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Abstract: This article continues the series of publications that describe in detail the process of
development, research, and implementation of circuit modeling and machine vision mechanisms
in industrial equipment for laser trimming of resistors in order to obtain products with better
characteristics and increase the economic efficiency of the process. A circuit model of the process of
laser trimming of film-resistive elements under the action of a measuring voltage source, as well as an
algorithm for correcting this model during laser trimming, has been developed. The paper considers
the principles of building a circuit model of film resistor cutting. The conductive resistive medium is
defined with the component equations and the topology of the circuit model. A method of estimating
the electric parameters of a resistor operating in the system with a measuring voltage source is shown.
An equation system for the node voltages is defined, and the resistive layer parameters are analyzed
as the circuit model structure changes during the cutting process.

Keywords: film resistor; laser trimming; circuit model; oriented graph; transformation of nodes

1. Introduction

Laser trimming of film and foil resistive elements (RE) is currently the most popular
means for obtaining the required resistance value both for a single chip-resistor or mi-
crowave attenuator and for an integrated one into a hybrid integral circuit [1–3]. This is
due to the fact that even modern technologies for the production of passive components do
not allow manufacturing of a precision element with the required accuracy characteristics
without additional adjustment. Unlike chemical or electro-discharge treatment, laser trim-
ming is a universal means concerning both film materials and installed surface-mounted
elements and has the best outlook as far as automation is concerned.

Currently, a significant amount of research is being carried out in the field of this
technology, for example, in terms of technological aspects, the influence of trimming
on the stability of the characterization of trimmed thick-film and LTCC resistors [4], as
well as resistors from a novel CuAlMo thin film resistor material [5] and CrSi thin film
resistor [6]. Significant research is being done into the effect of varying laser trim patterns
on several performance parameters of thin film resistors (such as the temperature coefficient
of resistance (TCR) and the target resistance value) [7], as well as the long-term stability
of characteristics [8]. In addition, a number of researchers are studying the effect of the
configuration of the resistors themselves on their characteristics when trimming [9,10].
Special attention is paid to foil resistors [11].

Since the requirements, both in terms of technical parameters of the process and final
products, and in terms of economic efficiency indicators, are constantly increasing, new
equipment for laser trimming with higher performance and an improved set of functions
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appears regularly [12–16]. Modern research allows developing and implementing new
functions. One of the problems, which, in our opinion, significantly increases the level
of automation and economic efficiency of the trimming process, as well as the quality
of manufactured products, is the development, creation, and implementation in modern
equipment of a mechanism for trimming process simulation for fast and accurate prediction
of the resistor value, while effecting a configuration for a trimming cut.

There are many approaches to the description of the direct conductive medium of RE
and in application to the modeling of laser trimming. For example, in [17,18], the authors
used the finite element method to determine the potential field in a resistive film, which is
described by the Laplace equation in partial derivatives. The calculation method is based
on a special application of Green’s boundary formula [19].

In the following papers, the authors also use modeling of the correction of the geometry
of a conductive resistive medium without describing the method of building models. Thus,
in [10], the authors give an overview of the influence of the configuration of the resistive
film and the configuration of trim cuts on the characteristics of resistors.

In the article [20], the authors propose an approach to the representation of a resistor
based on conformal mapping methods. A brief description of the process of constructing
a model of a rectangular resistive film with a U-cut is given. Additionally, the conformal
mapping method is used to study the trimming of resistors with an additional third
pad [21] and arbitrary shape resistors [22]. The disadvantage of this method is the lack of
universality; in other words, for each cut shape with different parameters, a new model
is required.

Some researchers argue that conformal mapping and Eigenfunction decomposition are
all well-known methods for finding the solution to Laplace’s equation in two dimensions
but are practical for only small problems: for larger designs, they require a lot of computing
resources [23]. It is proposed to solve the Laplace equation using the relaxation method
with elements of heuristics. The idea is to break complex polygons into simpler parts to
extract resistance [24,25]. However, according to the authors of the work, the accuracy of
their models is in the region of 10%, which is unacceptable for modern resistor building
with accuracy requirements of 1 . . . 0.01%.

