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Abstract: A decision tree is a transparent model where the rules are visible and can represent the logic
of classification. However, this structure might allow attackers to infer confidential information if the
rules carry some sensitive information. Thus, a tree pruning methodology based on an IP truncation
anonymisation scheme is proposed in this paper to prune the real IP addresses. However, the possible
drawback of carelessly designed tree pruning might degrade the performance of the original tree as
some information is intentionally opted out for the tree’s consideration. In this work, the 6-percent-
GureKDDCup’99, full-version-GureKDDCup’99, UNSW-NB15, and CIDDS-001 datasets are used
to evaluate the performance of the proposed pruning method. The results are also compared to the
original unpruned tree model to observe its tolerance and trade-off. The tree model adopted in this
work is the C4.5 tree. The findings from our empirical results are very encouraging and spell two
main advantages: the sensitive IP addresses can be “pruned” (hidden) throughout the classification
process to prevent any potential user profiling, and the number of nodes in the tree is tremendously
reduced to make the rule interpretation possible while maintaining the classification accuracy.

Keywords: privacy-preserving; IP address truncation; C4.5 decision tree; pruning; network intrusion
detection system

1. Introduction

The decision tree is a powerful white-box classifier encompassing branches and nodes
to deliver an interpretable model in the form of “if–else” rules. However, as most of the
information is visible in the tree-like structure, the model is highly susceptible to privacy
attacks. For example, the protocol type or port number attribute that branches out to or
from the IP address node in the tree model may reveal the possibility of certain services
being available on the particular machine [1].

Although Li and Sarkar [2] had proposed a privacy pruning model based on risk
assessment, the approach is entirely different from the solution we proposed in this paper.
Specifically, we utilise a case study in the network intrusion detection system (NIDS)
domain to illustrate how we tackle the privacy issue as mentioned earlier. Furthermore, to
the best of our knowledge, none of the previous works designed a privacy pruning solution
from the perspective of IP truncation.

The IP address is viewed as personal data when its usage is combined with other
information and can be used for profiling an individual [3,4]. For example, an attacker
can deduce sensitive information such as individual online behaviours and personal com-
munication from the IP address, and other information from the network traces [4]. IP
truncation can be embedded into the C4.5 tree to anonymise any sensitive information [5,6].
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However, this indicates that some information will be obscured, and careless handling of it
will affect the performance of the C4.5 tree. In this work, we will examine the impacts of
the IP truncation and C4.5 tree in the domain of NIDS.

2. Literature Review

A decision tree model often suffers from overfitting its training data due to its greedy
approach in building the classifier. Pruning is often used to simplify an unpruned decision
tree by removing the insignificance nodes, branches, or leaves [7–9]. Various pruning
techniques have been proposed in the literature to yield a decision tree model with higher
performance (i.e., classification accuracy) and better generalisation capability. Since the
focus of this work is on tree pruning, some existing pruning strategies are discussed. The
most common usage of pruning is to improve the decision tree model’s classification
accuracy (i.e., reduced classification error). In general, nodes or leaves will be pruned if the
classification accuracy for the pruned version of the tree is better than the unpruned version.
Reduced Error Pruning [10], Pessimistic Error Pruning [10], Error-based Pruning [11],
Critical Value Pruning [12], Minimum Error Pruning [12], and Improved Expected Error
Pruning [13] are some of the notable pruning algorithms that endeavour to minimise the
error rate of the decision tree model. In the default settings, the C4.5 decision tree [11] uses
Error-based Pruning (an improved version of Pessimistic Error Pruning).

