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Abstract: The coverage rate is the most crucial index in wireless sensor networks (WSNs) design;
it involves making the sensors with a reasonable distribution, which closely relates to the quality
of service (QoS) and survival period of the entire network. This article proposes to use particle
swarm optimization (PSO) and chaos optimization in conjunction for the coverage optimization. All
sensor locations are encoded together as a particle position. PSO was used first to make sensors
move close to their optimal positions; furthermore, a variable domain chaos optimization algorithm
(VDCOA) was employed to reach a higher coverage rate, along with improved evenness and average
moving distance. Six versions of VDCOA, taking circle, logistic, Gaussian, Chebyshev, sinusoidal and
cubic maps, respectively, were investigated. The simulation experiment tested three cases: square,
rectangular and circular regions using nine algorithms: six versions of PSO plus VDCOA, PSO and
other two PSO variants. All six versions showed better performance than PSO and CPSO, with
coverage all exceeding 90% for the first two cases. Moreover, one version, PSO plus circle map
(PSO-Circle), increased the coverage rate by 3.17%, 2.41% and 12.94% compared with PSO in three
cases, respectively, and outperformed the other eight algorithms.

Keywords: WSNs; coverage optimization; PSO; variable domain chaos optimization; network
evenness; average moving distance

1. Introduction

Over the last decades, wireless sensor networks (WSNs) technology has made great
progress; its application has involved industry, agriculture, environment protection, medi-
cal service and many other fields [1–3]. With the rise of the internet of things and the coming
of the big data era, wireless sensor networks will face increasing requirements and rapid
development [4]. Coverage rate is the crucial index to evaluate the performance of WSN;
well-designed wireless sensor networks should have a high coverage, which decreases the
blind area and increases the sensitiveness of the network perception [5]. The high coverage
is also helpful to improve the energy efficiency and to enhance the endurance of all the sen-
sor nodes [6]. Therefore, the coverage study of WSNs has attracted much interest, and many
research results have been issued in recent years. Jia et al. discussed the multi-objective cov-
erage algorithm for WSNs [7]. Guo et al. [8] proposed to use a quantum-inspired cultural
algorithm for the multi-objective optimization of WSNs, considering both energy-saving
and coverage rate indexes. Whale optimization algorithm (WOA), inspired by the whales’
rounding for prey, is also used in WSNs optimization. Wang et al. [9] introduced reverse
learning into WOA to improve the coverage of WSNs. Deepa et al. [10] proposed to use
levy flight to enhance WOA for guaranteeing the network coverage. Other intelligent
optimization algorithms, including the bee algorithm [11,12], the weed algorithm [13], the
wolf pack algorithm [14], the glowworm swarm optimization [15,16], the social spider
optimization (SSO) algorithm [17], the multi-objective immune co-evolutionary algorithm
(MOICEA) [18], the simulated annealing (SA) [19], the ant colony optimization (ACO) [20],
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the combined optimization using chaotic flower pollination and cuckoo algorithms [21],
the biogeography-based optimization [22], the grey wolf optimizer [23,24] and the termite
flies optimization (TFO) algorithm [25]. Other works also include linear programming
optimization [26], the barrier coverage algorithm [27], and the coverage and connectivity
problem solving of large sensor networks [28]. Tarnaris et al. [29] evaluated the perfor-
mance of particle swarm and genetic algorithms in solving WSNs coverage problems via
comparative simulation tests.

Particle swarm optimization (PSO), developed in the last two decades [30], has some
distinct advantages, such as simpler iteration rules and higher convergence speed compared
with other intelligent optimization methods. The PSO method has gained successful
applications in many engineering fields. Wang et al. [31] discussed the dynamic deployment
optimization of WSNs with co-evolutionary PSO algorithms. Sun et al. [32] presented an
improved global PSO algorithm by hybridizing shuffled frog leaping optimization. Wang
et al. put forward a coverage algorithm based on a PSO algorithm and combinatorial
mathematics [33]. Zhang et al. [34] introduced an immune method into a PSO algorithm to
optimize the K-barrier coverage. Bai et al. [35] increased the k-coverage of WSNs through
an improved PSO algorithm under limited mobility. Xu et al. [36] integrated a discrete
particle swarm algorithm into a new hybrid-MOEA/D-II algorithm for WSNs coverage
optimization. Wang et al. [37] combined a PSO algorithm with simulated annealing for
WSNs energy-efficient coverage.

