating the performance in
object detection are the intersection over union (IOU) and mean average precision (mAP).
However, the evaluation in this study employs the evaluation indicators as they are used
for map updates, and a new part of the detection rate is defined. The detection rate is
determined to be successful if, for example, an object is detected at least once until it
disappears from the image.

As the detection object is reclassified into a logic judgment algorithm in an actual
update system, it can be easily updated after detection. Table 6 presents the experimen-
tal conditions.

Table 6. Experimental environment.

Parameters Specifications

CPU Intel(R) Xeon(R) E5-1650 v3 3.5 GHz
RAM 64 GB
GPU Nvidia GeForce RTX 3090 (24 GB)

Accelerated environment CUDA 11.1, cuDNN v8.1.0
Operating system Window 10 Pro x64

Training framework Darknet

3.1. Definition of Detection Rate

In this study, the detection rates, which are the most widely used parameters in the
binary classification model, are defined as follows: true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs). The mAP metric evaluates the overall
performance of the object detector. The precision at each recall level must be obtained
and then averaged for each class in order to calculate the mAP. Precision is defined as the
ratio of the total number of true predictions to the total number of predictions. The IoU
threshold determines whether the prediction is true or false [8]. Precision and recall are
defined in Equations (1) and (2), and Equations (3) and (4) define the accuracy and F1 score,
as given below.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + TN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1score =
2 ∗ Recall × Precision

Recall × Precision
(4)

The detection rate definition expression for the map update is defined as follows.

Detection Rate (%) =
Object Detection Count

Total Object Count
× 100 (5)
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3.2. Training Method for YOLO v3

The networks used in this study are trained based on the official YOLOv3 code. The
K-fold cross-validation method is used for the dataset to prevent overfitting beforehand, as
shown in Figure 17, and the hyperparameters are adjusted and fine-tuned.
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Figure 17. K-fold cross validation methods.

The currently annotated bounding box and anchor box are recalculated and corrected,
and the initial value is set as shown in Table 7.

Table 7. Experimental parameters of YOLOv3.

Input Size Batch Size Subdivisions Momentum Decay

480 × 480 64 16 0.9 0.0005

Angle Saturation Exposure Hue Flip

0 1.5 1.2 0.1 0

Learning Rate Iterations Anchor

0.001–0.0001 31,000 10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
198, 383, and 326

Table 7 presents the initial training parameters are presented. The learning rate applies
0.001 to 0.0001 and disables the flip function because the flip causes classification problems
with data related to the left turn, right turn, etc. Tables 8 and 9 show the experimental
results for the testbed. The results of the original pretrained dataset are compared with the
purely augmented dataset, and the results of both the original pretrained and augmented
datasets in order to compare the differences in the results trained with our dataset. The
detection rate of this study is determined by the number of detections for the actual objects
present on the road. As the map update server determines whether the map is to be
updated with a logical filter, only one is detected even if it is detected multiple times.

Table 8. Testbed dataset experiment with no group (the input size of the image is 1920 × 1080).

Pretrained Original Datasets Aug. Datasets mAP Recall F1-Score
√

(
√

Dataset used
for training)

√
69.0% 73.7% 81.7%

√ √
68.7% 72.1% 81.4%√ √ √
70.9% 76.1% 83.0%
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Table 9. Testbed dataset experiment with group (the input size of the image is 1920 × 1080).

Pretrained Original Datasets Aug. Datasets mAP Recall F1-Score
√ √

84% 85% 91%√ √
76% 77% 86%√ √ √

95.0% 96.0% 97.5%

4. Results

Tables 8 and 9, and Figure 18 present the results of counting the detected results while
driving along the testbed route every two hours between 08:00 a.m. and 18:00 p.m. The
number of detected data points is manually determined during real-time testing.
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Figure 18. Experiment results of detecting traffic signs, road signs, and traffic lights in RMDS.

Accurate detection of true positives is the most crucial aspect of updating the HD
map. False positives (FP) must be extremely low in order to be evaluated as a good model.
Therefore, it is determined that the higher the recall value of 90% [1,44], the better the model.
The change in the model performance is determined depending on the data combination.
As shown in Tables 8 and 9, the changes in the mAP and recall and in the F1-score values can
be observed based on the combination of pre-trained data, original data, and augmentation
data. It is a matter of principle, but it can be observed from the experiment that optimal
performance is obtained only when three types of data are trained simultaneously.

Additionally, although it may be limited to the HD map updates, the difference
between the individually trained results and the group training is approximately 20% of
the performance improvement in recall. The difference in the performance is determined
by the data imbalance problem. Table 10 shows the results of the detection rate defined in
Section 3.2.

Table 10. Detection rate experiment.

No. Object Detection Count Total Object Count Detection Rate

1 2092 2247 93.1%
2 2102 2247 93.5%
3 1983 2247 88.2%
4 2142 2247 85.6%
5 1932 2247 95.3%

Average 91.14%
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The detection rate evaluated while driving on an actual road shows an average of 91%.
Figure 18 shows the results of detecting traffic signs, road signs, and traffic lights.

In conclusion, the detection rate is lowered when experimenting with the testbed at
sunrise or sunset, and under shadows and conditions of partially occluded road marking
objects, owing to traffic congestion. However, after grouping the data into seven groups
and balancing by attribute, very high detection rates are obtained.

5. Conclusion and Future Work

The contributions of this paper are as follows:

(1) A low-cost image road map detection system (RMDS) is developed with a map
update system (MUS) framework to quickly update the HD map. It can be installed
in many vehicles to increase the update time for road changes, owing to the low cost
of the system.

(2) More than 3,000,000 Korean road traffic annotation data have been built for MUS.
(3) The performance differences are evaluated depending on how the training set is built

into a YOLOv3 model.

The most important aspects of this study are the accurate training dataset, number of
datasets, and appropriate modeling. It is impossible to achieve a good detector even with a
good training model, if the annotation data are inconsistent or if the data classification are
unclear. In this study, an accurate training dataset was constructed by collecting millions of
high-resolution 4 K images suitable for Korean terrain using the DCS. RMDS and MUS, to
which the YOLOv3 model was applied, were developed, and the detection performance of
road traffic signs, road signs, and traffic lights was completed.

Unfortunately, the annotation was inappropriate for application as a bounding box
for road markings. For example, the annotation of straight marks and lane changes is
difficult owing to the lens distortion. In the future, the HD maps will be updated through
the detection of signs, owing to the detection of dotted lanes, solid lanes, sidewalks, and
roadway divisions; median strip separation algorithms must also be added. The classifier
performance will also be improved and a segmentation algorithm will be added to further
apply the dotted lane start and end points.

In order to reduce the time of dataset annotation, an algorithm will be developed in
combination with a deep learning algorithm and computer vision to improve the auto-
annotation function and to increase the accuracy of detection and dotted-lane start and end
point extraction.
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