A decision tree model can be viewed as a sequence of “if–else” rules flowing from the
root node to the leaf node to provide a classification decision or regression result. Though
maximising the classification accuracy is important, the structural complexity (i.e., number
of nodes, branches, and leaves) of a tree should not be overlooked. This is because a
tree with over-complicated tree structures would hinder the interpretation of the decision
rules. Therefore, some researchers opt to build a simpler decision tree through the pruning
mechanism to unleash the interpretability of a decision tree. On top of this, a simpler tree
structure is more computational friendly. A few of the well-known pruning schemes that
seek to reduce the complexity of the tree structure include Cost-Complexity Pruning [14],
improved Cost-Complexity Pruning [15], and the Optimal Pruned Tree [16]. Among them,
the Cost-Complexity Pruning was employed in the renowned Classification and Regression
Trees (CART) developed by Breiman et al. [14].

Apart from pruning with a single objective such as maximising the classification
accuracy or reducing the number of nodes, Osei-Bryson [17] pointed out another evaluation
criteria—the stability and interpretability of a tree to assess the quality of the model.
Fournier and Crémilleux [18] designed a Depth-Impurity Pruning based on the Impurity
Quality Node index that considers the average distance of the data belonging to a leaf
node to its centre of mass [19] and also the depth of a node. In contrast to Cost-Complexity
Pruning [14], which only considers the number of nodes, Wei et al. [20] include the depth
(i.e., level) of the tree and classification accuracy as the pruning evaluation criteria by
utilising rough set theory [21].

In the purview of the unbalanced classes in most real-world classification problems,
researchers had proposed a Cost-Sensitive Pruning technique to tackle this issue. It is very
common to treat all classes as equally significant during the pruning process. However,
this may not work perfectly for certain applications. In the medical field, a misclassification
(i.e., false negative) in certain scenarios might be more expensive than a false positive.
For instance, the consequence of identifying a patient with cancer as a healthy patient is
more expensive than identifying a healthy patient as a patient diagnosed with cancer [22].
Thus, Knoll, Nakhaeizadeh, and Tausend [22] proposed a Cost-Sensitive Pruning that
incorporates weights for each class in the dataset. In their work, they supplied the cost
matrix directly to the algorithm. To evaluate the optimum ratio of misclassification costs
(i.e., cost matrix), Bradley and Lovell [23] exploited the receiver operating characteristics
curve, and Ting [24] incorporated instance weighting with a C4.5 decision tree to compute
the cost matrix.
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Decision tree models exploit the concepts of information gain to split the training
dataset based on the features selected into a smaller group. In most cases, the leave nodes
will only contain a very small subset of the training data. This scenario will lead to re-
identification attacks through information linking [25], as described by Li and Sarkar [2].
Thus, Li and Sarkar [2] proposed a new pruning metric that evaluates each node’s disclosure
risks. They measured the risks by counting the number of data available in each node. A
larger number of data would imply a lower risk, while a smaller number would suggest
a higher risk of information disclosure. To prevent re-identification attacks, the authors
introduced a data swapping procedure for the data found in each node. In this procedure,
the majority class instances will be swapped with the minority class instances. To retain
the classification performance, the superior probability after the data swapping process is
retained by the majority class of each node.

From the literature review, we realise that only a minor group is working on privacy-
oriented pruning, and there is room for improvement. Therefore, instead of weighting
each node, we propose a new approach to prune the tree by truncating the value of the
IP address in the application domain of NIDS. The methodology of this proposed work is
presented in the next section.

3. Methodology

In this work, truncation [26] is performed on IP addresses in three ways: 8-bit, 16-bit,
and 24-bit truncations. Given the original IP address as “192.168.123.121”, 8-bit truncation
will zeroize the last byte (8-bit) of the IP address, thus representing it as “192.168.123.0”; 16-
bit truncation will zeroize the last two bytes (16-bit) of the original IP address, representing
it as “192.168.0.0”; whereas 24-bit truncation will zeroize the last three bytes (24-bit) of
the original IP address, representing it as “192.0.0.0”. The goal of this proposed method is
twofold: (1) to anonymise the real IP address and (2) to prune the original C4.5 decision
tree. In this work, we have adopted the C4.5 decision tree from the Weka J48 decision tree
package to run the experiment. It should be noted that the default J48 decision tree without
any fine-tuning of parameters is utilised on all the experiments deliberated on in this paper.

