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Abstract

:

Methods of applying deep learning to database protection have increased over the years. To secure role-based access control (RBAC) by learning the mapping function between query features and roles, it is known that the convolutional neural networks combined with learning classifier systems (LCS) can reach formidable accuracy. However, current methods are focused on using a singular model architecture and fail to fully exploit features that other models are capable of utilizing. Different deep architectures, such as ResNet and Inception, can exploit different spatial correlations within the feature space. In this paper, we propose an ensemble of multiple models with different deep convolutional architectures to improve the overall coverage of features used in role classification. By combining models with heterogeneous topologies, the ensemble-LCS model shows significantly increased performance compared to previous single architecture LCS models and achieves better robustness in the case of training data imbalance.
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1. Introduction


Database security is a constantly changing field, with attackers searching and exploiting weak points in current defense measures and defenders that develop new methods to protect the database from newly discovered exploits and trying to fortify security measures to future threats [1]. Various methods have already been developed, ranging from simple methods, such as password protection, creating policies that determine the limits of access to the user, and more recent, advanced methods that try to implement the growing field of deep learning [2,3].



Well-known threats to relational databases can be classified into outsider attacks and insider attacks [4]. Outsider attacks, such as SQL injections, can be relatively easily detected with traditional methods. Insider attacks are malicious actions or transactions that are carried out by actors with legitimate access within the infrastructure [5,6]. Insider attacks are more challenging to model and detect [7,8], as both individual and sequential patterns of the users’ queries must be identified [9]. Role-based access control (RBAC) attempts to model user-database access by assigning roles to each user and limiting what each role can access. As such, by identifying which role the user has and classifying what role the user query would require, one can develop an intruder detection system (IDS) by verifying whether the user’s role and query’s role match, as shown in Figure 1.



Traditionally, the query role classification model was designed using hard-coded query grammar analysis [10], often requiring an understanding of the underlying database and transaction structure to model the characteristics of queries. More sophisticated methods, such as using multiple models for parsing SQL queries, have also been applied [11]. Recently, with the development of neural networks, deep learning methods has been applied to this domain, with promising results. In combination with neural network-based classification models, Learning Classifier Systems (LCS) that use a genetic algorithm for feature selection [12] have been used to increase the adaptability of IDS to account for changing usage patterns of both legitimate and illegitimate users.



However, even with such advances, current methods still have limitations; recent models are built on single model architectures and, therefore, cannot provide coverage for all spatial relations within the feature space. In this paper, we propose a method that mitigates this shortcoming by using multiple model architectures in conjunctions, thus increasing the system’s feature space coverage. The main contributions of this paper are as follows:




	
We utilize models of different architectures and their tendency to associate with TPC-E schema roles categories by collecting heterogeneous models into an ensemble.



	
We exploit the effect of model ensembles targeting both learning and adaptability for RBAC-based intrusion detection.









2. Related Works


Table 1 summarizes related works on applying machine learning for SQL transaction role classification.



Before queries can be classified, it is necessary to extract salient features from diverse query inputs. Ronao et al. [4] used PCA to analyze various potential queries and managed to extract a set number of features that can be used by other classification models, such as Random Forest Ensembles. Based on these features, other classification models, such as SVM [13], MLP [14], and CNN-LSTM [15], have been used to develop more advanced classifications methods.



CNNs, compared to other methods, showed the most promising accuracy. However, human inputs and data collected in real-world environments are often incomplete or skewed. Query characteristics may also change over time. As such, further optimization of CNN models is necessary.



