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Abstract: This work proposes a robust terminal sliding mode control scheme on Lie group space
SE(3) for Gough–Stewart flight simulator motion systems with payload uncertainty. A complete
dynamic model with geometric mechanical structures and a computer dynamic model built in the
MATLAB/Simulink package are briefly presented. The robust control strategy on the Lie group SE(3)
is applied at the workspace level to counteract the effects of imperfect compensation due to model
simplification and payload uncertainty in flight simulator application. With exponential coordinates
for configuration error and adjoint operator on Lie algebra se(3), the robust control strategy is
designed to guarantee almost global finite-time convergence over state space through the Lyapunov
stability theory. Finally, a describing function and a step acceleration response to characterize the
performance of a flight simulator motion base are employed to compare the robustness performance of
the proposed controller on SE(3) with the conventional terminal sliding mode controller on Cartesian
space. The comparison experimental results verify that the proposed controller on SE(3) provides
better robustness than the conventional controller on Cartesian space, which means higher bandwidth
in two degrees of freedom and faster response with smaller tracking error in six degrees of freedom.

Keywords: robust terminal sliding mode control; exponential coordinates; Gough–Stewart platform;
payload uncertainty; Lie group space SE(3)

1. Introduction

The Gough–Stewart (G-S) platform had been extensively employed as a motion base
for flight simulators [1], which will provide high-fidelity motion cueing for pilot training
when combined with a visual system and audio system in the cockpit simulator. The
theoretical advantages of the parallel structure heavily depend on its motion control
strategy. Although an independent PI joint controller in joint space can be applied to
the G-S platform motion system, it does not always guarantee high performance due to the
strong coupling and high nonlinearity of the dynamic model [2]. A cross-coupling control
scheme was designed to solve the synchronization problem of the G-S platform with an
adaptive feedforward gravity compensation [3].

The high level of performance has to be guaranteed through model-based control
strategies on the workspace, such as inverse dynamic control, adaptive control, sliding
mode control, incremental nonlinear dynamic inversion control, etc. It is well known that
the inverse dynamic control strategy in [4] heavily depended on the exact modeling of the
complete G-S dynamic model, which would inevitably lead to a high computational burden.
Meanwhile, the study in [5] showed that the control strategy based on a simplified model
provided better tracking performance than those based on a complete dynamic model.

In addition, due to the fact that the G-S motion systems suffered from parameter uncer-
tainties and unmodeled uncertainties, more advanced model-based control strategies such
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as adaptive control, robust control, and sliding mode control are necessary. The adaptive
control scheme is restricted to simple parallel mechanisms [6,7] or a strongly simplified
G-S dynamic model [8] due to the complicated linear form of the complete dynamic model.
The robust control scheme provided another way to deal with model uncertainties and
had been employed for a six-degrees-of-freedom (DOF) parallel manipulator [9,10]. The
sliding mode control is another well-studied control scheme to enhance motion system
robustness [11–14]. In addition, other model-based control [15], isotropic control [16], or
incremental nonlinear dynamic inversion control [17] were proposed to enhance the motion
tracking performance of the G-S platform.

As for control schemes designed for a six-DOF spatial rigid body, those conventional
control schemes based on local motion parameterization for limited motion ranges cannot
be applied to rigid body systems with large range of motion [18]. In order to model a
six-DOF spatial rigid body in a geometric framework, the configuration (position and
orientation) of a rigid body is represented globally on a six-dimensional special Euclidean
space SE(3) in a coordinate-free manner. The nonlinear control problems whose configu-
rations are defined on Lie group space have received considerable attention in the recent
literature. The early remarkable contributions from Brockett’s research mainly focused
on controllability issues [19]. Generally, there exist two geometric frameworks to define
the configuration error on SE(3). One is related to exponential coordinates on Lie group
SE(3) [20–22], and another one is expressed with left or right group operation between the
current configuration and desired configuration [23]. Their velocity errors were calculated
with the adjoint operator in its Lie algebra tangent space. With these kinematic state error
vectors expressed in the Lie group and Lie algebra space, some controllers that were di-
rectly designed on SE(3) were provided, and their closed-loop stability was also verified.
Bullo focused on exploiting the geometric structure of Lie groups and generalizing the
classical PD feedback used for the control of simple mechanical systems in Rn [20,23]. With
the configuration error vector based on exponential coordinates on SE(3), Lee proposed
a robust adaptive terminal sliding mode control strategy [24,25], while Jiang designed
an asymptotic law for the spacecraft hovering over an asteroid with the second-order
derivative of exponential coordinates [26]. Furthermore, Wang put forward another new
configuration error function to design a geometric terminal sliding mode controller on
SE(3) [27].