To illustrate the impacts of decision tree pruning with IP truncation, part of the
ASCII J48 (Weka implementation of C4.5) tree model built against the original 6-percent-
GureKDDCup’99 dataset is shown in Figure 1. Similarly, the 24-bit truncation version of
the same dataset trained with the identical dataset and model is presented in Figure 2. We
can observe that all the IP addresses from the tree model in Figure 2 have been truncated
by three bytes (24-bit), spawning a new set of IP addresses such as ”192.0.0.0”, “135.0.0.0”,
“196.0.0.0”, etc. In both figures, the values in the bracket should be read as (total number of
instances from the training distribution reaching the leaf, number of training instances that
is incorrectly classified) [25]. For instance, “resp_port <= 20: normal (6465.0/6.0)” from
Figure 2 denotes that 6465 number of training instances reached the leaf node, with 6 of
them classified incorrectly [27]. To have a better insight into the proposed approach, we
give the overall methodological diagram and pseudocode for the proposed IP truncation
pruning algorithm in Figures 3 and 4. Note that 10-fold cross-validation is utilised in the
absence of a testing dataset.
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Figure 1. ASCII J48 (Weka implementation of C4.5) Pruned Tree Model (partial), Performance Result
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Figure 2. ASCII J48 (Weka implementation of C4.5) Pruned Tree Model (partial), Performance Result 

on 6 Percent‐GureKDDCup’99 (24‐bit Truncation). 
Figure 2. ASCII J48 (Weka implementation of C4.5) Pruned Tree Model (partial), Performance Result
on 6 Percent-GureKDDCup’99 (24-bit Truncation).
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Figure 4. Pseudocode of the Proposed IP Truncation Pruning Algorithm.

4. Experimental Empirical Studies

The examination is tested on a 6-percent-GureKDDCup’99 [28,29] NIDS dataset. This
dataset is suitable because it contains IP addresses, which the IP truncation method will be
applied to. To avoid the biasness or cherry-picking of the features, this work intentionally
opted out of feature extraction, and no feature enhancement was performed on the dataset.

Hence, all the 47 attributes including connection_number, start_time, orig_port,
resp_port, orig_ip, resp_ip, duration, protocol_type, service, flag, src_bytes, dst_bytes,
land, wrong_fragment, urgent, hot, num_failed_logins, logged_in, num_compromised,
root_shell, su_attempted, num_root, num_file_creations, num_shells, num_access_files,
num_outbound_cmds, is_hot_login, is_guest_login, count, srv_count, serror_rate, srv_serror_
rate, rerror_rate, srv_rerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_host_
count, dst_host_srv_count, dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_
same_src_port_rate, dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_
serror_rate, dst_host_rerror_rate, dst_host_srv_error_rate are utilised in the experimental
procedure. Details of the attributes can be referred from the GureKDDCup’99 documenta-
tion [28,29].

As the dataset has not been segregated into a training and testing distribution by the
authors, the classification performance of the proposed method will be evaluated based on
10-fold cross-validation to provide a fair comparison between the models.

4.1. Experimental Results

To gauge the usability of a decision tree model, the decision tree structure (i.e., number
of nodes) and the classification accuracy attained before and after the application of IP
truncations are compared. The number of nodes is selected as one of the evaluation criteria
since the interpretability of a decision tree greatly depends on the tree structure. For
instance, a very complex decision tree structure having a vast number of nodes is harder to
be understood when compared to a simpler tree with a smaller number of nodes.

We present the empirical results for each model (i.e., original, 8-bit truncation, 16-bit
truncation, and 24-bit truncation) in Table 1 with crucial evaluation metrics such as classi-
fication accuracy, true positive rate, false positive rate, true negative rate, false negative
rate, the number of nodes found in the tree models, and the number of leaves present in
the tree models.
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Table 1. Performance Comparison of Each Model in 6 Percent-GureKDDCup’99.