Evolutionary algorithms are often utilized to optimize hyperparameters of the model to improve the overall accuracy of the model. Khare et al. [16] used Spider Monkey Optimization to reduce the dimensionality of complex input data, improving the neural network’s classification accuracy for the NSL-KDD dataset. Selvakumar et al. [17] used the Firefly algorithm for dimensionality reduction on the KDD CUP 99 dataset with Bayesian Networks for network anomaly detection.
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Table 1. Related works on machine learning for the SQL transaction role classification.
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Approach

	
Detection

Mechanism

	
Optimization Method

	
Objective

	
Accuracy






	
Machine Learning

	
PCA,

Random Forest [4]

	
-

	
Query feature extraction,

role classification tree ensemble

	
0.7682




	
SVM [13]

	
Learn kernel-based query

feature selection boundary

	
0.7800




	
MLP [14]

	
Classification based on

query features

	
0.8002




	
CNN-LSTM [15]

	
Learn spatial relationship of query features

	
0.9265




	
CNN

Optimization

	
CNN

	
ERL [18]

	
Optimization of learning process

	
0.9450




	
LCS [19]

	
Optimization of feature selection

	
0.9255




	
PSO [20]

	
Optimization of network topology

	
0.9400




	
CNN Ensemble

	
GA [21]

	
Optimization of ensemble rules

	
0.9663




	
CNN,

Inception,

ResNet

	
LCS [22]

	
Compare various GA optimized CNN models

	
0.9200

0.9527

0.9427









The combination of the evolutionary algorithm and CNNs can also be found in dataset query role classification research. Choi et al. [18] combined evolutionary reinforcement learning to optimize the learning process of CNNs, attempting to find the ideal learning rate for each training input using the evolutionary process. Bu et al. [19] combined the CNN model with a Learning Classifier System (CN-LCS), allowing the model to learn which input features to focus on to improve model accuracy. Kim et al. [20] used Particle Swarm Optimization to discover improved model topologies. The evolutionary algorithm can also be used in ensemble optimization, such as in the work by Bu et al. [21] to optimize ensembles of CN-LCS.



The CN-LCS method can be expanded for more advanced CNN architectures. Kim et al. [22] expanded the CN-LCS method for classification networks inspired by advanced image classification models, such as Inception Networks [23] (Inception) and Residual Networks [24] (ResNet), observing improved accuracy for models based on more advanced architecture and complexity.



The improvement of model architecture in tandem with additional optimization via evolutionary algorithms showed increased accuracy of the system. However, most research has focused on the optimization of a single model. Even in research where ensembles were used, it used a single type of architecture. We utilized multiple types of CNN model architectures, increasing the diversity of models used by the ensemble. This expands the feature analyzing the capability of the classification system.




3. The Proposed Method


The proposed method exploits the different capabilities of diverse CNN architectures by combining heterogeneous models into an ensemble. It is known that the intrusion detection system accuracy can be enhanced by utilizing the ensemble of multiple models [25,26]. The method can be divided into three components: the dataset generation and pre-processing component generates the relevant dataset based on specification and converts the raw input queries into model readable features; model generation uses a genetic algorithm to generate a population of different query feature selections and generate a corresponding population of models; finally, the ensemble collection component uses the results of each generated models to select and combine relevant models into an ensemble with respect to accuracy and diversity.



3.1. Dataset Generation and Pre-Processing


Before generating the models, it is necessary to generate the SQL transaction data that will be used during model training. Synthetic queries are generated that model the roles of the SQL transactions. These queries will mimic and model the transactions that users will have with the database in realistic scenarios while having the advantage of being balanced by class.



The TPC Benchmark E (TPC-E) [27] is an online transaction processing (OLTP) benchmark created by the Transaction Processing Performance Council (TPC). It is designed to evaluate system functionalities in a manner representative of a complex OLTP application environment, such as brokerage firms. The TPC-E schema will be used for database interaction modeling and pseudocode. The schema is based on the activities that can be observed by brokerage firms that handle transactions related to customers, markets, and finances (such as customer account, customer transaction order executions, or market-customer interactions). Table 2 is a summary of the roles within this schema, what specification each role has, and how many queries were generated for the datasets.



After the dataset generation, the queries are pre-processed into a set number of features. The feature extraction process follows the method proposed Ronao et al. [4], extracting a total of 277 feature values. This method was adopted by previous research by some of the authors, such as those by Bu et al. [7]., showing promising results. This query pre-processing method requires two stages:



First, a tree-wise SQL parsing process reduces the transaction queries into groups based on a defined pattern. Since SQL transactions are written in a structured language, this stage can be implemented with multiple if-then-else statements.