In the flight simulator application, the contribution of its cockpit payload mounted at
the upper moving platform is much more significant than the six legs in dynamic modeling
of the six-DOF spatial G-S motion platform due to its limited motion envelope. Thus, the
dynamic model component related with leg movement can be considered as bounded time-
varying model uncertainty so as to take the control problem of the G-S platform as a control
problem of the rigid body system defined on the Lie group SE(3) with bounded model
uncertainty. In addition, acceleration instead of positional accuracy is much more critical
for flight simulation motion systems. This gives us the motivation to develop a robust
terminal sliding mode controller on SE(3) to provide robustness to counteract imperfect
compensation due to its model simplification and payload parameter uncertainties for
the flight simulator motion platform. Meanwhile, as pointed out in [10], in order to
reduce the computation time, the inertial matrix and Coriolis matrix of conventional
robust control law can be approximated as constants that define at the neutral point
without introducing large modeling errors. Hence, the model-based robust control strategy
on Cartesian space had to provide robustness to overcome this imperfect configuration-
dependent model simplification uncertainty in addition to payload parameter uncertainty.
However, the TSMC on Lie group SE(3) does not need to consider this configuration-
dependent uncertainty, as the inertial matrix of the upper platform was constant when
the kinematic state is expressed in the upper moving platform-fixed coordinate. Thus, the
TSMC on SE(3) is expected to provide better robustness than TSMC on Cartesian space. It is
designed to guarantee almost global finite-time convergence through the Lyapunov stability
theory. Therefore, the main contribution of this work can be summarized as follows:
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• The robust terminal sliding mode control strategy on Lie group space SE(3) is applied
to the G-S motion platform for the first time and has been verified to be effective
in a multibody dynamic simulation environment built with the Simcape module in
MATLAB/Simulink;

• When compared with conventional TSMC on Cartesian space with the model simpli-
fication scheme in [10], the proposed TSMC on SE(3) with the model simplification
scheme related with leg movement provides better robustness to payload uncertainty
and imperfect model simplification.

The outline of this paper is listed as follows. In Section 2, a mathematical complete dy-
namic model of the G-S platform in geometric mechanics is derived with its kinematic state
expressed in the moving platform-fixed coordinate frame. Meanwhile, a corresponding
G-S computer model that was built with the Simcape module from the MATLAB/Simulink
package is taken as a forward dynamic model. With exponential coordinate for configura-
tion error and adjoint operator for velocity error, a robust terminal sliding mode controller
on SE(3) is designed through the Lyapunov stability analysis in Section 3. Given the de-
scription of two standard tests (the describing function, step acceleration response) and
numerical experimental setup, the proposed TSMC strategy on SE(3) is verified and com-
pared with the conventional TSMC strategy on Cartesian space in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Dynamic Models of Gough-Stewart Platform

In this section, we will first provide a complete mathematical dynamic model of
the G-S motion platform system in the body-fixed kinematic state, which preserves the
geometric mechanical structure of the upper moving platform. In addition, a computer
model based on the Simscape module from the MATLAB/Simulink package is built as a
forward dynamic model and has been verified with its mathematical model.

The geometric structure of a general G-S motion platform is shown in Figure 1. One
inertial coordinate frame {N} is fixed on the lower fixed platform, and one body frame {B}
is fixed on the upper moving platform. Let γ denote the configuration pose of the upper
moving platform, which belongs to a special Euclidean group space SE(3) = R3 n SO(3).
γ can be expressed with a 4× 4 homogeneous matrix as follows,

γ =

[
R p

01×3 1

]
∈ SE(3) (1)

Here, p = [x, y, z]T is the translational vector of geometric center OB of the upper
moving platform described in the lower fixed frame {N}. R is the orientation matrix
between these two coordinate frames, which can be parameterized by three Euler angles
Θ = [φ, θ, ψ]T in Z–Y–X order (Yaw–Pitch–Roll). Therefore, the configuration pose γ
can be locally parameterized through a six-dimensional Cartesian coordinate vector q =
[x, y, z, φ, θ, ψ]T ∈ R6. In order to exploit the geometric structure of the G-S dynamic model
for the following controller design, we transform the Cartesian coordinate velocity q̇ in
frame {N} into body velocity ξ = [ωT