Ramirez-Angulo, et al. made a significant contribution to the study of the laser
trimming process and the construction of simulation systems. In their works [26–28],
based on the solution of the Laplace equation by the finite element method, the authors
demonstrated the developed program FIRE (FIlm REsistors). The model underlying this
program works for non-homogeneous and homogeneous films. As a result of which it was
possible to take into account separately the effect of changing the parameters of the resistive
film zone adjacent to the cut (heat affected zone (HAZ)). This made it possible to conduct
a number of important studies in the field of the influence of laser radiation parameters
on the long-term stability of resistors. The most detailed topic of model building and
simulation is disclosed in the works of Phillip Sandborn and Peter A. Sandborn. In [29],
they describe simple models based on dividing a RE into rectangles, with further calculation
of the total resistance based on Ohm’s law. These models, according to the authors, are
approximate and more reasonable for educational purposes. Similar models are used by
other researchers in [30,31]. The model developed in this study [32] is a finite difference
model, formulated similarly to [26]. In this case, it is required to determine the potential
field in a resistance film and is governed by the Laplace equation with partial derivatives.
The authors used this model to explore their proposed random trimming approach to obtain
highly accurate trimming results. However, the paper does not provide the algorithm for
generating the model; it is also not clear how the model is corrected when performing a
trimming cut. At the same time, the paper gives examples of the trimming characteristics
of the simulated resistors obtained using this model, the current distribution field. An
example of modeling the temperature load on various sections of the conductive film
due to power dissipation during operation in the circuit is also given, which is especially
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important for the resistors built into the multilayer printed circuit board considered in
this paper.

Additionally, a number of works that made a significant contribution to the study of
the modeling of the trimming process were published by Klaus Schimmanz and Arnulf
Kost. In their research, they compared methods for solving the Laplace equation: the
finite element method, the finite difference method, and the boundary element method,
indicating the speed for a number of practical problems [33,34].

After a deep analysis of the above studies, in our opinion, the most suitable approach
here is circuit modeling of the trimming process for film RE, which allows passing to
macrolevel models, i.e., models with lumped parameters.

Considering the problem of circuit modeling, in which the RE is considered as a
macro-level model and described by algebraic equations for unknown nodal values of
functions, we talked about the selection of elements, which are further considered as a
indivisible unit-elementary resistors (ER). In this case, we formed a mathematical model
by combining topological equations obtained on the basis of graph theory and Kirchhoff’s
laws and component equations formed by applying Ohm’s laws to the grid model of the
resistor [35–37].

This approach allowde us to consider models of simple and composite film resistors
of arbitrary configuration and disclose internal information about the electrophysical
processes occurring in the RE both during trimming and during further operation of
the product.

The authors previously outlined the process for creating a circuit mesh model for the
process of a film resistor trimming in a situation when a direct current source is used in
the circuit of the measuring device [38]. However, this variant is partially restricted for
use, inter alia, when trimming resistors within a circuit board, on which active elements
have already been installed. Current supply in this situation may result in inaccurate
measurements due to operation of semi-conductor elements within the circuit or burning
of these elements. Therefore, constant voltage sources are often used in measuring devices.

In connection with the above, the purpose of this work, being the follow-up of the
previously submitted article [38], is to develop a circuit model for the process of film REs
laser trimming using a measuring voltage source, as well as an algorithm for correcting this
model during laser trimming. To achieve this goal, it is necessary to perform the following
tasks: to create a basic representation of the circuit model of the conductive medium of
the RE, to formulate a mathematical description of the model of the conductive resistive
medium, and to develop an algorithm for calculating the parameters of the resistor when
changing the circuit model in the process of laser trimming. Each task is highlighted in a
separate section of the paper. We preface the conclusion with a detailed discussion section.

2. Building a Circuit Model for a Film Resistor Conductive Medium

If a rectangular film resistor has the length L and the width H, then the current-
conducting medium will be approximated by a discrete mesh of ERs r with d size and the
number of nodes nL = L/d and nH = H/d, respectively (see Figure 1).