Second, a feature vector containing the following fields are generated: command features (SQL_CMD), projection relation features (PROJ_REL_DEC), projection attribute features (PROJ-ATTR-DEC), selection attribute features (SEL_ATTR_DEC), ORDER BY clause features (ORDBY_ATTR_DEC), GROUP BY clause features (GRPBY_ATTR_DEC), and value counter features (VALUE_CTR).



Figure 2 illustrates the query pre-processing component, and an example of a query and its extracted features is presented in Table 3.



Through this process, each SQL query can be expressed as a 277-dimensional input feature vector. This vector can then be used by the model generation process to be used for training and evaluation.




3.2. Genetic Algorithm-Based Model Generation


It is preferable that the generated sets of models use different input features but still maintain high accuracy. To achieve this, a genetic algorithm-based LCS is used. Each of the 277 input features is assigned to a bit in a 277-bit long chromosome. For each chromosome, a CNN model is trained using the selected features as the input and the transaction role as the target output. The accuracy of each model is used as the fitness of their respective chromosome, which is then used for the evolutionary selection process. By repeating this process, the LCS generates a set of input feature selection rules and CNN models paired with each rule. This model generation process is illustrated in Figure 3.



As a result of using GA for feature selection, multiple models with the same architecture but different parameters are generated. These models are collected into a set of potential models that will be used for the ensemble model. In addition to generating multiple models of the same architecture, models with different CNN architectures are trained in separate LCS processes and collected into the same set. This increases the number of potential models and improves the diversity in model types.



The architecture of each CNN used is detailed in Table 4, Table 5, Table 6 and Table 7, with the signature blocks of each model illustrated in Figure 4. CNN, Inception, and ResNet-based models are based on the architecture used by Kim et al. [22] The DenseNet classifiers are based on the Dense Network image classification model [28], which connects each layer within the Dense block with multiple residual connections.



During training, the result of each final model is recorded. This result will be used by the model ensemble component to calculate the diversity between each model. The overall structure of the model generation component is illustrated in Figure 5.




3.3. Model Ensemble


Simply collecting all the models into a single ensemble is not enough to utilize the characteristics of each model, as it runs the risk of the minority model being suppressed by the majority. It is preferable that each model in the ensemble is individually accurate, and at the same time, show errors at different input instances, thus displaying diversity in results [29]. To enhance such diversity within the ensemble, the average  Q -statistic (   Q  a v    ) [30] is used. Yule’s  Q -statistic [31] is calculated as denoted in Equation (1), based on the output between each pair of models (   D i  ,    D k   ) in the candidate set, where    D i    denotes  i th classifier and  N  denotes the number of observations as denoted in Table 8.


   Q  i , k   =    N  11    N  00   −  N  01    N  10      N  11    N  00   +  N  01    N  10      



(1)







The  Q -statistic measures how correlated the results of the two classifiers are; when the two classifiers correctly predict the roles of the same instances, the  Q  value approaches 1; when the classifiers commit errors at different instances, the  Q  value approaches −1. Afterward, starting with the model with the highest accuracy, a set of models are collected such that    Q  a v     of the ensemble is reduced until the number of models within the ensemble is more or equal to the minimum number of required models, and no other models can be added to the set without increasing the ensemble’s    Q  a v    :


   Q  a v   =  2  L  (  L − 1  )      ∑   i = 1   L − 1     ∑   k = i + 1  L   Q  i , k    



(2)







The details of the ensemble collection process for selecting the heterogeneous model considering diversity are described in Algorithm 1. When using the ensemble, the results of each model are aggregated using weighted hard voting, with the accuracy of each model used as the weight. Weighted hard voting can be calculated as denoted in Equation (3), where  X  is the input to the ensemble,  y  is the resulting role classified by the ensemble, and    p i  ( y | X )   is the probability distribution of each model. Figure 6 illustrates the overall component structure.


  y = argmax  (    ∑   i = 1  L   w i  · o n e h o t ( argmax (  p i  ( y | X  )  ) ) )  



(3)









	Algorithm 1. Ensemble Collection



	S ← {}, P ← Collection of generated models;



	x ← best accuracy model in P;



	// Remove model with best accuracy from P and add to S



	   S ← S ∪  { x }  , P ← P −  { x }  ;   



	while  |  | S |  |   < target ensemble size do



	                   Calculate Qav for each model in P;



	          x ← model with lowers Qav;



	            S   ←   S   ∪    { x }  ,   P   ←   P −  { x }  ;  



	end



	Result: S








4. Experimental Results


In this section, we present how the ensemble models the SQL transactions and evaluate the performance with 10-fold cross-validation in terms of classification accuracy, which is followed by quantitative comparison with the relevant deep learning models, including previous CN-LCS models.