B , vT
B]

T expressed in moving platform frame {B},

ξ =

[
ωB
vB

]
=

[
RωΘ̇
RT ṗ

]
∈ R6 (2)

where Rω is the transformation matrix between the body angular velocity ωB and Euler
angle derivatives Θ̇.
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Figure 1. The geometric structure of a general G-S motion platform.

As the upper moving platform contributes to the major part of the G-S complete
dynamic model, especially when the ratio of the platform to the leg is obviously large,
we can derive a complete dynamic model among which we can preserve the geometric
mechanics of the upper moving platform.

IB ξ̇ = ad∗ξIBξ − ϕGB − ϕGL − ϕdL + JT
B ϕc (3)

where IB denotes the inertia tensor matrix for the moving platform with payload, ϕGB is the
gravity component vector for the moving platform payload, ϕGL is the gravity component
of six legs, and ϕdL denotes the other residual component vector due to leg movement.
Here, JB denotes the kinematic Jacobian matrix with respect to new kinematic state ξ. The
six-dimensional vector ϕc is the actuator force that drives the six legs.

IB =

[
IB mB r̂OB

−mB r̂OB mB I3

]
∈ R6×6, ϕGB =

[
−mB r̂OBRT g
−mBRT g

]
∈ R6 (4)

Here, IB is the moment of inertial parameters of the moving platform (including
payload) in frame {B}, mB is the mass parameters of the moving platform (including
payload), rOB is the CoG positional vector of the moving platform with its cockpit payload,
which is expressed in the body-fixed frame {B}. The operator (̂·) : R3 → so(3) is defined
so that x̂y = x× y for all x, y ∈ R3. The vector g is the constant gravitational acceleration.

The kinematic Jacobian matrix JB and co-adjoint operator ad∗ξ are formulated as follows.
The co-adjoint operator is applied to derive the dual of the Lie algebra.

JB =


( S1

L1
)T Rb̂T

1 ( S1
L1
)T R

...
...

( S6
L6
)T Rb̂T

6 ( S6
L6
)T R

, ad∗ξ =

[
−ω̂B −v̂B
03×3 −ω̂B

]
, (5)

where S1, · · · , S6 denote link vectors of six legs expressed in the lower fixed frame {N}
(see Figure 1). b1, · · · , b6 are the position vectors of six lower joints in the lower frame {N},
and L1, L2, · · · , L6 are the lengths of six links.

In addition, we also need to construct a forward dynamic model of the G-S motion
platform as a controlled system plant. As a Simscape Multibody-based dynamic model is
more insensitive to the floating-point calculation error, it is chosen as the forward dynamic
simulation for the G-S platform motion system instead of its mathematical model. In
this work, we modify the G-S example model in the Simscape Multibody Library with
our custom parameters to construct an integrated simulation environment for controller
performance evaluation. The Simscape model structure for the whole G-S platform and its
3D animation is shown in the following Figures 2 and 3, respectively. Each leg model in
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Figure 4 is composed of two universal joints connected to the upper and lower platform
base, one extensive piston at the upper part of this leg and another one rotating cylinder at
the lower part, while a two-DOF cylindrical joint connects the upper part and lower part
of this leg.

Figure 2. The Simscape model structure of a G-S platform.

Figure 3. The 3D animation of a G-S Simscape model in Mechanics Explorer.

Figure 4. The Simscape model structure of one leg.



Electronics 2022, 11, 814 6 of 16

Finally, a mutual inverse dynamic model output verification experiment between the
mathematical model and Simscape-based computer model had been carried out by com-
paring the actuator force output when given the same trajectory for these two G-S models.

3. Robust Controller Design on Lie Group Space SE(3)

Recently, Lee had provided a robust adaptive terminal sliding mode control on SE(3) in
the framework of geometric mechanics for the autonomous rendezvous and docking of two
spacecraft with unknown disturbances and moment of inertia uncertainty [24]. Inspired by
this control scheme, we propose a TSMC strategy on SE(3) for the G-S motion platform to
deal with fast-varying yet bounded model uncertainties due to model simplification as well
as bounded slow-varying payload parameter variation. The control objective is to design
control input such that the trajectory errors converge to zero asymptotically in finite time.