Since the number of horizontal branches in each horizontal line is one more than the
number of horizontal internal nodes, the number of horizontal branches in each horizontal
line will be equal to (nL + 1) and the total in the model is (nL + 1) · nH . The number of
vertically arranged branches in each vertical line will be one less than the number of vertical
nodes, since the top and bottom of the conductive resistive film model ends with a node,
not a branch. Accordingly, in each vertical line there will be (nH − 1) branches and in total
in the model (nH − 1) · nL vertical branches. The total number of branches b in the model
will be determined as follows:

b = (nL + 1) · nH + (nH − 1) · nL = 2 · nL · nH + (nH − nL)
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The total number of internal model nodes will be determined as follows:

n = nH · nL

If the initial resistance R is measured before the trimming starts, the resistance value
ER r included between the mesh nodes can be calculated depending on the number of
discretization points of the resistive field along the width and the length

r =
nH

(nL + 1)
R
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Figure 1. Resistor element model with discrete node mesh.

The resistor trimming process at the circuit model can be characterized by removing
ER situated at the laser cut path (see Figure 2). As the distribution of current and power in
different fields of ER changes, the RE resistance value cannot be calculated according to the
simplest correlation given above.
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3. Mathematical Representation of the Resistive Conductive Medium Circuit Model

The source data for forming the circuit mathematical models at a macro level are
component and topological equations.

Component equations are equations that represent the properties of single elements
(components). In other words, these are equations for mathematical models of elements;
elemental resistors connecting the mesh nodes in the case under consideration.

Topological equations represent the correlations of elements within a circuit under
simulation and render Kirchhoff’s laws for voltages and currents. Following Kirchhoff’s
law for voltage, the sum of voltages at components along any closed circuit in an equivalent
circuit equals zero, whereas, according to Kirchhoff’s law for current, the sum of currents
equals zero in any closed section of a closed circuit.

3.1. Component Equations of the Simulation Model

In electrical systems, two types of phase variables are distinguished: phase variables
of the type of potential (electrical voltage) and type of current (electrical current). Each
component equation characterizes the reference between different-type phase variables,
referring to one component (e.g., Ohm’s law defines the reference of voltage and current in
a resistor), whereas a topological equation defines the reference between one-type phase
variables in different components.

In a circuit model of a conductive resistive medium, the components are two-pole
elements—resistors included between the mesh nodes—whereas phase variables are elec-
trical voltages and currents on these elements. The component equations of branches
for the circuit model under consideration, where elements are represented by resistors
Rk = r, k = 1, . . . , b, included between nodes, are formed based on Ohm’s law and have
been expressed as:

uRk = Rk · iRk = r · iRk ,

where uRk is a voltage at a k resistor and iRk is a current in a k resistor.
In a matrix form:

uB = RB · iB,

where uB =
[
uR1 , uR2 , . . . , uRb

]T is the vector of voltages at resistors in a mesh for (b× 1)

sizing, iB =
[
iR1 , iR2 , . . . , iRb

]T is the vector of currents at resistors for (b × 1) sizing,

and
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=
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In a matrix form, this correlation is expressed as

iB = YB · uB,

where
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3.2. Topology of Circuit Model

A topological structure defines a way of connecting the components, i.e., the configu-
ration. With this, the type of components is not important. A topological circuit structure
is defined by a topological graph or by topological matrices [6]. A natural and easy way
for defining information on the way of connecting and on reference positive directions for
currents and voltages for the branches of a circuit model is an oriented graph, which would
correspond to a given circuit and is built following the rule: each element of the circuit
with two terminals shall be replaced by a linear segment called a branch, with an arrow
pointing at the positive direction for the current via this branch. This arrow also defines the
reference direction for the branch voltage: the arrow starts at the terminal with a positive
potential. Figure 3 shows an example of an oriented graph, corresponding to a simplified
RE circuit model with a 4 × 4 node sizing. The graph contains 17 nodes, including the
external zero-base node and 32 branches.
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The information contained in the oriented graph can fully be represented by a topo-
logical matrix called the incidence matrix. In a full ‘node branch’ type incidence matrix,
the number of lines equals the number of graph nodes (points), whereas the number of
columns equals the number of branches.

For an oriented graph with (n + 1) nodes and b branches, the incidence matrix is Aa,
a matrix of (n + 1)× b sizing. With this, Aa = [aij], where aij = 1 if j branch is connected
with i node and starts from it. The arrow points from the i node, aij = −1, if the j branch is
connected with the i node and enters it, and the arrow points towards i node, aij = 0, if the
j branch is not connected with the i node.

Any line can be excluded from the Aa matrix without losing data because such a line
can be restored any time following the rule that each Aa column shall be completed to a
zero-sum. A matrix obtained from a full Aa incidence matrix by excluding one line is called
a reduced incidence matrix, or just an incidence matrix (node matrix), and is denoted as A.

