
����������
�������

Citation: Javed, S.H.; Ahmad, M.B.;

Asif, M.; Almotiri, S.H.; Masood, K.;

Al Ghamdi, M.A. An Intelligent

System to Detect Advanced

Persistent Threats in Industrial

Internet of Things (I-IoT). Electronics

2022, 11, 742. https://doi.org/

10.3390/electronics11050742

Academic Editor: Nurul I. Sarkar

Received: 20 January 2022

Accepted: 10 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Intelligent System to Detect Advanced Persistent Threats in
Industrial Internet of Things (I-IoT)
Safdar Hussain Javed 1, Maaz Bin Ahmad 1,* , Muhammad Asif 2 , Sultan H. Almotiri 3 , Khalid Masood 2

and Mohammad A. Al Ghamdi 3

1 College of Computing and Information Sciences, Karachi Institute of Economics and Technology,
Karachi 75190, Pakistan; 59356@kiet.edu.pk

2 Department of Computer Science, Lahore Garrison University, Lahore 54000, Pakistan;
drmuhammadasif@lgu.edu.pk (M.A.); khalid.masood@lgu.edu.pk (K.M.)

3 Computer Science Department, Umm Al-Qura University, Makkah City 24211, Saudi Arabia;
shmotiri@uqu.edu.sa (S.H.A.); maeghamdi@uqu.edu.sa (M.A.A.G.)

* Correspondence: maaz@kiet.edu.pk; Tel.: +92-3335264960

Abstract: The Industrial Internet of Things (I-IoT) is a manifestation of an extensive industrial
network that interconnects various sensors and wireless devices to integrate cyber and physical
systems. While I-IoT provides a considerable advantage to large-scale industrial enterprises, it
is prone to significant security challenges in the form of sophisticated attacks such as Advanced
Persistent Threat (APT). APT is a serious security challenge to all kinds of networks, including
I-IoT. It is a stealthy threat actor, characteristically a nation-state or state-sponsored group that
launches a cyber attack intending to gain unauthorized access to a computer network and remain
undetected for a longer period. The latest intrusion detection systems face several challenges in
detecting such complex cyber attacks in multifarious networks of I-IoT, where unpredictable and
unexpected cyber attacks of such sophistication can lead to catastrophic effects. Therefore, these
attacks need to be accurately and promptly detected in I-IoT. This paper presents an intelligent APT
detection and classification system to secure I-IoT. After pre-processing, several machine learning
algorithms are applied to detect and classify complex APT signatures accurately. The algorithms
include Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, Gaussian Naive
Bayes, Bagging, Extreme Gradient Boosting and Adaboost, which are applied on a publicly available
dataset KDDCup99. Moreover, a comparative analysis is conducted among ML algorithms to select
the appropriate one for the targeted domain. The experimental results indicate that the Adaboost
classifier outperforms the others with 99.9% accuracy with 0.012 s execution time for detecting APT
attacks. Furthermore, results are compared with state-of-the-art techniques that depict the superiority
of the proposed system. This system can be deployed in mission-critical scenarios in the I-IoT domain.

Keywords: advanced persistent threat; intrusion detection system; industrial internet of things;
machine learning; intelligent system

1. Introduction

Industrial Internet of Things (I-IoT) refers to unified sensors, computer systems that are
a multitude of networked domains connected through the industrial enterprise applications.
It is an evolution of Distributed Control System (DCS) that allows higher automation by
using cloud computing to optimize industrial process controls. As industrial intelligent
sensor systems process terabytes of data daily, I-IoT positions itself at a crucial stage,
where prediction accuracy is of utmost importance. Industrial enterprises are massively
adopting I-IoT to induce automation for efficiency enhancement with faultless monitoring
of resources and reducing safety risks to enterprise wide networks [1]. As the world’s I-IoT
market is expected to reach well over 1.1 trillion dollars by 2026, its adoption rate has also
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been phenomenal, reaching up to 25% of consumer sectors worldwide [2]. Figure 1 shows
the worldwide increasing I-IoT adaptation rate projection till 2025.

0

2

4

6

8

10

12

14

16

18

2017 2018 2019 2020 - E 2021 2022 2023 2024 2025 - P

ROW

APAC

Europe

North America

Figure 1. Worldwide I-IoT adaptation rate [3].