For a general G-S motion system, let γd ∈ SE(3) be the desired configuration pose and
γ ∈ SE(3) be the current configuration pose. Thus, a natural configuration tracking error
between γ and γd on Lie group space SE(3) can be defined with the right group operation
as follows.

γe = γ−1
d γ =

[
RT

d R RT
d (p− pd)

0 1

]
(6)

In this work, the configuration tracking error of the G-S platform can be further
expressed in exponential coordinates using the following logarithm map,

η̂ = log(γ−1
d γ) (7)

where log : SE(3)→ se(3) is the logarithm map that maps a group element in SE(3) space to
Lie algebra space se(3). We can regard the logarithmic map as a local chart of the manifold
group SE(3) (more details can be seen in [20]). Thus, the configuration tracking error is
expressed in vector form of exponential coordinates as follows,

η =

[
Ψ
β

]
∈ R6 (8)

where Ψ ∈ R3 and β ∈ R3 are exponential coordinate vectors for the attitude tracking error
(principal rotation vector) and position tracking error, respectively. We should notice that
the logarithm map is bijective when the principal angle of rotation has a magnitude less
than π radians, i.e., ‖Ψ‖ < π.

The velocity error ξe between the current velocity ξ and desired velocity ξd can be
derived in the Lie algebra vector space as follows,

ξe = ξ − Ad
γ−1

e
ξd (9)

where Adg is adjoint action on SE(3) that is defined as follows,

Adg =

[
R 03×3

p̂R R

]
∈ R6×6, s.t. AdgX∨ = (gXg−1)∨ (10)

As given in reference [20], the kinematics of exponential coordinates provided the
relations between η and velocity error ξe as follows,

η̇ = G(η)ξe (11)

The explicit expansion formulation for matrix G(η) can be found in [20].
The time derivative of the velocity error ξe can be derived as follows,

ξ̇e = ξ̇ − Ad
γ−1

e
ξ̇d −

d
dt
(Ad

γ−1
e
)ξd

= ξ̇ − Ad
γ−1

e
ξ̇d + [ξe, Ad

γ−1
e

ξd]
(12)
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where [·, ·] : R6 ×R6 → R6 is the Lie bracket operator for the Lie algebra vector (see Lie
bracket definition in [28]).

Substituting the acceleration Equation (12) to the G-S platform dynamic, Equation (3)
produces the following configuration error dynamic equation,

IB ξ̇e = ad?ξIBξ − ϕGBL − ϕdL + JT
B ϕc + IB([ξe, Ad

γ−1
e

ξd]− Ad
γ−1

e
ξ̇d) (13)

where ϕGBL = ϕGB + ϕGL is a composition for the gravity component of the moving
platform and legs.

In flight simulation application, the characteristic of the G-S dynamic model depends
on the commanded trajectory that provides high-quality motion cues for flight training. For
example, in low-frequency motion, the actuators’ position and velocity constraint limit the
maximal available acceleration. Moreover, the high-frequency motion keeps the moving
platform not far away from its neutral position. Thus, the imperfect compensation due to
model simplification also depends on its motion envelope for flight simulation.

As for the model simplification strategy, when a G-S dynamic model in Cartesian
coordinate q (see reference [1]) was employed in model-based controller law for flight
simulator application, the matrices Mt(q, q̇), Ct(q, q̇), and Gt(q) need to be considered
approximated as constant components with acceptable modeling errors. Under its motion
envelope, the configuration pose-dependent inertial matrix for the upper moving platform
with payload Mp could present 8% variation of its nominal inertial matrix at neutral pose
in the low-frequency high-amplitude motion, contributing to 25% of the whole model sim-
plification error. However, the model simplification based on dynamic model Equation (3)
with configuration-independent inertial matrix IB only presents model simplification error
related to leg movement. For the leg part of both of these two dynamic models, its gravity
component ϕGL and residual component ϕdL can be considered as a constant vector without
generating large modeling errors under the limited motion envelope.