To sum up the above, using heuristic algorithms to optimize WSNs coverage is a hot
topic, especially the popular and effective PSO algorithm. When these heuristic algorithms,
including the PSO algorithm, are used in WSNs, there are two prime ways: one is to
improve the algorithm itself, the other is to combine another algorithm to form a hybrid
algorithm to strengthen the performance in solving WSNs coverage.

Chaos is taken as an optimization method for the chaotic map can create a non-
repetitive sequence instead of random sequence. Chaos optimization is usually employed
as an auxiliary means of other algorithms. It is often used as the local search method to
add perturbation in order to avoid premature convergence or is taken to optimize the
parameters of the other algorithm when combined with other algorithms.

In this article, PSO and chaos optimization are proposed to improve the coverage rate
for solution of the WSNs sensors deployment. This new proposed approach combines
the advantages of PSO and chaos optimization; meanwhile, to improve the general chaos
optimization, this article put forward a variable domain chaos optimization algorithm
(VDCOA). The VDCOA adds adaptive adjustment on the center and boundary of the
chaotic searching on the basis of common chaos optimization. Specifically, VDCOA employs
multiple one-dimensional chaotic maps to search; as the iteration continues, the boundary
of the search domain is linearly decreased. Moreover, once a better point is found by any
chaos map, the center is updated by this new better point and another new round chaotic
mapping is restarted. The VDCOA is a new chaos optimization method and is different
from any existing chaos algorithm. In addition, this article investigates the six versions of
VDCOA, in which the employed chaotic maps are circle map, logistic map, Gaussian map,
Chebyshev map, sinusoidal map and cubic map, respectively. For simplicity of description,
the combination of PSO with VDCOA is called PSO-VDCOA, and its six specific versions
are called PSO-Circle, PSO-Logistic, PSO-Gaussian, PSO-Chebyshev, PSO-Sinusoidal and
PSO-Cubic, respectively. To realize the optimal coverage of the WSNs, this article first
discusses the network model, establishes the coverage rate optimization model, and further
presents six chaos maps and the proposed PSO-VDCOA and its detailed procedures for
the coverage optimization. Finally, numerical experiments, including the comparison of
the six versions of PSO-VDCOA with three other PSO algorithms, are carried out to test
the algorithm.

The remainders of this article are organized as follows. The detailed coverage model
of WSNs is established in Section 2. In the next section, the algorithm combination of the
particle swarm optimization algorithm and the chaos optimization algorithm (namely, PSO-
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VDCOA) are put forward for WSNs coverage optimization. In Section 4, the simulation
experiment verification of PSO-VDCOA is completed. In the end, some conclusions will be
presented in Section 5.

2. Model of Wireless Sensor Networks

It is supposed that m sensors will be assigned in the monitoring region, and that all
the sensor nodes form a set as S = {n1, n2, . . . , ni, . . . , nm−1, nm}, where ni denotes the
ith node with its coordinate as (xi, yi). For any point p with its coordinate (xp, yp) in the
monitoring region, using the probability model in the literature [13], the probability of
node ni detecting the target point t can be modeled as

Pt(ni, t) =


1 d(ni, t) ≤ rs − re

exp
(
−λ1α

β1
1

α
β2
2 +λ2

)
rs − re < d(ni, t) < rs + re

0 other cases

, (1)

where d(ni, t) is the Euclidean distance from node ni to the target point t, rs is the sensing
range and re is the sensing reliability parameter of the single sensor node, 0 < re < rs,
α1 = re − rs + d(ni, t), α2 = re + rs − d(ni, t), λ1, λ2, β1 and β2 are all sensing coefficients
related to node characteristics.