According to a survey [4], 8% of organizations around the world experienced cyber
attacks targeting I-IoT systems from 2018 to 2021.The UK stood at 86%, Japan with 64%,
whereas 84% of healthcare organizations, 79% of manufacturing and production orga-
nizations and 78% of transport organizations worldwide experienced cyber attacks on
their I-IoT network in the same period. A cyber attack on the I-IoT network comes with
various threats having different scales and sizes from different threat actors [5]. Generally,
various levels of the attacks including cyber warfare (top-level), cyber espionage (mid-level)
and cyber-crime (low-level) may be launched on organizations [6]. The main targets of
such attacks are switches, sensors, CCTV cameras that constitute the machine-to-machine
(M2M) and industrial communication networks [7,8]. Moreover, industrial installations
have geographically dispersed infrastructures; this provides a greater horizon for the cyber
adversaries to inflict maximum damage to industrial infrastructure [9–14].

I-IoT provides phenomenal opportunities to enterprise organizations; however, many
security challenges also persist in realizing the prospects offered by this domain. These
security challenges not only pose a threat to an individual but also cause enterprise wide
operational failure with catastrophic effects. The I-IoT system is confronted with the
following core security challenges [15–17]:

• Resource Constraint: I-IoT has restricted capability in computing that often makes
anomaly detection difficult.

• Limited Communication: Compared to traditional devices, I-IoT devices generate
very little traffic with limited user interaction.

• Cyber Security: I-IoT devices are prone to various cyber security challenges. With new
sensors, intelligent devices frequently emerging rapidly, they are faced with multiple
vulnerabilities ranging from simple to complex types of cyber attacks.

• Integration: In I-IoT devices, the integration of information technology (IT) and
operational technology (OT) is difficult. Therefore, it is essential to securely integrate
them without compromising data.

• Data Storage: I-IoT devices have less storage capacity, which hinders security updates
in the form of security patches.

I-IoT systems are mission-critical systems with security limitations. Therefore, it is
essential to develop a real time security monitoring mechanism that focuses on preventing
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unauthorized and malicious users in industrial critical systems. The conventional security
models are generally based on cryptographic techniques that require more processing time
to process a large amount of data to identify complex threats such as APT. So, such models
are not widely adopted for I-IoT environments due to their large voluminous data size. It
is required to identify the security threats promptly that may help to take the necessary
actions for minimizing the damage. By identifying the APT data traffic in the I-IoT domain,
organizations deploying I-IoT sensors may defend their most valuable assets and data from
digital disruption in an industrial processing unit.

In this paper, a machine learning based intelligent detection and classification system
is proposed that identifies APT data traffic in the I-IoT domain. Several machine learning
classifiers such as Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM),
Logistic Regression (LR), Gaussian Naive Bayes (GNB), Bagging, Extreme Gradient Boost
(XGBoost) and Adaboost are applied to successfully detect and classify the APT signature
traffic.To develop and evaluate the performance of the proposed system, a publicly available
dataset KDDCup99 is used. A comparative analysis is performed among machine learning
techniques and results indicate that the Adaboost classifier outperforms the others with
99.9% accuracy with an execution time of 0.012 s for detecting APT attacks, thus making it
suitable for use in I-IoT domain.

The rest of the paper is organized as follows: Section 2 describes various phases of APT
and its behavior in I-IoT networks. The literature review is illustrated in Section 3. Section 4
presents the proposed APT detection methodology. Section 5 presents the experimental
analysis. Section 6 concludes the paper and suggests the future directions of the research.

2. APT in I-IoT Networks

The APT attack in the I-IoT network outlines various methodical attack phases in
the core network. The Supervisory Control and Data Acquisition (SCADA) system is the
underlying major hardware component of the I-IoT ecosystem, mainly comprised of an
organized entity primarily used to monitor the various industrial core processes. A typical
I-IoT SCADA system is shown in Figure 2.

Industrial Ethernet

Smart City

Smart Robotics

Control And Optimization

Perception Layer

Data Collection

Network Layer Processing Layer Application Layer

Figure 2. A typical I-IoT SCADA system [18].

The core system of any I-IoT network is composed of the physical layer that includes
sensors, actuators and control systems. The network layer consists of wired or wireless
communication media, the processing layer houses the core information processing systems
and the application layer collects and transmit information from the communications
stack [19].

The APT attacks have four significant characteristics , which make them different
from regular cyber attacks. Being complex, persistent, targeted and elusive, APT attacks
are precisely planned and systematically launched in multiple stages [20]. Stuxnet attack
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on the Iranian nuclear facility and Shamoon malware attack on the Saudi Aramco facility
as well as Sauron, CopyKittens, Volatile Cedar and ShellCrew are a few examples that
made headlines in the research community [21]. Typical attack phases of APT in I-IoT are
illustrated in Figure 3.