In addition, there are always slow time-varying or unknown parameter uncertainties
for the upper platform with a changeable payload due to pilot adjustment or additional
equipment. Therefore, both model simplification error and payload parameter uncertainties
contribute to the G-S model uncertainties boundedness in the following Assumption 1.
Based on this model simplification scheme and uncertainty boundedness, the derivation of
model-based robust control law becomes much simpler, which would reduce the computa-
tion time significantly.

Assumption 1. (G-S Motion System imperfect model compensation boundedness) The simplified
G-S dynamic model provided in Equation (3) contains imperfect model compensation from the
intentional simplification of the leg component and inaccurate constant and time-varying model
parameters. The generalized forces and torques corresponding to model error are assumed to be
bounded. Thus, it is assumed that there exists a constant boundary vector F = [F1 F2 · · · F6]

T

such that

|ϕdL| =
{
|τdi
| ≤ Fj i, j = 1, 2, 3,

|φdi
| ≤ Fj i = 1, 2, 3, j = 4, 5, 6

(14)

It is obvious that the G-S model uncertainty in Equation (3) does not need to deal
with configuration-dependent uncertainty related to a moving platform so as to provide us
with a more reasonable boundary to enhance the robustness of the control law. The sliding
mode control scheme is capable of dealing with model uncertainties. It is well known
that a fundamental difference in flight simulator motion systems w.r.t usual robotics is the
fact that acceleration instead of positional accuracy is more important. Thus, this work is
devoted to designing a robust terminal sliding mode control scheme for the G-S motion
system with model uncertainties.

The terminal sliding plane on the Lie group SE(3) is defined as follows,

s = ξe + Cηq/p (15)
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where s = [s1 s2 s3 s4 s5 s6]
T ∈ R6 is the sliding plane, η = [η1 η2 η3 η4 η5 η6]

T ∈ R6,
C = diag(c1, c2, c3, c4, c5, c6) is a positive definite matrix, and the positive odd integers q, p
are chosen such that q > p.

Theorem 1. For the nonlinear error kinematics and dynamics described in Equations (11) and (13),
if the sliding plane is designed as Equation (15), the system motion will converge to zero along the
sliding plane s(t) = 06×1 in finite time, and the control law is designed as follows,

ϕc = −J−T
B (ad∗ξIBξ − ϕGBL + IB([ξe, Ad

γ−1
e

ξd]− Ad
γ−1

e
ξ̇d + ΛG(η)ξe) + Ksat(s, ε)) (16)

where Λ = diag( c1q
p η

q/p−1
1 , c2q

p η
q/p−1
2 , · · · , c6q

p η
q/p−1
6 ), sat(s, ε) = [sat(s1, ε), sat(s1, ε), · · · ,

sat(s6, ε)]T are saturation functions, and K = diag(k1, k2, · · · , k6) is a positive definite gain
matrix satisfying the following inequality,

ki > Fi, i = 1, 2, · · · , 6 (17)

Proof. Consider the following Laypunov function candidate,

V =
1
2

sTIBs (18)

Taking the time derivative of the Laypunov function V results in,

V̇ = sTIB(ξ̇e + Cη̇
q
p ) (19)

Substituting the error dynamic Equation (13) and kinematic Equation (11) into
Equation (19), the derivative will be written as,

V̇ = sT [ad?ξIBξ − ϕGBL + JT
B ϕc + ϕdL + IB([ξe, Ad

γ−1
e

ξd]− Ad
γ−1

e
ξ̇d + ΛG(η)ξe)] (20)

Finally, taking the control law Equation (16) into Equation (20) yields the following equation.

V̇ = sT [ϕdL − Ksat(s, ε)] ≤ −
6

∑
i=1

(ki|si| − Fi|si|) = −
√

2
λmin(IB)

$V
1
2 (21)

where $ > 0 and λmin(IB) is the minimum eigenvalue of inertia matrix IB. Therefore,
through the finite-time stability theorem in [29], we can draw the conclusion that the G-S
platform kinematic state will reach the sliding surface s(t) = 06×1 in finite time. The
closed-loop system under control law (16) will globally stabilize (η, ξe) = (06×1, 06×1) in
finite time.

Remark 1. As mentioned in [30], in order to avoid the possible singularity problem in the TSMC
as η converges to zero, the parameters p and q are properly chosen so that 2q > p.