The combined probability of all the sensor nodes in the entire monitoring region to
detect the target point t is

Pt(nall , t) = 1−
m

∏
i=1

(1− Pt(ni, t)), (2)

where nall is the set of all the sensors that can detect the target point t.
To compute the coverage rate for the entire network, the monitoring region is divided

into l × n grids; each grid is in the shape of a rectangle section, and each section has
an equal region of 1 m × 1 m and is simplified as a pixel with discretized precision of 1
m2. Thus, the coverage rate of the wireless sensor network is defined as the ratio of the
detectable grid point number to the total grid point number:

C =

l
∑

xt=1

n
∑

yt=1
Pt(nall , t)

l × n
, (3)

Evenness is also an index to evaluate the performance of wireless sensor networks.
Higher evenness means the more uniform nodes distribution, which ensures the lower
energy consumption and the longer survival period. The evenness of single node ni is
computed as

Ui =

√√√√ 1
ki

ki

∑
j=1

(
Di,j −Mi

)2, (4)

where ki is the neighbor nodes number, Di,j is the distance from node ni to node nj, Mi is
the mean value of all the distances from node ni to all its neighbor nodes.

The evenness of the entire wireless sensor network is

U =
1
m

m

∑
i=1

Ui =
1
m

m

∑
i=1

√√√√ 1
ki

ki

∑
j=1

(
Di,j −Mi

)2, (5)

where m is the total nodes number.
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According to the definition of Equation (5), lower U value means higher evenness.
Besides, the average moving distance is also used to evaluate the total energy consumption
from all nodes moving, and is defined as

Dm =
1
m

m

∑
i=1

√
(xi − x0)

2 + (yi − y0)
2 (6)

where x0, y0 are the initial coordinates of node ni before coverage optimization, and xi, yi
are the new values of node ni after coverage optimization.

3. Combined Using of PSO and VDCOA for WSNs Coverage Optimization
3.1. Overview of Particle Swarm Optimization

The particle swarm optimization algorithm is a swarm-based intelligent optimization
method used to solve multi-dimensional problems. It is inspired by the predation behavior of
bird swarms, and first initializes a group of random positions: X = (x1, x2, . . . , xi, . . . , xN , ),
N is the total particle number. Each position xi stands for a particle, and meanwhile means
a solution of the optimization problem. Each particle (bird) searches the food (namely,
the optimum) based on both its own historic experience and the whole swarm’s historic
experience; these two experiences are described by the individual best value pbest and the
global best value gbest, respectively. In each iteration each particle, based on its previous
velocity, moves towards these two values with certain probabilities. In detail, each particle
updates its velocity and position according to the following rules:

v(n+1)
i = wv(n)i + c1r1(pbest(n)i − x(n)i ) + c2r2(gbest(n) − x(n)i ) (7)

x(n+1)
i = x(n)i + v(n+1)

i (8)

where w is inertia weight, c1 and c2 are acceleration constants, r1 and r2 are random numbers
within the interval of (0, 1). x(n)i and v(n)i are the current position and velocity respectively.

Shi and Eberhart proposed a linearly decreasing inertia weight PSO (LdiwPSO) algo-
rithm [38,39], which effectively realized the fine-tuning of inertia weight to enhance the
later performance of the algorithm. In their method, the value of inertia weight w first takes
an initial big value (wmax), and then decreases linearly in the iteration until it reaches the
final predefined small value (wmin) as the iterations ends according to

w(k) = wmax −
k

itermax
(wmax − wmin), (9)

where k is the current iteration generation and itermax is the total iteration number.
Using this variable inertia weight w(k), the velocity update rule of the LdiwPSO

algorithm is

v(k+1)
i = w(k)v(k)i + c1r1(pbest(k)i − x(k)i ) + c2r2(gbest(k) − x(k)i ), (10)

The position update rule of the LdiwPSO algorithm is still the same as Equation (8).
The LdiwPSO algorithm has proved to be an efficient optimization method [39]; in this
article, it will be taken as a comparison to testify to the algorithm proposed by us.

Another effective variant of PSO algorithm is the PSO with constriction (abbreviated as
CPSO), which is proposed by Clerc and Kennedy [40]. This model introduced a constriction
factor coefficient by multiplying it to all the velocity terms as follows:

v(k+1)
i,j = k[w · x(k)i,j + c1 · r1 · (pbest(k)i,j − x(k)i,j ) + c2 · r2 · (gbest(k)i,j − x(k)i,j )] (11)

where k = 2∣∣∣2−ϕ−
√

ϕ2−4ϕ
∣∣∣ , in which ϕ = c1 + c2, ϕ > 4, generally ϕ = 4.1, and so k = 0.729.
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The above PSO algorithm and its variants can effectively improve the coverage when
used to solve WSNs sensors deployment. However, as the sensors number increases, the
dimension of the problem grows at twice the rate of the former, which makes the elementary
particle swarm algorithms prone to fall into premature convergence in high-dimensional
search, and consequently affects the coverage optimization efficiency. Therefore, this article
proposes a further use of chaos optimization to overcome the premature convergence, and
to effectively optimize the sensors deployment. The above elementary PSO algorithms will
be used as the comparisons for the proposed approach.

