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Abstract: Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have attracted attention
as promising next-generation electronic devices and sensors. In this study, we fabricated a novel
nanoelectronic device based on a black-phosphorus-gated WSe2/SnSe2 van der Waals (vdW) tunnel
field-effect transistor (TFET), where hexagonal boron nitride (h-BN) was used as the gate insulator.
We performed morphological, electrical, and optoelectronic characterizations. The p-WSe2/n-SnSe2

heterostructure-based TFET exhibited p-type behavior with a good dependence on the gate voltage.
The TFET device showed a trend toward negative differential resistance (NDR) originating from band-
to-band tunneling, which can be tuned by applying a gate voltage. The optoelectronic performance
of the TFET device was low, with a maximum photoresponsivity of 11 mA W−1, owing to the
large device length. The results obtained herein promote the integration of black phosphorus into
low-energy-consumption 2D vdW TFETs.

Keywords: two-dimensional materials; transition-metal dichalcogenides; black phosphorus; hexagonal
boron nitride; tungsten diselenide; tin diselenide; tunnel field-effect transistors

1. Introduction

Two-dimensional (2D) van der Waals (vdW) heterostructures have been widely stud-
ied for the development of nanoelectronics. Transition-metal dichalcogenides (TMDCs)
have attracted significant attention for several applications, such as memory and logic
circuits [1,2], photocatalytic water splitting devices [3], field-effect transistors [4,5], tun-
neling transistors [6], bipolar junction transistors [7], ferroelectric field-effect transistor
(FE) transistors [8,9], ferromagnetic transistors [10], and sensors [11–13]. Transition-metal
dichalcogenides have suitable energy bandgaps for electronic and optoelectronic devices.
In particular, tungsten diselenide (WSe2), which is an intrinsic semiconductor [14] with
an energy band gap of 1.2 eV for its bulk form (up to 1.65 eV for the monolayer) [15,16],
and tin diselenide (SnSe2), which is degenerately n-doped with an energy bandgap of
1.0 eV [17], are appropriate for such applications. Two-dimensional black phosphorus (BP)
is promising for low-power-consumption electronic devices [18]. BP has an infrared band
gap energy of ~0.3 eV (bulk), which is tunable to ~2 eV (monolayer) by reducing the layer
thickness [19] and goes down to 0.05 eV by electric field modulation [20]. Hexagonal boron
nitride (h-BN) is a dielectric material with a high band gap of ~6 eV, and thus, it is useful as
an insulator layer for MOS devices and as a dielectric for device shielding [21].

In this study, we fabricated a novel low-power-consumption, gate-tunable WSe2/SnSe2
vdW tunnel field-effect transistor (TFET). We used BP as the gate contact and h-BN as the in-
sulator layer between the gate and channel. We carried out morphological characterizations
and investigated the electrical and optoelectronic properties of the gated WSe2/SnSe2 TFET,
where the device showed a trend toward negative differential resistance (NDR) owing to
the band-to-band tunneling (BTBT) phenomenon. We were able to control the tunneling
effect by varying the applied gate voltage.
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2. Materials and Methods

BP, hexagonal boron nitride (h-BN), tungsten diselenide (WSe2), and tin diselenide
(SnSe2) were purchased from HQ Graphene; X-ray Diffraction (XRD) data of the 2D mate-
rials are shown in Figure S1. The fabrication process is shown schematically in Figure 1.
First, chromium/gold (10/50 nm) were deposited by thermal evaporation onto a 300-nm
SiO2/silicon substrate, followed by the successive deposition of few-layered BP (gate con-
tact) and h-BN (gate insulator) through the mechanical exfoliation technique using flexible
polydimethylsiloxane (PDMS). Subsequently, few-layered n-type SnSe2 and p-type WSe2
were successively deposited using the same technique. The device was not annealed to
prevent SnSe2 degradation. The morphological properties were observed using scanning
electron microscopy (SEM; Hitachi TM-1000; Japan) and atomic force microscopy (AFM;
inVia Reflex). For electrical and optoelectronic characterizations, we used a HP 4155A
semiconductor parameter analyzer. Optoelectronic properties were evaluated using a laser
source with power values varying from 0.015 to 3.193 µW, wavelength, and spot diameter
of 532 and 20 µm, respectively.

Figure 1. Schematic representation of the fabricated WSe2/SnSe2 van der Waals heterostructure-based
gated tunnel field-effect transistor.