The controller framework for the G-S motion system is shown in Figure 5. Those six
legs are actuated through a PMSM drive modeled through a simplified transfer function
as clarified in reference [12], and it can meet the controller demand output with a current
loop bandwidth over 100 Hz in torque control mode. The forward kinematics of the G-S
platform can be computed in real time by employing a Newton–Raphson method.
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dq

dq
q

q
c

qq

dq

Figure 5. The control framework of TSMC on SE(3) for G-S motion systems.

4. Controller Performance Evaluation and Analysis

This section is devoted to evaluating the robustness performance of the TSMC strategy
on SE(3) through a comparison with the conventional TSMC strategy on Cartesian space in
a G-S motion platform simulated testbed. The main parameters of the G-S motion system
are shown in Tables 1 and 2. In this work, two standard methods from the AGARD report
144 [31] are considered: the describing function test for frequency domain evaluation and
the step acceleration response for time domain evaluation. For each degree of freedom, six
describing functions can be calculated at operating points in the following Table 3. The
primary describing function is the comparison of the response of motion base in the driven
DOF to the excitation signal. The amplitudes of sinusoidal input were chosen to keep the
motion below approximately 10% of the system limits in position, velocity, and acceleration.
The amplitude of the step acceleration input is chosen to be 70% of the system limits. The
simulation step size is chosen to be 0.01 ms, and the ODE45 solver is used.

Table 1. Mass and inertial parameters of the G-S platform.

Parameters Description Values

mB Mass of moving platform 2600 kg
IB Inertial matrix of moving platform diag{2716, 2716, 3800}kg ·m2

rOB CoG of moving platform [0,0,0.40] m
mu Mass of upper piston of each leg 78 kg
md Mass of lower cylinder of each leg 148 kg
du CoG of piston in its local frame [0.82,0,0] m
dd CoG of cylinder in its local frame [0.86,0,0] m
Iu Inertial of piston with respect to local frame diag{0.26, 18.53, 18.53}kg ·m2

Id Inertial of cylinder with respect to local frame diag{1.189, 28.09, 28.09}kg ·m2

g Gravitational acceleration 9.8066 m/s2

Table 2. The geometric parameters of the G-S platform.

Parameters Description Values

rB The upper moving platform radius 1.60 m
rN The lower fixed platform radius 1.65 m
dB Upper platform spacing 0.1 m
dN Lower platform spacing 0.3 m

Lmin Minimum leg length 1.8 m
Lmax Maximum leg length 2.6 m
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Table 3. Operating points for describing function tests.

Sinusoidal Acceleration for Translation Sinusoidal Velocity for Rotation

Freq (Hz) Amp (m/s2) Freq (Hz) Amp (rad/s)

0.3 0.1 0.3 0.020
0.5 0.5 0.5 0.016
0.8 0.5 0.8 0.016
1.3 0.5 1.3 0.012
2.0 0.5 2.0 0.012
3.2 0.5 3.2 0.010
5.0 0.5 5.0 0.008
7.1 0.5 7.1 0.006
9.1 1.0 9.1 0.006
10.1 1.0 10.1 0.006
11 1.0 11 0.006
13 1.0 13 0.006

14.8 1.0 14.8 0.006
19.8 0.15 19.8 0.002

For the Simscape-based G-S platform model plant, the parameter uncertainties of its
moving platform payload are set with the following equations.

∆m = (0.07 + 0.01sin(0.1t)) ·m
∆rOB = (0.06 + 0.02sin(0.2t)) · rOB

∆IB = (0.06 + 0.02sin(0.2t)) · IB

(22)

These payload parameter uncertainty equations show that the actual payload parame-
ters vary in the range of 6–8% of its nominal values, which include a constant uncertainty
and a slow time-varying uncertainty. With the known dynamic model simplification
characteristic of G-S dynamics under a limited motion envelope, it is easy to determine
a conservative boundary vector for a flight simulator motion system. Therefore, the
controller parameters for TSMC on SE(3) are set as shown in Table 4.

Table 4. The controller parameters for TSMC on SE(3).