While solving practical problems, the line corresponding to the basis zero node is
usually excluded. With this, the reduced incidence matrix will be (n× b) sizing. Its lines
are linearly independent, rank A = n; the number of inner nodes of the circuit model.
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3.3. Correlation between the Variables of the Circuit Model Branches

Let us form Kirchhoff’s law for voltage for the inner n nodes of the circuit, i.e., for all
nodes except for the basis zero one:

A · iB = 0. (1)

Currents for branches of the circuit model iB =
[
iR1 , iR2 , . . . , iRb

]T are unknown—their
number exceed the number of equations in the system (1), b > n—hence the system has
multiple solutions and cannot be solved single-valued referring to currents of branches. To
get a single-valued solution, additional properties of the circuit model should be considered.

Node voltages of the circuit are connected via the incidence matrix. As the direction of
the graph branch coincides with the direction of the current in an element, the node from
which the current starts has a higher potential than a node where this current inflows. As a
result, the voltage of each branch Rk = r, k = 1, . . . b is the difference between voltages
ui0 and uj0 in neighboring nodes i and j, to which this branch is connected:

uRk = ui0 − uj0.

The information about connected nodes for a k-branch and about its direction is
contained in the k-column of the incidence matrix. For example, by multiplying in the
sequence the transposed columns of the A incidence matrix by the column vector of the
node voltages uN , we obtain the voltages at the model branches.

As a result, using the transposed AT incidence matrix, we obtain the interpretation
for the voltages vector for the model branches uB =

[
uR1 , uR2 , . . . , uRb

]T via the vector of
node voltages uN :

uB = AT · uN . (2)

This transformation is called the transformation of nodes, and with this we can
interpret the high-dimensional (b× 1) voltages vector for branches uB via a vector of a
smaller dimension (n× 1) for node voltages uN , decreasing the degree of order for the
problem being solved. Equations (1) and (2) are the record for Kirchhoff’s laws for currents
and voltages in a circuit model.

Proceeding from nodes transformation (2), we obtain the correlation of the branch
currents vector with the nodes voltages vector, which has a smaller degree of order:

iB = YB ·AT · uN .

Expression (1) for the Kirchhoff’s law for current is then expressed as

A · iB = AYB ·AT · uN = 0. (3)

Expression (3) is a system of linear algebraic equations relating to the node voltages
vector uN , which has a much smaller degree of order compared to branch voltages vectors
uB and current vectors iB. The matrix of the system AYBAT is a square non-generate one,
with (n× n) sizing.

3.4. Forming the System of Equations for the Circuit Mathematic Model and Its Solution Relating
to Node Voltages

As the structure of the replacement circuit within each separate branch of the circuit
model for a case with a voltage measuring source differs from the previously defined
one [38], we considered each branch of the circuit model in a general form, which consist of
a series connection of the resistor Rk, k = 1, . . . b and the voltage source Ek, k = 1, . . . b,
as shown in Figure 4. With this, all the branches of the circuit model have a same-type
structure, and depending on which parameter equals zero, Ek or Rk, the general branch
becomes either a resistor or a voltage source.
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With this, the correlation of branch currents and voltages can be determined not only
by component equations and their conductivities but also by branch voltage sources:

iRk =
(
uRk + Ek

) 1
Rk

=
(
uRk + Ek

)1
r
=
(
uRk + Ek

)
· yk =

(
uRk + Ek

)
· y.

In the matrix form, the correlation between branch currents and voltages can be
defined by this proportion:

iB = YB · (uB + E),

where E is the vector of external voltages of branches, which are defined as follows:

E = [E1, . . . , EnH , 0, . . . , 0]T , E1 = · · · = EH = UC

Taking into consideration transformations of nodes (2), we obtain a correlation of
currents vector for general branches with the vector of node voltages, concerning the vector
of the external voltages sources:

iB = YB ·
(

AT · uN + E
)
= YB ·AT · uN + YB · E. (4)

Expression (3) for the Kirchhoff’s law current can then expressed as:

A · iB = A
(

YB ·AT · uN + YB · E
)
= AYBAT · uN + AYB · E = 0.