3.2. Overview of Chaos Optimization

Chaos is one of the inherent and common phenomena in nonlinear systems [41]; it
has not only the stochastic property but also the certainty and ergodicity properties, which
enable the chaos-based search method to improve the solution precision when used with
enough iterations steps [42]. Six better chaotic maps were selected from ten well-known
one-dimensional maps for the optimization [43,44]; their features are presented in Table 1.
When with proper initial values, these map equations enter chaotic motion states. The
iteration processes of these six maps are shown in Figure 1.

Table 1. Details of six selected chaotic maps.

No. Map Name Map Equations Parameters Range

1 Circle map zk+1 = zk + ϕ− K
2π sin(2πzk)mod(1) ϕ = 2.5, K = 5 zk ∈ (0, 1)

2 Logistic map zk+1 = µ(1− zk)
µ = 4, z0 ∈ (0, 1), except 0.25, 0.5
and 0.75 zk ∈ (0, 1)

3 Gaussian map zk+1 = 0, zk = 0; zk+1 = 1
zk

mod(1),
zk 6= 0

zk ∈ (0, 1)

4 Chebyshev map zk+1 = cos(a cos−1 zk) a = 5 zk ∈ [−1, 1]

5 Sinusoidal map zk+1 = sin(πzk) zk ∈ (0, 1)

6 Cubic map zk+1 = ρ(1− z2
k) ρ = 2.59 zk ∈ (0, 1)

Chaos optimization (CO) algorithms are generally based on the track ergodicity of
chaos; their basic idea is to use the method similar to carrier wave modulation to introduce
the chaos state into the design variable. The ergodic range of chaotic motion is “enlarged” to
the value space of design variables; then, chaotic variables are used to search the optimum.
For example, Tavazoei et al. [45] compared ten different one-dimensional maps as chaos
optimization to solve nonlinear constrained problems. Jiang et al. [46] optimized the
inertia weight of PSO using logistic map. More specifically, the chaotic variable will iterate
according to Table 1 and its new value will be used to update the design variable as

x(k)i = a(k)i + z(k+1)
i (b(k)i − a(k)i ), (12)

where z(k+1)
i is the chaotic variable, as shown in Table 1, a(k)i and b(k)i are the upper and the

lower limits of the design variable, respectively. In the above variables, the subscripts i and
k represent the ith dimension and the kth iteration respectively.

3.3. The Combined Method of PSO and VDCOA (PSO-VDCOA)

For the premature convergence problem in the later iteration of the particle swarm
optimization algorithm, many methods have been proposed to solve it, such as additional
mutation operations or random local fine-search algorithms. These methods can improve
the solution precision to some degree; however, the improvements are limited by their
pseudo randomness characteristics. Herein, chaos optimization (CO) is introduced; it
takes the result of particle swarm optimization as the center and further carries out chaotic
perturbation to realize the fine search. As mentioned above, the chaotic variable in the CO is
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mapped into the range of the design variable. It has the downside that the chaotic variable
can only search in this fixed entire solution space. Although the ergodicity can ensure CO
to find the solution close to the optimum, the ergodic search track must be long enough,
which means a low efficiency. To overcome this downside, a new variable domain chaos
optimization algorithm (VDCOA) is proposed to enhance the search ability by continuously
regulating the searching domain. To be specific, besides using the chaotic search of Equation
(12), a new variable domain idea is introduced. As the searching progress goes on, the
searching domain is modified, with its center changed to the new updated best point and
its neighbor range reduced:

a(k+1)
i = gbest(k)i − γ(k)Rg, (13)

b(k+1)
i = gbest(k)i + γ(k)Rg, (14)

where Rg is the range parameter of the chaos search region. γ(k) is the variable domain
coefficient changing with the iteration generation k in the following way:

γ(k) = γmax −
k

kmax
(γmax − γmin), (15)

where γmax and γmin are the two limits of the range in which γ changes. kmax is the total
chaos iteration number.