Controller Parameters Values

p, q p = 3, q = 5

C
[

0.758I3 0
0 0.842I3

]
K diag{600, 500, 560, 400, 400, 2700}
ε 0.003

After the description of the test procedure and experimental setup, the amplitude and
phase frequency characteristics of the closed-loop G-S motion system under the TSMC
controller law on SE(3) from 0.3 to 20 Hz are shown in Figures 6 and 7. Meanwhile,
given the same describing function test and experimental setup, a TSMC strategy in
Cartesian space provides the amplitude and phase frequency characteristics in the following
Figures 8 and 9.
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Figure 7. The Bode plot for a rotational describing function under TSMC on SE(3).
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Figure 8. The Bode plot for a translational describing function under TSMC on Cartesian space.
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Figure 9. The Bode plot for a rotational describing function under TSMC on Cartesian space.

For the TSMC strategy on SE(3), it can be seen that the systems presented a flat
response with a bandwidth of approximately 20 Hz in the surge, sway, roll, pitch, and
yaw directions. Meanwhile, the −3 dB point of heave direction can be found around
13 Hz. In all six DOFs, the phase lag remains well within 45◦. However, for the TSMC
strategy on Cartesian space, it is only in the surge, sway, roll, and yaw directions that the
bandwidth can arrive at 20 Hz. In the heave direction, the −3 dB point has dropped to
7.1 Hz. In the pitch direction, the −3 dB point also falls to below 10 Hz, and the phase lag
has exceeded 45◦ around 15 Hz. Thus, we can draw the conclusion that the TSMC strategy
on SE(3) provides better robustness with high bandwidth in two DOFs more than TSMC
on Cartesian space.

Furthermore, given another set of controller parameters for the step acceleration
response test (K = diag{950, 950, 650, 500, 500, 4000}, ε = 0.007, other parameters remain
unchanged), the rise time comparisons in six DOFs are shown in Table 5. This comparison
shows that the TSMC on SE(3) represents a relatively faster step response than TSMC on
Cartesian space in all six DOFs, especially in the roll and yaw direction. The acceleration
step responses in the roll and yaw direction are shown in the following Figures 10 and 11,
respectively. It tells us that the TSMC on SE(3) also behaves with smaller acceleration
tracking error than TSMC on Cartesian space. This is due to the fact that the TSMC strategy
had to cost much more robustness in dealing with its configuration-dependent model
simplification error in the high-amplitude rotation motion.
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Table 5. The rise time comparison for TSMC on SE(3) and Cartesian space.

DOF TSMC on SE(3) TSMC on Cartesian Space

x 12.40 ms 14.40 ms
y 12.30 ms 14.60 ms
z 12.00 ms 12.10 ms
φ 17.17 ms 23.80 ms
θ 17.33 ms 23.50 ms
ψ 14.66 ms 15.10 ms
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Figure 10. The step acceleration response comparison in the roll direction.
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Figure 11. The step acceleration response comparison in the yaw direction.

As stated by Koekebakker [1], the controlled simulator motion system requires a
bandwidth over 10 Hz so as to have minimal influence on the pilot–aircraft model loop
characteristics. Through the performance comparison in the frequency-domain and time-
domain, we can conclude that the TSMC strategy on SE(3) would be beneficial for robust
controller design for a flight simulator motion base. In addition, it should be noticed
that the frequency-domain and time-domain performance of the controlled system would
worsen in physical implementation due to the increased response time of inner-loop PMSM
drive systems.
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5. Conclusions

This paper proposed a robust terminal sliding mode controller on SE(3) for a G-S
flight simulator motion system with payload uncertainty. A simplified dynamic model that
preserved the geometric mechanical structure of the major moving platform under the limit
motion envelope was provided. The robust strategy worked in the out-loop workspace
to deal with the imperfect model compensation due to model simplification and payload
uncertainty. Within the Lyapunov stability framework, the designed robust control scheme
was proven to guarantee finite-time convergence. Finally, a standard describing function
test for the frequency-domain and a step acceleration response for the time-domain were
used to compare the robustness performance of the TSMC strategy on SE(3) with TSMC
strategy on Cartesian space. The experimental results showed that the TSMC strategy
on SE(3) provided better robustness than the conventional TSMC strategy on Cartesian
space: that is, higher bandwidth in two DOFs and relatively faster response with smaller
acceleration tracking error in the time-domain. In future study, we will finish the inner-loop
PMSM dynamic model with a Simscape Electrical module in MATLAB/Simulink instead
of the current transfer function model so as to make the simulated testbed closer to the
physical environment. In addition, we will continue to perform other standard tests in the
AGARD report for the proposed TSMC strategy before the real-life application.
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