4.1. Implementation


Deep learning models were implemented using Pytorch [32], with chromosomes stored using Numpy [33]. Models that are not neural network-based were implemented using the default methods provided by the Scikit-learn package [34]. Hyperparameters for each model’s training are in Table 9.



During dataset generation, 1000 queries per role (total of 11,000 queries) are generated and pre-processed. The dataset is split 10-fold, using 90% of the dataset for training and the other 10% for testing for each run.




4.2. SQL Transaction Modeling Performance


Figure 7 compares the performance of existing machine learning-based query classification models, including our proposed method (Ensemble-LCS). The proposed method achieves the highest classification accuracy of 0.975, which is higher than other CN-LCS models that use a single architecture for classification.



Table 10, Table 11, Table 12, Table 13 and Table 14 are the confusion matrix of each LCS model. Darker color indicates how many samples corresponds to the (True, Predicted) pair. While all models show relatively high accuracy, single architecture LCS models showed error instances roles 2–10, with a tendency to classify Trade-status (4) roles as Trade-update (7), Trade-order (6) as Trade-result (10), Trade-update (7) as Trade-lookup (5), and Trade-result (10) as Trade-order (6). The ensemble-LCS has reduced overall misclassification. It still misclassifies in cases where all single architecture LCS misclassified, but the reduction in error for roles that single-model LCS struggled, such as role 10, the ensemble-LCS was able to compensate, thus improving overall accuracy.



In several instances, the query was correctly classified by only one of the CN-LCS architectures. Each CN-LCS architecture has an affinity to a certain TPC-E role category and thus had a better chance of correctly classifying queries that were related to that category. The ensemble-LCS was capable of correctly classifying instances, as shown in Table 15. This shows that the ensemble can utilize the varying feature classification characteristic of each of the architectures to reach a more accurate result.



A one-way chi-square test with 10 degrees of freedom (number of roles = 1) is performed between the ensemble-LCS and single-model LCS to determine whether the ensemble-LCS shows a significant difference in distribution. The results are shown in Table 16. The ensemble-LCS shows a significant difference, meaning the increase in performance compared to single-architecture models is significant. Thus, we can conclude that the ensemble-LCS shows a significant improvement over previous LCS models.




4.3. Model Adaptability Performance


To measure the adaptability of the Ensemble-LCS model, we create an imbalanced dataset. Queries with Role 10 (Trade-Result) are divided based on the queryMode feature. Approximately 50% of all Role 10 queries have a queryMode value of 1, followed by 2 to 4. The models are trained on a dataset where Role 10 inputs with queryMode value 1 is removed, simulating incomplete or imbalanced input data. Then, the models are evaluated with a dataset with all Role 10 inputs included.



Table 17 shows the result of the experiment. The ensemble-LCS shows higher accuracy for Role 10 queries compared to other models. While the accuracy for other roles was lower than for the CN-LCS model, it still showed relatively higher accuracy than other models. Showing that the ensemble-LCS model has better robustness against data imbalance.





5. Concluding Remarks


In this paper, we proposed an ensemble-LCS model for database IDS using RBAC-based query classification. This method combines multiple heterogeneous model architectures into an ensemble to exploit each model’s characteristics while supplementing each model’s weakness. The proposed method showed improved accuracy compared to single-model-based LCS methods; we verified the statistical significance of the proposed method using 10-fold cross-validation and chi-square validation. The proposed method also displayed adaptability when the provided data was imbalanced. This shows that diversity-guided ensemble-LCS can be used to develop improved IDS using RBAC-based query role classification.