IP Truncation

Criteria Original 8-Bit 16-Bit 24-Bit

Classification Accuracy (%) 99.9441 99.9323 99.9279 99.9329
Accuracy Degradation - −0.0118 −0.0162 −0.0112

True Positive Rate 0.9994 0.9993 0.9993 0.9993
False Positive Rate 0.0137 0.0224 0.0216 0.0189
True Negative Rate 0.9863 0.9776 0.9784 0.9811
False Negative Rate 0.0006 0.0007 0.0007 0.0007

Number of Nodes 23,483 20,663 2156 387
Reduction in Number of Nodes - 2820 21,327 23,096

Reduction in Nodes (%) - 12.0087 90.8189 98.3520

Number of Leaves 23,448 20,621 2094 319
Reduction in Number of Leaves - 2827 21,354 23,129

Reduction in Leaves (%) - 12.0565 91.0696 98.6395

Number of Source IP Address 99 72 64 27
Number of Destination IP address 5801 4057 1730 72

Total Number of IP address 5900 4129 1794 99
Reduction in Number of IP Address - 1771 4106 5801

Reduction in Number of IP Address (%) - 30.0169 69.5932 98.3220

4.2. Discussions and Findings

Affected by the IP truncation concealing procedure, it is speculated that this process
might be reducing the accuracy of the original decision tree due to information loss. How-
ever, the experimental results prove otherwise since the difference in accuracy between
the original and truncated versions are remarkably insignificant (on average ~0.01% of
degradation), as tabulated in Table 1. Similarly, although the original model performance
in terms of true positive rate, false positive rate, true negative rate, and false negative rate
is superior when compared to the other models, the difference is miniature.

Interestingly, the total number of nodes in the decision tree structure is observed to
be considerably decreased after applying IP truncation (i.e., 23,096 or 98.3520% of nodes
are pruned from the original tree when 24-bit truncation is adopted) based on the results
shown in Table 1. This scenario signifies that the truncation scheme can simplify the tree
structure and provide additional privacy protection without deteriorating the classification
performance of the decision tree at the same time.

Akin to the observation in the number of nodes, we also noticed a significant reduction
in the number of leaves. In particular, the number of leaves is reduced by 21,354 (91.0696%)
when 16-bit truncation is adopted and 23,129 (98.6395%) when 24-bit truncation is applied.

To better understand the differences between the truncation methods, we have also
presented the total number of distinct source IP addresses and destination IP addresses
in Table 1. The highest number of nodes and leaves are pruned when 24-bit truncation is
applied. This can be substantiated by the total reduction in IP address from 5900 to 99. A
total of 5801 or 98.3220% of IP addresses have been reduced as compared to the original
model when 24-bit truncation is employed.

Based on the empirical results presented in this section, it is safe to assume that
the truncation methods are suitable to be adopted as a pruning strategy to reduce the
complexity of the tree structure while maintaining an adequate classification performance
and preserving privacy simultaneously.

5. Extended Experimental Empirical Studies

To further corroborate the claims made in Section 4, extended empirical studies per-
formed on the full version of three NIDS datasets are substantiated in this section. The
three NIDS datasets include (i) GureKDDCup’99 [28,29], (ii) UNSW-NB15 [30], and CIDDS-
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001 [31]. As the full version of these three datasets was supplied in a weekly fashion by the
authors, we adopted a distinct approach to split the training and testing data following
each of the weeks, as depicted in Table 2. Due to the over-optimistic results produced
by cross-validation shown in the previous section, this approach was advocated by Ring
et al. [32] and Al Tobi and Duncan [33]. Akin to the 6-percent-GureKDDCup’99, the three
NIDS datasets are chosen as they contained the mandatory IP truncation features: the
source IP address and destination IP address. More details of the datasets, data cleansing,
and data preparation can be found in our previous work [34].