In the above VDCOA, continuously moving the searching center and reducing the
searching space of the design variable, will improve the search efficiency and precision
along with the iteration that takes place; meanwhile, the stochastics and ergodicity proper-
ties are still retained, which confers to the algorithm a greater ability to find new, better
solutions to overcome the premature convergence. It is noticed that VDCOA is more
suitable as an auxiliary role; herein, it is used to enhance the PSO. In the new proposed
PSO and VDCOA combined method (PSO-VDCOA), the PSO iteration first runs a fixed
number of generations and preliminarily locates the position of global optimal point with
certain precision. Next, VDCOA is employed, which continuously improves the optimal
point through variable domain chaotic iterations.

3.4. Wireless Sensor Networks Coverage Optimization Using PSO-VDCOA

For the sensor nodes set S = {n1, n2, . . . , ni, . . . , nm−1, nm} in the wireless sensor
network, (xi, yi) denotes the coordinates of node ni. The encoding of each particle is

X = {x1, y1, x2, y2, . . . , xi, yi, . . . , xm−1, ym−1, xm, ym}, (16)

The objective function for the coverage optimization problem is set as:

f (X) = −C = −

l
∑

xt=1

p
∑

yt=1
Pt(nall , t)

l × p
, (17)

Thus, the coverage optimization problem is defined as follows: The variable X being
taken as the optimization variable, search the optimum X* to minimize f (X), namely,
realize the maximal coverage rate. The detailed search procedures of the PSO-VDCOA are
described as follows:
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(1) Initialize particle swarm: randomly generate N particles: X1, X2, . . . , XN with veloci-
ties V1, V2, . . . , VN .

(2) Evaluate the fitness of each particle using the objective function in Equation (17).
(3) Update individual and global best value: if f (Xi) < f (pbest), pbesti = Xi. Search

{ f (pbest)} for the optimal xmin with minimum f min, and if f (gbest) > f (xmin), let
gbest = xmin.

(4) Update particle velocity by Equation (7).
(5) Update particle position by Equation (8).
(6) Repeat Steps (2) to (5) until a given maximum number of iterations are achieved.
(7) Chaos initializing: let k denote the iterating counter, and set k = 0. Select different

random values for chaotic variable z0
i from (0, 1) (except for values of 0.25, 0.5 and

0.75 for logistic map).
(8) Update γ(k) according to Equation (15).
(9) Set the region range of chaotic search based on the optimal point gbest.
(10) Chaos iteration: Using certain chaotic map equation in Table 1.
(11) Map the chaotic variable into the search space of design variable using Equation (12).
(12) Search in the { f (xi)} for the optimal xmin with minimum f min, and if f (gbest) > f (xmin),

let gbest = xmin.
(13) Repeat steps (8)–(12), until the total number of iteration generations is achieved.
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Figure 1. Six different chaotic maps. (a) Circle. (b) Logistic. (c) Gaussian. (d) Chebyshev.
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The above procedures are described in a flowchart form, as shown in Figure 2, which
presents a more intuitive view. However, both are based on the vector form which
takes the single particle (namely its xi and vi vectors) as the basic data object. To fur-
ther enhance the iteration speed, this article presents a new matrix-version of the PSO-
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VDCOA, in which x = (x1, x2, . . . , xn)T and other variables, v, xmax, xmin, vmax, vmin,
Pbest, Gbest, etc., are all matrices. Most of this algorithm is run in matrix form, except
the individual and global best updating part, which makes it with higher computing
efficiency. The detailed pseudo code is shown in Algorithm 1. In this algorithm the
symbol ‘.*’ represents the multiplication of the corresponding elements in two matrices.

Algorithm 1. Matrix-version of PSO-VDCOA.