Future work will include introducing additional CNN models to be included in the ensemble to improve overall diversity and increase classification accuracy. Additionally, the proposed method will have to be tested on other datasets to validate whether the proposed method can be generalized to other database schemas.
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Figure 1. Diagram of an intruder detection system based on role classification. 
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Figure 2. Query pre-processing component. 
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Figure 3. Flowchart of the model generation process. 
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Figure 4. Signature blocks within the CNN models: (a) Inception block, (b) ResNet block, (c) DenseNet block. 
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Figure 5. Diagram of the model generation component. 
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Figure 6. Diagram of the model ensemble component. 
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Figure 7. Ten-fold cross-validation with other machine-learning-based classifiers, including the existing combination of GA and deep learning. 
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Table 2. Roles and specifications for the generated queries based on TPC-E [27].
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Transactions

	
Specifications

	
Transactions

	
Specifications






	
Read-only Transactions

	
Read/Write Transactions




	
Broker-volume (0)

	
SELECT only

	
Trade-order (6)

	
SELECT, INSERT




	
714 kb

	
759 kb




	
Customer-position (1)

	
SELECT only

	
Trade-update (7)

	
SELECT, UPDATE




	
566 kb

	
499 kb




	
Market-watch (2)

	
SELECT only

	
Data-maintenance (8)

	
SELECT, UPDATE




	
863 kb

	
246 kb




	
Security-detail (3)

	
SELECT only

	
Market-feed (9)

	
SELECT, INSERT,

UPDATE, DELETE




	
571 kb

	
456 kb




	
Trade-status (4)

	
SELECT only

	
Trade-result (10)

	
SELECT, INSERT,

UPDATE, DELETE




	
571 kb

	
419 kb




	
Trade-lookup (5)

	
SELECT only

	
Total 11,000 queries generated




	
490 kb
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Table 3. Example query and its extracted features.
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SQL Query

	
Feature Fields

	
Feature Element

	
Feature Values






	
SELECT R1 · A1, R1 · C1, R2 · B2, R2 · D2

FROM R1 · R2

WHERE R1 · B2 = ‘1’

AND R2 · B2 = ‘sql’

ORDER BY R2 · B2

GROUP BY R1 · A1

	
SQL-CMD[]

	
Query mode

c

	
1




	
Query length,

QL

	
Character count




	
PROJ-REL-DEC[]

	
Number of projected relations,

PR

	
2




	
Position of projected relations,

PRID

	
[0011] = 3




	
PROJ-ATTR-DEC[]

	
Number of attributes in projection clause,

PA

	
4




	
Number of projection clause attributes per table,

PA[]

	
[2, 2]




	
Position of projection clause attributes,

PAID[]

	
[1010, 0101] = [10, 5]




	
SEL-ATTR-DEC[]

	
Number of attributes in selection clause,

SA

	
2




	
Number of attributes in selection clause per table,

SA[]

	
[1, 1]




	
Position of selection clause attributes,

SAID[]

	
[0100, 0100] = [4, 4]




	
ORDER-ATTR-DEC[]

	
Number of attributes in ORDER BY clause,

OA

	
1




	
Number of attributes in ORDER BY clause per table,

OA[]

	
[0, 1]




	
Position of ORDER BY clause,

OAID[]

	
[0000, 0100] = [0, 4]




	
GRPBY-ATTR-DEC[]

	
Number of GROUP BY clause attributes,

GA

	
1




	
Number of GROUP BY clause attributes per table,

GA[]

	
[1, 0]




	
Position of GROUP BY clause attributes,

GAID[]

	
[1000, 0000] = [8, 0]




	
VALUE-CTR[]

	
Number of string values,

SV

	
1




	
Length of string values,

SL

	
3




	
Number of numeric values,

NV

	
1




	
Number of JOINs,

J

	
0




	
Number of ANDs and ORs,

AO

	
1
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Table 4. Summary of the default hyperparameters of the CNN classifier.






Table 4. Summary of the default hyperparameters of the CNN classifier.