3. Results and Discussion
3.1. Morphological Characterization

Figure 2a shows an SEM image of the gated TFET, showing multilayered WSe2, SnSe2,
and h-BN/BP in blue, yellow, and white dotted lines, respectively. The length of the device
was 30 µm. The h-BN/BP junction and WSe2 did not intersect in the vertical direction, as
observed in the figure; thus, the thickness of the insulator was roughly estimated to be 2 µm
based on the distance between the edges of multilayered BP and WSe2 (white arrows in
Figure 3a). Figure 2b shows the corresponding AFM image, where the red, blue, pink, and
purple lines indicate the cross-sections of the WSe2, SnSe2, h-BN, and h-BN/BP junctions,
respectively. The thicknesses of the top WSe2, SnSe2, h-BN, and h-BN/BP junctions were
determined by topographic analysis at 36, 76, 20, and 70 nm, respectively, as shown in
Figure 2c. Thus, the thickness of multilayered BP was determined to be 50 nm.
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Figure 2. (a) SEM image and (b) AFM image of the BP-gated WSe2/SnSe2 van der Waals heterostruc-
ture. (c) Corresponding topographic analysis of WSe2, SnSe2, h-BN, and h-BN/BP junction.

Figure 3. Energy band diagram of (a) p-WSe2/h-BN/BP and (c) n-SnSe2/h-BN/BP vdW heterostruc-
tures. I–V curves in vertical directions for (b) p-WSe2/h-BN/BP and (d) n-SnSe2/h-BN/BP vdW
heterostructures.
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3.2. Energy Band Diagram

Figure 3a,c shows the energy band diagrams of the device in the vertical direction, i.e.,
Figure 3a,c corresponds to the p-WSe2/h-BN/BP and n-SnSe2/h-BN/BP heterostructures,
respectively. The energy band gap for SnSe2 is ~1.0 eV, its electron affinity is 4.85 eV, and its
work function is 5.0 eV [22]. For WSe2, the energy band gap and electron affinity are 1.3 and
3.5 eV, respectively [23]. In both configurations, the heterostructures are in accumulation
mode: accumulation of holes and electrons at the p-WSe2/h-BN and the n-SnSe2/h-BN
interface, respectively. Figure 3b,d shows the corresponding current–voltage (I–V) curves.
When the absolute value of the voltage was increased to 1 V, the current increased, which
was probably due to the tunneling effect in the vertical direction because the insulator layer
was very thin (20 nm).

3.3. Electrical and Optoelectronic Characterizations

Figure 4a,b shows the transfer characteristics of the BP-gated p-WSe2/n-SnSe2 het-
erostructure when SnSe2 and WSe2 were used, respectively. Both configurations exhibited
p-type behavior, where the current increased with decreasing gate voltage. When ground-
ing multilayered WSe2, the device demonstrated good gate voltage dependence in both
cases with an ION/IOFF ratio of 20 at a polarization voltage of 2 V (Figure 4b).

Figure 4. Gate voltage dependence of the current in BP-gated p-WSe2/n-SnSe2 heterostructure with
(a) common SnSe2 and (b) common Wse2.

To investigate the current transport in the BP-gated p-Wse2/n-SnSe2 heterostructure,
we drew an energy band diagram in the longitudinal direction, as shown in Figure 5a.
At equilibrium, the p-Wse2/n-SnSe2 heterostructure showed a broken (type-III) band
alignment. Figure 5b,c shows the I–V characteristics of the p-Wse2/n-SnSe2 heterostructure
when SnSe2 and Wse2, respectively, were used as common contacts at different gate voltages.
The gate voltage had a lower effect when Wse2 was used as a common contact because BP
and Wse2 had no intersection, as shown in Figure 2. As shown in Figure 5b, a change in the
current curve was observed around a polarization and gate voltage of 1 V. Similar behavior
was observed in a p-Si back-gated Wse2/SnSe2 heterostructure, which was explained by
the trend toward NDR [24]. When the gate voltage was decreased from 1 to −1 V, the I–V
curves shifted to lower voltages.

Figure 6a shows the log-scale current at different gate voltages. Two distinct linear
regimes can be observed in the forward current region. The two observed regimes can be
modeled using direct tunneling (DT) and Fowler–Nordheim tunneling (FNT), according to
the following equations [25]:

IDT(V) =
Aq2Vds

√
mϕB

h2d
exp
[
−4πd

√
m∗ϕB

h

]
(1)

IFNT(V) =
Aq3mVds

2

8πhϕBd2m∗
exp

[
−8πdϕB

3/2
√

2m∗

3hqVds

]
(2)
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where A, ϕB, q, m, m∗, d, and h are the effective contact area, barrier height, electron charge,
free-electron mass, effective electron mass, barrier width, and Planck’s constant, respectively.
Ln (I/V2) versus 1/V is plotted in Figure 6b; according to Equations (1) and (2), the curve
should show linear and logarithmic regimes for FNT and DT, respectively. From the same
figure, DT occurs at a low voltage and FNT dominates at a high voltage with a linear
negative slope.