Table 2. Distribution of Training and Testing Sets for the full version of GureKDDCup’99, UNSW-
NB15, and CIDDS-001.

Dataset Training Set Distribution Testing Set Distribution

GureKDDCup’99 (full)

Week 1 Week 2~7
Week 1~2 Week 3~7
Week 1~3 Week 4~7
Week 1~4 Week 5~7
Week 1~5 Week 6~7
Week 1~6 Week 7

UNSW-NB15 (full)
Week 1 Week 2~4

Week 1~2 Week 3~4
Week 1~3 Week 4

CIDDS-001 Week 1 Week 2

5.1. Extended Empirical Experimental Results

For the sake of simplicity, only the classification accuracy (i.e., model performance) and
the number of nodes (i.e., tree structure) will be discussed and analysed in the subsequent
section. Table 3 tabulates the accuracy performance of the decision tree model trained
with different train–test distributions incorporated with or without the IP truncation. The
number of nodes present in the model after the pruning process is delivered in Table 4.
From the tables, we can notice that the obtained empirical results are very encouraging
as most tree models pruned with IP truncation can perform almost on a par with the
original model.

Table 3. Classification Accuracy (%) for each C4.5 Tree Model in Full GureKDDCup’99, UNSW-NB15,
and CIDDS-001.

Dataset IP Truncation

Train Test Original 8-Bit 16-Bit 24-Bit

GureKDDCup
1 2~7 38.0293 38.0293 38.0293 38.0293

1~2 3~7 33.1808 33.1808 33.1808 33.1808
1~3 4~7 82.8830 82.8707 82.8741 82.8794
1~4 5~7 88.1692 88.4873 89.0633 89.0881
1~5 6~7 88.8412 88.8432 88.8412 88.8490
1~6 7 99.9526 99.9508 99.8981 99.7670

UNSW-NB15
1 2~4 96.5079 96.8354 96.8500 96.8500

1~2 3~4 96.6146 96.6783 96.6783 96.6783
1~3 4 96.7751 96.9755 96.9755 96.9755

CIDDS-001
1 2 94.4539 93.4896 92.4927 92.4927
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Table 4. Number of Nodes for each C4.5 Tree Model in Full GureKDDCup’99, UNSW-NB15, and
CIDDS-001.

Dataset IP Truncation

Train Test Original 8-Bit 16-Bit 24-Bit

GureKDDCup
1 2~7 5 5 5 5

1~2 3~7 2990 2047 46 41
1~3 4~7 19,615 3522 1807 367
1~4 5~7 102,422 37,399 4205 587
1~5 6~7 175,904 53,695 4905 867
1~6 7 318,262 44,350 7313 1096

UNSW-NB15
1 2~4 3744 3126 3116 3116

1~2 3~4 8762 5443 5426 5426
1~3 4 18,787 9639 9625 9625

CIDDS-001
1 2 8766 720 612 612

5.2. Discussion and Analysis on the Extended Empirical Experimental Results

Similar to the observation presented in Section 4, the classification performance dif-
ference between the truncated models and original model is not significant, with, at most,
2% of degradation across the three datasets based on the classification accuracy difference
shown in Table 5. However, it is interesting to witness that some tree models utilising
the IP truncation pruning mechanism could perform better than the original model. For
example, when the model is trained with GureKDDCup’99 (Week 1~4) and tested with
GureKDDCup’99 (Week 5~7), the proposed model integrated with the 24-bit truncation
gains 0.9189% accuracy compared with the original model. This scenario assumes that the
nodes pruned by truncation can produce a tree with better generalisation capability.

Table 5. Classification Accuracy (%) Difference for each C4.5 Model in Full GureKDDCup’99, UNSW-
NB15, and CIDDS-001.