	Type
	Configuration
	Activation





	Convolution
	Filter 32 × 1 × 2, stride 1 × 1
	tanh



	Convolution
	Filter 32 × 1 × 2, stride 1 × 1
	tanh



	Convolution
	Filter 32 × 1 × 2, stride 1 × 1
	tanh



	Maxpool
	Pooling size 1 × 2, stride 1 × 1
	-



	Fully-connected
	256 hidden units
	ReLU



	Fully-connected
	11 hidden units
	Softmax
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Table 5. Summary of the default hyperparameters of the Inception classifier.






Table 5. Summary of the default hyperparameters of the Inception classifier.





	
Type

	
Configuration

	
Activation






	
Convolution

	
Filter 32 × 1 × 2, stride 1 × 1

	
tanh




	
Maxpool

	
Pooling size 1 × 2, stride 1 × 1

	
-




	
Inception module




	
Convolution

	
Filter 32 × 1 × 2, stride 1 × 1

	
tanh




	
Maxpool

	
Pooling size 1 × 2, stride 1 × 1

	
-




	
Inception module




	
Fully-connected

	
256 hidden units

	
ReLU




	
Fully-connected

	
11 hidden units

	
Softmax
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Table 6. Summary of the default hyperparameters of the ResNet classifier.






Table 6. Summary of the default hyperparameters of the ResNet classifier.





	
Type

	
Configuration

	
Activation






	
Convolution

	
Filter 32 × 1 × 2, stride 1 × 1

	
tanh




	
Residual block




	
Residual block




	
Maxpool

	
Pooling size 1 × 2, stride 1 × 1

	
-




	
Fully-connected

	
256 hidden units

	
ReLU




	
Fully-connected

	
11 hidden units

	
Softmax
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Table 7. Summary of the default hyperparameters of the DenseNet classifier.






Table 7. Summary of the default hyperparameters of the DenseNet classifier.





	

	
Configuration

	
Activation






	
Convolution

	
Filter 32 × 1 × 2, stride 1 × 1

	
tanh




	
Dense block




	
Dense block




	
Maxpool

	
Pooling size 1 × 2, stride 1 × 1

	
-




	
Fully-connected

	
256 hidden units

	
ReLU




	
Fully-connected

	
11 hidden units

	
Softmax
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Table 8. Relevant number of observations between two models used in Q-statistic calculation.






Table 8. Relevant number of observations between two models used in Q-statistic calculation.





	

	
   D k    Correct (1)

	
   D k    Wrong (0)






	
   D i    correct (1)

	
    N  11     

	
    N  10     




	
   D i    wrong (0)

	
    N  01     

	
    N  00     




	
   Total ,   N =  N  00   +  N  01   +  N  10   +  N  11     
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Table 9. Model Training Hyperparameters.






Table 9. Model Training Hyperparameters.





	
Genetic Algorithm Hyperparameter




	
Number of Generations

	
50




	
Number of Population

	
10




	
Number of Elites

	
2




	
Crossover Rate

	
0.5




	
Mutation Rate

	
0.01




	
Selection Method

	
Roulette wheel




	
Crossover Method

	
One-point crossover




	
CNN Training Hyperparameter




	
Optimizer

	
Adam




	
Learning Rate

	
0.001




	
Number of Epochs

	
500 with early stopping
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Table 10. CN-LCS Confusion Matrix.






Table 10. CN-LCS Confusion Matrix.





	

	
Predicted

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
True

	






	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
1

	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
0

	
0

	
981

	
0

	
0

	
0

	
5

	
7

	
7

	
0

	
0




	
3

	
0

	
0

	
6

	
990

	
2

	
0

	
0

	
1

	
1

	
0

	
0




	
4

	
0

	
1

	
0

	
1

	
937

	
17

	
0

	
43

	
0

	
0

	
1




	
5

	
0

	
5

	
0

	
0

	
1

	
985

	
0

	
0

	
0

	
9

	
0




	
6

	
0

	
0

	
0

	
0

	
2

	
0

	
840

	
6

	
0

	
0

	
152




	
7

	
0

	
0

	
0

	
0

	
61

	
126

	
0

	
809

	
0

	
4

	
0




	
8

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
11

	
989

	
0

	
0




	
9

	
0

	
1

	
0

	
0

	
7

	
25

	
1

	
9

	
0

	
957

	
0




	
10

	
0

	
0

	
0

	
0

	
7

	
0

	
28

	
6

	
2

	
11

	
946
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Table 11. Inception-LCS Confusion Matrix.