Set parameters: dimension dS, swarm size pS, coefficients c1, c2, inertia weight w, total iteration
generations maxGen, PSO iteration generations psoGen; position limit: xmax and xmin; velocity
limit: vmax and vmin, Rg, γmax, γmin. Let k = 0.
Initialize swarm: x = xmin + rand(pS, dS).*(xmax − xmin);
Compute the fitness: FF = f (x); Pbest = x; fPbest = FF, f min = min(fPbest), gbest = xmin, (xmin

corresponding to f min). Gbest = [gbest; gbest, . . . , gbest]T. //totally pS rows
for iter = 1 to maxGen do
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4. Simulation Experiments

A wireless sensor network is taken to verify the proposed method. It includes 30 sensor
nodes distributed in a 20 m× 20 m monitoring region. The perceptive radius is re = 1.25 m,
the sensing radius is rs = 2re = 2.5 m, and the node probability model coefficients are set
as λ1 = 1, λ2 = 0, β1 = 1, β2 = 1.5, and Cth = 0.6. The size of particle swarm: pS = 30,
w = 0.7, γmax = 1, γmin = 0.9, Rg = 0.1, C1 = C2 = 2, and wmin = 0.5, wmax = 0.9 (LdiwPSO).

The total iteration number is 800, with the iteration generations of PSO and VDCOA
being 300 and 500, respectively. The simulation program of six version of PSO-VDCOA
are all completed with the same parameters, meanwhile, the CPSO, PSO and LdiwPSO
algorithms are also programmed for the comparison. For fair comparison, all the nine
algorithms employ the same randomly-created initial swarm and use the same iteration
generation number (also the same function evaluation times). An initial swarm is created
as shown in Figure 3, and its evenness value U0 = 0.7753, coverage rate C0 = 0.7169.
After 800 generations of iterations, the optimized distributions achieved by CPSO, PSO,
LdiwPSO and six PSO-VDCOA versions are shown in Figures 3 and 4. The indexes of nine
algorithms are presented in Table 2.
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Figure 3. Random initialization of sensors positions and the convergence graphs for the square region
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magnified view of figure (b).

Table 2. Numerical results of nine algorithms to solve wireless sensors coverage of the square region.

Algorithm Coverage Rate C
Relative Ratio
of Coverage

Rate C/C0

Average
Moving

Distance (m)

Computing
Time (s)

PSO-Circle 0.9444 1.3467 11.1881 253.5560
PSO-Logistic 0.9372 1.3363 10.4060 252.4002

PSO-Gaussian 0.9328 1.3301 10.3102 249.2707
PSO-Chebyshev 0.9089 1.2961 10.2535 249.5167
PSO-Sinusoidal 0.9306 1.3270 10.3612 253.5338

PSO-Cubic 0.9317 1.3286 10.6821 250.6576
LdiwPSO 0.9385 1.3383 9.9958 251.2138

PSO 0.9127 1.3015 9.9053 251.7490
CPSO 0.8038 1.1461 8.9682 253.6211

It can be concluded from the above figures and Table 2 that, under the same initial
distribution and the same iteration number, the PSO-Circle, one version of PSO-VDCOA,
was found to have the best sensors distribution, with the highest coverage rate of 0.9444,
which corresponds to the highest relative ratio value of 1.3467. Considering the average
moving distance index, the PSO-Circle is the worst one, which is because of its best coverage
to inevitably need more moving distance to adjust the nodes positions. However, its average
moving distance increment is about 2 m compared with the least average moving distance
value of 8.9682 m. As for the computing time, the PSO-Circle runs 253.5560 s with only
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about 2 s more than others. To synthesize the above indexes, the PSO-Circle outperforms
the other eight algorithms.
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Figure 4. Final sensor deployment of nine algorithms to solve wireless sensors coverage in a square
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(f) PSO-Cubic. (g) LdiwPSO. (h) PSO. (i) CPSO.

To further testify the adaptability of these algorithms, another case of rectangular
region was also investigated. This region had a size of 25 m × 16 m, which is with the
same area of 400 m2 as the square region case. The parameters of the wireless sensors
and the algorithms all remain unchanged. The simulation test was still completed, with
800 generations of iteration; the results are shown in Figures 5 and 6, and Table 3. It
can be seen from these figures and Table 3 that, under the same iteration number, PSO-
VDCOA found the best sensors distribution, with the highest coverage rate of 0.9438, which
indicates that the algorithm has better adaptability. The best effect is still achieved by the
PSO-Circle. Its average moving distance and computing time also keep the same level as
other algorithms without too great of an increase.
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Figure 6. Results of nine algorithms to solve wireless sensors coverage in a rectangular region. (a) PSO-
Circle. (b) PSO-Logistic. (c) PSO-Gaussian. (d) PSO-Chebyshev. (e) PSO-Sinusoidal. (f) PSO-Cubic.
(g) LdiwPSO. (h) PSO. (i) CPSO.