Figure 5. (a) Energy band diagram of p-WSe2/ n-SnSe2 heterostructure in the longitudinal direction.
I–V curves in longitudinal directions when (b) SnSe2 and (c) Wse2 are used as common contact.
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DT occurred at a low voltage in the positive gate voltage and forward regime (Figure 6c).
However, when the polarization voltage increases to higher values, a change from broken
(type-III) to staggered (type-II) can occur. Therefore, the BTBT phenomenon is weakened,
and Fowler–Nordheim tunneling dominates. The inverse polarization (Figure 6d) revealed
a diode-like band structure with electron and hole energy barriers at the p-Wse2/n-SnSe2
interface, which is the origin of the low reverse current. When a negative gate voltage
was applied between BP and SnSe2, the valence and conduction bands of SnSe2 increased,
and the BTBT phenomenon was weakened at a low polarization voltage. However, at
higher polarization voltage values (Figure 6e), the FNT current was enhanced, which can
explain the current shift to higher values observed in Figure 5b when a negative gate
voltage was applied. Figure 6f shows the I–V curves of the positively polarized p-Wse2/n-
SnSe2 heterostructure in dark and under a light excitation of 0.015 µW; the light enhanced
the current and caused a shift to higher voltage values owing to the enhancement of the
DT current.

Figure 6. (a) Log current scale in the forward region and its corresponding (b) ln (I/V2)–1/V curve,
energy band diagrams of p-WSe2/n-SnSe2 heterostructure, (c) (VDS > 0 and VG > 0), (d) (VDS < 0 and
VG > 0), (e) (VDS > 0 and VG < 0), and (f) I–V curves of p-WSe2/n-SnSe2 heterostructure in dark and
under light excitation.

Finally, the optoelectronic properties of the heterostructures were investigated. Figure 7a–d
shows the I–V characteristics at different values of the gate voltage and laser power. When
the laser power was increased, the current increased because of photogenerated carriers
(electrons in the conduction bands and holes in the valence bands).
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Figure 7. I–V curves in the longitudinal direction when SnSe2 was used as the common contact
at different values of gate voltage and at a laser power value of (a) 0.015, (b) 0.047, (c) 0.667, and
(d) 3.193 µW.

The photoresponsivity was deduced according to the equation Rλ =
∣∣Iph

∣∣/P =
∣∣Ilight − Idark

∣∣/P,
where Iph represents the photocurrent and P is the laser power. Figure 8a,b corresponds
to the photoresponsivity of the p-WSe2/n-SnSe2 heterostructure-based TFET at negative
and positive polarization voltages, respectively. The variation in the photoresponsivity
was more homogeneous at a polarization voltage of −2 V (Figure 8a) and it increased
to ~11 mA W−1 at a gate voltage of −1 V and laser power of 0.015 µW. Moreover, it de-
creased when the laser power is increased, a phenomenon that is commonly observed in
TMDC-based photodetectors [26], which is attributed to the trapping effect.

Figure 8. Gate voltage and laser power dependence of the photoresponsivity in p-WSe2/n-SnSe2

heterostructure-based TFET at (a) negative and (b) positive polarization voltages.

The optoelectronic properties of WSe2/SnSe2 heterojunctions have not been investi-
gated in detail. As seen in Table 1, the photoresponsivity of our device was larger than
the value reported by Chauhan et al. [27] but lower than those reported by Xue et al. [28]
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and Sun et al. [29]. The low photoresponsivity was due to the long channel length of the
device (30 µm). It should be noted that both the photoresponsivity and ION/IOFF ratio can
be improved using multiple interdigitated electrodes and by shortening the channel length.

Table 1. Comparison of figures-of-merit for photodetectors based on WSe2/ SnSe2 heterojunction.

Structure Spectral Range Rλ (mAW−1) ION/IOFF Ratio Reference

BP-gated WSe2/SnSe2 532 nm 11 20 This work
WSe2/SnSe2 532 nm 1.03 N/A [27]
WSe2/SnSe2 532 nm N/A 106 [24]
WSe2/SnSe2 532 nm 588 × 103 ~104 [28]
WSe2/SnSe2 700 nm 450 ~103 to ~104 [29]

4. Conclusions

We fabricated a BP-gated WSe2/SnSe2 vdW TFET. We carried out morphological
characterizations and investigated the electrical and optoelectronic properties of the p-
WSe2/n-SnSe2 heterostructure in the vertical and longitudinal directions. The TFET device
showed p-type behavior with good dependence on the gate voltage and a trend toward
NDR originating from BTBT phenomenon. We succeeded in controlling the tunneling
effect by varying the applied gate voltage. The maximum photoresponsivity of the device
was ~11 mA W−1, which was slightly small because of the long channel length of our
device (30 µm). We believe that the results presented herein will promote the fabrication of
tunneling effect transistors based only on two-dimensional materials. In future research,
we believe that the optimization of the device dimensions will significantly improve its
electrical and optoelectronic performance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/electronics11050833/s1, Figure S1: X-ray diffraction (XRD) images
of black phosphorus (BP), hexagonal boron nitride (h-BN), tungsten diselenide (WSe2), and tin
diselenide (SnSe2).
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