Table 11. Inception-LCS Confusion Matrix.





	

	
Predicted

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
True

	






	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
1

	
0

	
998

	
2

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
0

	
0

	
997

	
0

	
0

	
0

	
0

	
2

	
1

	
0

	
0




	
3

	
0

	
0

	
8

	
989

	
0

	
0

	
0

	
2

	
1

	
0

	
0




	
4

	
0

	
1

	
11

	
0

	
929

	
14

	
0

	
45

	
0

	
0

	
0




	
5

	
0

	
5

	
0

	
0

	
3

	
991

	
0

	
1

	
0

	
0

	
0




	
6

	
0

	
1

	
10

	
0

	
4

	
1

	
907

	
2

	
0

	
0

	
75




	
7

	
0

	
0

	
15

	
0

	
19

	
106

	
0

	
858

	
0

	
2

	
0




	
8

	
0

	
0

	
8

	
0

	
1

	
0

	
0

	
11

	
972

	
0

	
8




	
9

	
0

	
0

	
0

	
0

	
0

	
34

	
0

	
18

	
0

	
948

	
0




	
10

	
0

	
0

	
4

	
0

	
7

	
5

	
124

	
15

	
1

	
11

	
833
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Table 12. ResNet-LCS Confusion Matrix.






Table 12. ResNet-LCS Confusion Matrix.





	

	
Predicted

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
True

	






	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
1

	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
0

	
0

	
980

	
1

	
0

	
1

	
0

	
12

	
1

	
5

	
0




	
3

	
0

	
0

	
5

	
993

	
1

	
0

	
0

	
0

	
1

	
0

	
0




	
4

	
0

	
1

	
0

	
1

	
923

	
14

	
0

	
60

	
0

	
1

	
0




	
5

	
0

	
5

	
0

	
0

	
2

	
960

	
0

	
16

	
0

	
17

	
0




	
6

	
0

	
0

	
2

	
0

	
1

	
0

	
913

	
0

	
0

	
1

	
83




	
7

	
0

	
0

	
2

	
0

	
16

	
92

	
0

	
879

	
0

	
11

	
0




	
8

	
0

	
0

	
3

	
0

	
0

	
0

	
2

	
11

	
984

	
0

	
0




	
9

	
0

	
0

	
1

	
0

	
0

	
15

	
0

	
7

	
1

	
974

	
2




	
10

	
0

	
0

	
0

	
0

	
3

	
3

	
131

	
6

	
0

	
56

	
801
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Table 13. DenseNet-LCS Confusion Matrix.






Table 13. DenseNet-LCS Confusion Matrix.





	

	
Predicted

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
True

	






	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
1

	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
0

	
0

	
992

	
1

	
0

	
0

	
0

	
7

	
0

	
0

	
0




	
3

	
0

	
0

	
1

	
995

	
2

	
0

	
0

	
1

	
1

	
0

	
0




	
4

	
0

	
1

	
0

	
0

	
893

	
7

	
0

	
95

	
0

	
4

	
0




	
5

	
0

	
5

	
0

	
0

	
0

	
951

	
0

	
20

	
0

	
24

	
0




	
6

	
0

	
0

	
0

	
0

	
2

	
0

	
890

	
2

	
0

	
0

	
106




	
7

	
0

	
0

	
0

	
0

	
1

	
83

	
0

	
902

	
0

	
14

	
0




	
8

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
11

	
989

	
0

	
0




	
9

	
0

	
1

	
0

	
0

	
0

	
3

	
0

	
1

	
0

	
995

	
0




	
10

	
0

	
0

	
0

	
0

	
4

	
0

	
52

	
9

	
0

	
23

	
912
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Table 14. Ensemble-LCS Confusion Matrix.