Dataset IP Truncation

Train Test 8-Bit 16-Bit 24-Bit

GureKDDCup
1 2~7 0.0000 0.0000 0.0000

1~2 3~7 0.0000 0.0000 0.0000
1~3 4~7 −0.0123 −0.0088 −0.0036
1~4 5~7 0.3181 0.8942 0.9189
1~5 6~7 0.0020 0.0000 0.0079
1~6 7 −0.0018 −0.0545 −0.1856

UNSW-NB15
1 2~4 0.3275 0.3421 0.3421

1~2 3~4 0.0637 0.0637 0.0637
1~3 4 0.2004 0.2004 0.2004

CIDDS-001
1 2 −0.9642 −1.9611 −1.9611

ACC: Classification Accuracy (%) = Accuracy (IP Truncated) − Accuracy (Original Data); (+) indicates Improve-
ment in Accuracy; (−) indicates Reduction in Accuracy.

For the tree’s structure, the number of nodes realised by each model is tabulated in
Table 6. From the result, we can observe that the number of nodes is significantly reduced
in all three datasets when 8-bit, 16-bit, and 24-bit truncations are adopted. These results
further justify that the IP truncation is an effective strategy to prune the tree to create a
simpler tree structure.
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Table 6. Performance Comparison (Number of Nodes) for each C4.5 Model in Full GureKDDCup’99,
UNSW-NB15, and CIDDS-001.

Dataset IP Truncation

Train Test
8-Bit 16-Bit 24-Bit

No. Nodes 1 Reduction (%) No. Nodes 1 Reduction (%) No. Nodes 1 Reduction (%)

GureKDDCup
1 2~7 0 0.00 0 0.00 0 0.00

1~2 3~7 −943 −31.54 −2944 −98.46 −2949 −98.63
1~3 4~7 −16,093 −82.04 −17,808 −90.79 −19,248 −98.13
1~4 5~7 −65,023 −63.49 −98,217 −95.89 −101,835 −99.43
1~5 6~7 −122,209 −69.47 −170,999 −97.21 −175,037 −99.51
1~6 7 −273,912 −86.06 −310,949 −97.70 −317,166 −99.66

UNSW-NB15
1 2~4 −618 −16.51 −628 −16.77 −628 −16.77

1~2 3~4 −3319 −37.88 −3336 −38.07 −3336 −38.07
1~3 4 −9148 −48.69 −9162 −48.77 −9162 −48.77

CIDDS-001
1 2 −8046 −91.79 −8154 −93.02 −8154 −93.02

1 No. Nodes: Number of Nodes = No. Nodes (IP Truncated) − No. Nodes (Original Data); (+) denotes a more
Complex Tree; (−) denotes a Simpler Tree.

By plotting the classification accuracy against the number of nodes in Figure 5, it can
be evidently seen that the truncation approach can prune the nodes efficiently without
sacrificing a good classification accuracy. Interestingly, the performance of the truncated
models containing lesser nodes in GureKDDCup’99 and UNSB-SW15 are either on a par
with or superior when compared to the original models. Although the model’s classification
accuracy slightly deteriorated by ~2% in CIDDS-001, it is compensated with a simpler tree
containing only ~700 nodes instead of 8766 nodes from the original model.
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From Table 5, we noticed that the classification performance of the tree models is
identical when 16-bit or 24-bit truncation is applied in UNSW-NB15 and CIDDS-001. At
the same time, we also observed that the number of nodes remains constant in accordance
with the results in Table 6. To further understand this finding, the total number of unique
IP addresses, including the source and destination, is calculated and organised in Table 7.
Therefore, we can identify that the total number of IP addresses remains unchanged in
UNSW-NB15 and CIDDS-001 when 16-bit or 24-bit truncation is applied. This may be the
key reason leading to the identical performance achieved by the models.
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Table 7. Total Number of Distinct IP addresses (Sum of both Source and Destination IP) for each
Train–Test Distribution in Full GureKDDCup’99, UNSW-NB15, and CIDDS-001.