Finally, a more difficult circular case is tested. The circular region had a radius of
11.28m to retain the same area as the above two cases. The simulation setting also stayed
the same as those of the above two cases; the results are shown Figures 7 and 8 and Table 4.
All the algorithms show the performance deterioration; however, the PSO-Circle, as well as
PSO_Cubic and LdiwPSO, still remained over 90% with better stability, and the former still
keeps the highest.
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Table 3. Numerical results of four algorithms to solve wireless sensors coverage in the rectangle region.

Algorithm Coverage Rate C
Relative Ratio
of Coverage

Rate C/C0

Average
Moving

Distance (m)

Computing
Time (s)

PSO-Circle 0.9438 1.2948 9.9614 240.0654
PSO-Logistic 0.9433 1.2942 9.9669 240.1280

PSO-Gaussian 0.9422 1.2926 10.3507 243.1568
PSO-Chebyshev 0.9192 1.2610 10.5988 239.6768
PSO-Sinusoidal 0.9421 1.2925 9.7804 240.9370

PSO-Cubic 0.9415 1.2916 10.5918 242.2828
LdiwPSO 0.9420 1.2924 5.3234 241.4363

PSO 0.9197 1.2617 5.2271 239.4996
CPSO 0.8036 1.1025 4.1400 242.8174
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Table 4. Numerical results of nine algorithms to solve coverage in the circular region.

Algorithm Coverage Rate C
Relative Ratio
of Coverage

Rate C/C0

Average
Moving

Distance (m)

Computing
Time (s)

PSO-Circle 0.9190 1.3577 4.7833 234.7328
PSO-Logistic 0.8384 1.2386 4.4619 237.3758

PSO-Gaussian 0.8792 1.2989 4.8718 238.1806
PSO-Chebyshev 0.8552 1.2634 4.7083 231.7538
PSO-Sinusoidal 0.8907 1.3158 4.2943 235.2170

PSO-Cubic 0.9174 1.3553 4.4186 230.4234
LdiwPSO 0.9137 1.3498 5.3896 234.5706

PSO 0.7896 1.1665 4.8956 232.8963
CPSO 0.7511 1.1096 5.4600 233.0806

To sum up the three cases of square, rectangular and circular regions, although they
have the same area, the coverage rate obtained by optimization is different. The square one
has the best coverage. The circular one is hard to optimize with the worst coverage, and six
of the nine algorithms are not able to reach a 90% coverage rate, because these algorithms
appeared to have premature convergence and fell into local optimums. PSO-Circle, PSO-
Cubic and LdiwPSO all avoided the premature convergence and attain results over 91%,
and PSO-Circle got the best coverage in the circular case, as well as the other two cases.
PSO-Circle had the best improvement by increasing the coverage rate by 3.17%, 2.41%
and 12.94% compared with PSO in three cases, respectively. Additionally, the average
moving distance and computing time index of PSO-Circle are not distinctly more than
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other algorithms. Inspecting the procedures or flowchart of PSO-VDCOA, it has the same
complexity and function evaluation times as the other algorithms. Therefore PSO-Circle is
suggested to be the final selected algorithm for the coverage optimization of WSNs.
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5. Conclusions

In this article, we presented a particle swarm and chaos combined method (PSO-
VDCOA) for the coverage optimization of wireless sensor networks. This method can
synthetically take advantage of PSO and VDCOA. The detailed realizations, particularly a
new matrix-version, are presented. The simulation experiments of WSNs coverage opti-
mization in three cases of square, rectangular and circular regions are completed to testify to
the proposed algorithm; the optimization results demonstrated that the proposed algorithm
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is of high efficiency. The PSO-Circle, as one of the PSO-VDCOA versions, outperforms
the other eight algorithms, and it can be selected for the practical coverage optimization
for WSNs. Future research will be on the multi-objective optimization and constrained
optimization of the coverage and energy-saving of WSNs based on the PSO-VDCOA.
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