From here, we obtain a system of linear algebraic equations relating to the vector of
node voltages uN , which is much smaller in the degree of order compared to branch vectors
of voltages uB and currents iB:

AYBAT · uN = −AYB · E. (5)

The matrix of the system AYBAT is a square non-generate one of (n× n) sizing; it is
called the matrix of nodes total conductivity [7]

YN = AYBAT , detYN 6= 0.

The external sources of voltages define the right part of the system −AYB · E, which is
a vector of the equivalent node current sources jN of (n× 1) sizing:

jN = −AYB · E.

The forms system of equations is expressed as:

YN · uN = jN . (6)

It has the unambiguous solution relating to the vector of node voltages (potentials),
the components of which are finally defined by the value of the external measuring voltage
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UC. Equation (6) is called a node equation, and the process of solving it, relating to the
vector of node voltages uN , is called node analysis:

uN = Y−1
N jN .

For equal resistances r and conductivities y = 1/r of the resistance mesh branches,
the square matrix of mesh resistors conductivities of (b× b) sizing can be expressed as the
product of a unit matrix [1] and scalar cofactor of conductivity y = 1/r for each branch:
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and, respectively, branch currents (4), 

( )EuYi +⋅= BBB . 

YB =
1
r
· [1] = y · [1].

System (4), relating to the node potentials, is then simplified due to reducing the
conductivity in the left and right parts and is expressed as:

AAT · uN = −A · E,

YN = AAT ,

jN = −A · E.

(7)

We called the obtained system of equations the reduced system of node equations and
the matrix of node conductivities YN = AAT the reduced matrix of node conductivities.
The elements of this matrix do not depend on the ER mesh resistances; they are integer
values, reflecting the structure (the topology) of the circuit model and are defined by
the number of mesh elements connected to a certain node. The solution of the reduced
system (6) does not depend on the mesh ER resistances or conductivities. The vector of
the external branch voltages sources E has only got nH in the first non-zero elements, each
equaling the external measuring voltage E = [E1, . . . , EnH , 0, . . . , 0]T , E1 = · · · = E4 = UC,
while the right part of the system (6) can be defined by this vector:

jN = −A · E = E.

In a general case, solving System (7), relating to node voltages uN :

uN = Y−1
N jN =

[
AAT

]−1
· E,

voltages at branches based on node transformation are calculated (2),

uB = AT · uN ,

voltages at mesh resistors,
uk = uB + E

and, respectively, branch currents (4),

iB = YB · (uB + E).
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Based on the sum of currents in the first column of the ER mesh, the external result
measuring current flowing through a film resistor is calculated:

IC =
nH

∑
k=1

iRk

and the resulting resistance of a film resistor,

R = UC/IC.

4. Evolution of Resistor Parameters as the Circuit Model Is Restructured during
RE Trimming

During the process of resistor trimming and change of structure of the circuit model
due to the removal of mesh resistors at the cut trajectory, only the matrix of node conduc-
tivities changes, while the vector of equivalent current sources jN remains unchanged. This
can be explained by the absence of change during the trimming process for circuit model
voltage sources, defined by the source of the measuring voltage UC and connected in a
series with the resistors of the left column of the resistors mesh. As a result, the vector in
the right part of the system jN remains unchanged.

Changes are made according to the previously defined node equation of the system (6)
and considering the node numbers, to which the removed ER had been connected. This
process is similar to actions taken for a system model with the measuring source of direct
current. If a k-branch is removed, which is directed from node i to node j with conductivity
yk, then in a matrix YN , yk is removed in four places: yk is twice deducted from elements yii
and yjj of matrix YN in the diagonal line and twice yk is added to non-diagonal elements
yij and yij. After making each correction, System (6) can be solved anew, relating to node
voltages, and after that, the film resistor resistance value should be recalculated.