Dataset IP Truncation

Train Test
Original 8-Bit 16-Bit 24-Bit

Train Test Train Test Train Test Train Test

GureKDDCup
1 2~7 1083 29,052 759 5828 522 2158 68 104

1~2 3~7 2960 27,832 2017 5138 1103 2013 78 104
1~3 4~7 8661 23,793 3156 4356 1497 1841 90 102
1~4 5~7 10,472 22,481 4133 3505 1783 1624 98 100
1~5 6~7 20,106 20,763 4855 2610 1952 1334 102 96
1~6 7 28,366 4001 5442 1617 2093 932 104 84

UNSW-NB15
1 2~4 84 86 19 16 14 11 14 11

1~2 3~4 90 86 19 16 14 11 14 11
1~3 4 90 81 19 16 14 11 14 11

CIDDS-001
1 2 827 76 16 18 10 12 10 12

In Table 8, we present the total number of reductions in IP addresses when different
truncation approaches are applied in the three datasets. Since the tree model only utilised
the number of unique IP addresses from the training distribution as the training attributes
to build the tree, we deduced that the total number of unique IP addresses found in the
training distribution will have a particularly significant relationship with the number
of nodes. Referring to Table 8, we noticed a huge amount of IP address reduction in
GureKDDCup’99 when 24-bit truncation is applied on the Week 1~6 training distribution,
whereby a total of 28,262 (99.63%) unique IP addresses are removed. By eliminating a
tremendous amount of unique IP addresses, the number of nodes is also significantly
pruned by 317,166 nodes (refer Table 6) compared to the original model. Figure 6 is plotted
to illustrate the relationship between the number of nodes and the total number of unique
IP addresses from the training distribution. We can clearly perceive that as the number of
unique IP addresses increases, the number of nodes produced by the tree model will also
increase. This undoubtedly justifies the noticeable effects of IP truncation when applied on
GureKDDCup’99 since it contains the largest number of unique IP addresses.

Table 8. Performance Comparison (Total Number of Distinct IP address) for each C4.5 Model in Full
GureKDDCup’99, UNSW-NB15, and CIDDS-001.

Dataset IP Truncation

Train Test
8-Bit 16-Bit 24-Bit

Train Test Train Test Train Test

R. IP (%) R. IP (%) R. IP (%) R. IP (%) R. IP (%) R. IP (%)

GureKDDCup
1 2~7 −324 −29.92 −23,224 −79.94 −561 −51.80 −26,894 −92.57 −1015 −93.72 −28,948 −99.64

1~2 3~7 −943 −31.86 −22,694 −81.54 −1857 −62.74 −25,819 −92.77 −2882 −97.36 −27,728 −99.63
1~3 4~7 −5505 −63.56 −19,437 −81.69 −7164 −82.72 −21,952 −92.26 −8571 −98.96 −23,691 −99.57
1~4 5~7 −6339 −60.53 −18,976 −84.41 −8689 −82.97 −20,857 −92.78 −10,374 −99.06 −22,381 −99.56
1~5 6~7 −15,251 −75.85 −18,153 −87.43 −18,154 −90.29 −19,429 −93.58 −20,004 −99.49 −20,667 −99.54
1~6 7 −22,924 −80.82 −2384 −59.59 −26,273 −92.62 −3069 −76.71 −28,262 −99.63 −3917 −97.90

UNSW-NB15
1 2~4 −65 −77.38 −70 −81.40 −70 −83.33 −75 −87.21 −70 −83.33 −75 −87.21

1~2 3~4 −71 −78.89 −70 −81.40 −76 −84.44 −75 −87.21 −76 −84.44 −75 −87.21
1~3 4 −71 −78.89 −65 −80.25 −76 −84.44 −70 −86.42 −76 −84.44 −70 −86.42
CIDDS-001
1 2 −811 −98.07 −58 −76.32 −817 −98.79 −64 −84.21 −817 −98.79 −64 −84.21

R. IP: Reduction in IP = Total Number of IP (IP Truncated) − Total Number of IP (Original Data).
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The empirical results substantiated in this section further uphold the claims made in
Section 4. This substantially demonstrates that the adoption of the truncation approach to
pruning the tree model will not cause a substantial decline in the classification performance
of the model. In short, the truncation strategy is a suitable method to preserve privacy
and reduce the complexity of the tree concurrently without sacrificing the classification
performance.