Table 14. Ensemble-LCS Confusion Matrix.





	

	
Predicted

	
0

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
True

	






	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
1

	
0

	
1000

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
0

	
0

	
992

	
1

	
0

	
0

	
0

	
5

	
2

	
0

	
0




	
3

	
0

	
0

	
3

	
996

	
0

	
0

	
0

	
0

	
1

	
0

	
0




	
4

	
0

	
1

	
0

	
2

	
912

	
10

	
0

	
72

	
0

	
3

	
0




	
5

	
0

	
5

	
0

	
0

	
0

	
962

	
0

	
13

	
0

	
20

	
0




	
6

	
0

	
0

	
0

	
0

	
1

	
0

	
880

	
1

	
0

	
0

	
118




	
7

	
0

	
0

	
1

	
0

	
7

	
94

	
0

	
883

	
0

	
15

	
0




	
8

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
11

	
989

	
0

	
0




	
9

	
0

	
1

	
0

	
0

	
0

	
8

	
0

	
0

	
0

	
991

	
0




	
10

	
0

	
0

	
0

	
0

	
3

	
0

	
46

	
2

	
0

	
22

	
927
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Table 15. Query samples correctly classified by Model-LCS trained on incomplete query inputs.






Table 15. Query samples correctly classified by Model-LCS trained on incomplete query inputs.





	Prior Correctly Classified Model
	Relevant Features of Query
	Associated TPC-E Role Category
	Correctly Classified by

Ensemble





	CNN
	projectionNum.holding_summary; projectionId.holding_summary; projectionNum.trade; projectionId.trade; whereClauseNum; andOrNum; stringValuesLength; stringValueNum; numericValueNum
	Customer
	Yes



	CNN
	projectionNum.cash_transaction; projectionId.cash_transaction; projectionNum.settlement; projectionId.settlement; projectionNum.trade_history; projectionId.trade_history; whereClauseNum; orderByNum; orderByNum.cash_transaction; orderById.cash_transaction; andOrNum; stringValuesLength; stringValueNum; numericValueNum
	Customer
	Yes



	Inception
	projectionNum.security; projectionId.security; projectionNum.trade; projectionId.trade; projectionNum.trade_type; projectionId.trade_type; whereClauseNum; orderByNum; andOrNum; stringValuesLength; stringValueNum; numericValueNum
	Trade
	Yes



	Inception
	projectionNum.trade; projectionId.trade; whereClauseNum; orderByNum; andOrNum; stringValuesLength; stringValueNum; numericValueNum
	Trade
	Yes



	ResNet
	projectionNum.last_trade; projectionId.last_trade; stringValuesLength; stringValueNum
	Market
	Yes



	ResNet
	projectionNum.last_trade; projectionId.last_trade; projectionNum.security; projectionId.security; projectionNum.trade_history; projectionId.trade_history; whereClauseNum; orderByNum; andOrNum; stringValuesLength; stringValueNum; numericValueNum
	Market
	Yes
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Table 16. The chi-square values CN-LCS ensemble and single-model CN-LCS.






Table 16. The chi-square values CN-LCS ensemble and single-model CN-LCS.





	

	
Comparative

	
Chi-Square Statistic

	
p-Value

	
Significance






	
Ensemble-LCS

	
CN-LCS

	
51.3146

	
1.5278 × 10−7

	
   p < 0.01   




	
Inception-LCS

	
19.1691

	
0.0382

	
   p < 0.05   




	
ResNet-LCS

	
16.7888

	
0.0792

	
   p < 0.1   




	
DenseNet-LCS

	
23.8290

	
0.0081

	
   p < 0.01   
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Table 17. Accuracy of each Model-LCS trained on incomplete query inputs.






Table 17. Accuracy of each Model-LCS trained on incomplete query inputs.





	Model
	Role 10 Accuracy
	Other Role Accuracy





	CN-LCS
	0.5000
	0.8889



	Inception-LCS
	0.5020
	0.8465



	ResNet-LCS
	0.3050
	0.7363



	DenseNet-LCS
	0.5260
	0.8734



	Ensemble-LCS
	0.6640
	0.8874
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