Let us explore the cut trajectory shown in the graph of the simplified circuit model
in Figure 5. At the first stage, ER R11 with conductivity y11, connected to nodes 4 and 8,
is removed. As a result, in matrix YN of System (6), diagonal elements y4,4 and y8,8 are
reduced by y11 (by 1 in a reduced matrix) and elements y4,8 and y8,4 are increased by y11
(by 1 in a reduced matrix) and become zero values. Stages 2, 3, and 4 are performed in the
same way, with the removal of branches with numbers 10, 13, and 20, respectively.
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5. Discussion

The main requirements for models are the requirements of adequacy, accuracy, and
economy. The model only approximately reflects some properties of the object. Adequacy
takes place if the model reflects the given properties of the object with acceptable accuracy.
Accuracy is understood as the degree of correspondence between the estimates of the prop-
erties of the same name of the object and the model. Economy (computational efficiency) is
determined by the cost of resources required to implement the model. Since mathematical
models are used, the efficiency will be characterized by the cost of computer time and
memory. Adequacy is assessed by the list of reflected properties and areas of adequacy.
The area of adequacy is the area in the parameter space, within which the errors of the
model remain within acceptable limits. Additionally, important requirements include ease
of implementation and the possibility of a fully-fledged (without significant restrictions)
application for the target task.

As shown in the introduction, there are different approaches to building a resistor
model in the laser trimming process. They are all more or less adequate, accurate, and
effective. As part of the comparative analysis, the following remarks should be made.

From the point of view of the possibility of a fully-fledged application, the model built
within the framework of this work on the basis of topological and component equations, as
well as models based on conformal mappings, numerical methods for solving the Laplace
equation, and the method of rectangles, can be built into control systems for industrial laser
installations and perform the function of preliminary calculation of the resistance value
when performing a particular cut.

If we talk about implementation, it is obvious that the simplest are the models based on
the method of rectangles (the simplest equations are solved) and nodal analysis (a system
of linear algebraic equations), while the implementation of other methods requires the
solution of differential equations in partial derivatives, together with boundary conditions.
In addition, the implementation of the method of conformal mappings is hampered by the
need to reform the initial conditions with each change in the configuration of the resistive
film, and this happens all the time during the trimming process. A significant advantage of
nodal analysis is also that, when using it, it is much easier to apply various algorithms for
finding optimal trajectories, since when varying the geometry of the trimming cut according
to the algorithm given in Section 4 of this work, it is easy to change the coefficients of the
system matrix, eliminating the need to rebuild the model with a start. It should also be
borne in mind that the system matrix is a tridiagonal highly sparse matrix, which allows us
to consider various algorithms for accelerated calculations.

For a comparative assessment of the adequacy, accuracy, and efficiency of the models,
it is necessary, first of all, to implement the model obtained in the study in the form of
a simulation program. However, even after such an implementation by the authors of
this work, it will be very difficult to conduct a comparative analysis. The fact is that the
authors of most studies, for all the undoubted significance of their work, either do not study
the obtained models for accuracy (there is no comparison of the simulated value in the
simulation system with the real values of the resistance of the trimmed resistors) or do not
provide data on the speed of the calculation algorithms according to the proposed models.
In addition, a number of researchers do not provide a description of the construction of
the model, and therefore it is not possible to assess which of the methods was used. We
assume that this is due to the fact that the authors did not have the goal of embedding the
obtained models and algorithms into existing industrial equipment with further operation
in modes close to real-time.

6. Conclusions

Together with the results of the previous article [38], the authors have suggested circuit
models for the process of laser trimming of film resistor elements functioning in a system
both as a direct current source and direct voltage source.
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It should be noted that, despite some differences in the structure and sizing of node
conductivities of YN matrix and jN vector, the resulting value for the resistor resistance
and the components of the node voltages uN vector shall be uniquely determined as a
result of the node analysis. The principle of the trimming and correction process of the
conductivities matrix YN is similar to the previously defined one for a system with a
measuring current source.

Firstly, in this work, the authors demonstrate that the proposed approach is acceptable
for modeling various types of measurement systems in any real laser installations, since it
takes into account the possibility of using both a measuring DC voltage source and a current
source in the system [38]. Secondly, the accelerated algorithm of model reformulation
presented by the authors makes it possible to quickly recalculate the value of the resulting
resistance without the need to reform the high-dimensional incidence matrix. Thirdly,
this model makes it possible to calculate not only the resulting resistance of the resistor,
but also uniquely determine the currents, voltages, and power dissipation in any part of
the conductive resistive medium, which significantly expands the possibilities for finding
optimal trajectories, according to certain optimality criteria.

Among upcoming trends of the topic under consideration, we shall define the compar-
ison of the resistance calculation results using the created models and real values obtained
while trimming resistive elements for most frequently used configurations and various
resistive materials. Such an assessment of a model performance will be of paramount
applicability in light of modern requirements towards item miniaturizing and industrial
processes automation.
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