6. Performance Comparison Using Wilcoxon Signed-Rank Test

To further evaluate and ensure that the adoption of the proposed pruning does not
deteriorate the performance of the original classifier, we have additionally performed a
Wilcoxon Signed-Rank test. A two-tailed test with a significance level of 0.05 is conducted
based on the original classification accuracy against the truncated classification accuracy
(8-bit, 16-bit, and 24-bit) obtained from Tables 1 and 3.

According to Table 9, all the tests show that the results are insignificant. In other words,
the finding affirms that the performance achieved by the proposed approach is identical to
the original classifier. However, we also notice that the classification accuracy attained by
the proposed method in some scenarios surpasses the original classifier. Specifically, the
accuracy is improved when the full GureKDDCup’99 is trained (Week 1~4; Week 1~5) and
tested against (Week 5~7; Week 6~7) for all 8-bit, 16-bit, and 24-bit truncation. Additionally,
all the models that exploited the IP truncated pruning approaches outperformed the original
classifier in the UNSW-NB15 datasets. Details of the performance comparison can be found
in Table 5.

Table 9. Performance Comparison of Pruning with IP Truncation Versus Original Decision Tree using
Wilcoxon Signed-Rank Test.

Treatment 1 Treatment 2 Results z-Value w-Value

Original Decision Tree
8-bit Truncation Not Significant −0.6516 17
16-bit Truncation Not Significant −0.5601 14
24-bit Truncation Not Significant −0.05331 18

Significance Level: 0.05; Hypothesis: Two-Tailed.

These test results further confirm the claims made in Sections 4.2 and 5.2. We can
comprehend that the adoption of IP truncation can simplify the tree structure through
pruning and preserve privacy at the same time without deteriorating the performance of
the tree classifier.

7. Conclusions and Research Limitation

The proposed pruning method, which is based on IP truncation, spells two main
advantages: (1) the IP address can be anonymised to prevent any potential user profiling,
and (2) the number of nodes in a C4.5 tree is tremendously reduced to make the rule
interpretation possible while maintaining the classification accuracy.

A slight accuracy degradation is observed from the results presented after we applied
the truncation in most scenarios. However, it is safe to assume that the truncation can prune
the decision tree effectively without much affecting the performance of the tree classifier,
and merely a very small performance degradation is observed (refer to Tables 1 and 5) after
the truncation. Based on the empirical results presented in Table 5, it is also interesting to
observe that the classification accuracy of the truncated model outperforms the original
model in some situations. It can be postulated that the IP truncation can group similar
features for building a more generalised tree model.

However, masking the IP address for the sake of privacy will also hinder its inter-
pretability when we want to investigate an incident for an exact node (i.e., IP address or
specific device). This can be viewed as a trade-off of privacy. Based on the empirical results
attained, we believe that the proposed IP truncation-based pruning can preserve the utility
and privacy simultaneously.
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8. Future Works

In future, other network anonymisation techniques and machine learning classifiers
will be explored and investigated to further assess the relationship between them. On
the other hand, the similar analysis procedure demonstrated in this paper can also be
adopted in other domains to examine the pruning effect of a decision tree resulting from the
application of data privacy solutions. Nevertheless, future experiments in the Botnet [35]
application may also be considered to exclude a list of Botnet IP addresses from the IP
truncation anonymisation algorithm since they can be regarded as public information.
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