Reconnaissance

Weaponization

Delivery

Exploitation

Installation

Command And Control

Action

Data
&

Firmware

Connected
Things

Figure 3. APT Attack phases in I-IoT.

The attack surface of APT starts with the reconnaissance activities such as probing
the target industrial network for vulnerable and exploitable components before actually
breaching the network. This task is carried out by collecting information about the intended
target network by searching the internet for general information about the industrial
network or through social engineering tools used for propagation. In the second phase
of weaponization, the attacker creates an infected document paired with a customized
phishing email or by using a new strain of self-replicating malware to be distributed
through wi-fi, USB and other means for point of entry into the core network. The delivery
phase involves the transmission of the malware to the intended industrial network where
corresponding account and password management measures are weak. This provides
an appropriate door to intrusion. In the exploitation phase, the actual manifestation of
the attack takes place by exploiting the target network through infiltrated malware. In
the installation phase, the attacker installs the APT malware in target machines of the
processing layer. The Command and Control (C&C) phase is the post compromised layer
through which the infected systems are controlled by the C&C system that mostly resides
outside the network for the cyber attacker to gain control of the compromised network. The
communication between the host and the C&C system is usually encrypted. The actions on
objectives or data ex-filtration phase involves the cyber attacker establishing access to the
organization and executing actions to achieve its objectives, which is usually ex-filtration
of high valued data. An APT attack scenario is presented in Figure 4.
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Figure 4. APT attack scenario [22].

3. Related Work

Efficient classification and detection of benign and malicious feature traffic forms
the core foundation of any malware detection system. However, accurate classification
of APT attacks, especially within the I-IoT domain, is a challenging task. Many pieces of
research have been made on security and intrusion detection systems in the domain of
I-IoT networks.

Teyou et al. [23] classified anomaly data traffic in the cyber physical system environ-
ment by implementing a Convolutional Neural Network (CNN) based Intrusion Detection
System (IDS). The classification model uses the NSL-KDD dataset and its performance is
evaluated and compared with the state of the art. The model gave an accuracy of 80.07%
and 77.15%, respectively, on the 2 and 5 class classification models. Due to the complex-
ity and resource constraint environment, CNN does not seem suitable for I-IoT and the
model performance can be further enhanced to deploy IDS in a real time environment.
The approach used five attack classes of the dataset that can be applied to all seven APT
phases. Latif et al. [24] proposed a cyber security attack prediction system based on a
lightweight random neural network (RaNN) for the I-IoT domain. They targeted malicious
operation and control, denial of service (DoS), scan, spying, data type probing and wrong
setup attacks. The DS2OS dataset was used for the development of the system comprising
seven attack classes that are mapped to seven APT attack phases. The experimental results
showed that the system gave 99.20% accuracy with a 0.01 learning rate.

Wang et al. [25] analyzed the features of Command and Control (C&C) in APT and
found that HTTP based C&C is quite useful. Moreover, they proposed a new independent
access feature and applied it to the DNS records. The public dataset has been applied
to validate the proposed approach. The drawback of this approach is that it can easily
be evaded when the infected hosts connect to the C&C domains while connected to the
malicious server. Brogi et al. [26] proposed a framework known as TerminAPTor, which is
an APT detector that highlights links between the traces left by attackers in the monitored
system during the diverse stages of an attack campaign. TerminAPTor used the Information
Flow Tracking (IFT) to tackle this challenge by correlating generated events in each APT
step in a statistical manner. Sigholm et al. [27] proposed a Data Leakage Prevention (DLP)
approach that targeted the data exfiltration phase of the APT attack cycle. The DLP scheme
processed the network traffic to detect data leaks and generate matching signatures of the
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leak. This system exploited external cyber counterintelligence (CCI) sensors to track the
location and path of the data exfiltration. The approach targeted only the last phase; the
data exfiltration of an APT cycle and does not counter the first six phases of the APT life
cycle and cannot achieve real time detection.

Cheng et al. [28] presented a cyber situation comprehension framework called AP-
TALCM (APT Alerts and Logs Correlation Method) for edge commuting IoT system devices
that are based on APT alerts and correlation of logs on a simulated dataset. Based upon the
concept of alert instance, the approach considered only Phases 2, 3, 5 and 6 (Point of Entry,
C&C communication, data discovery and data exfiltration). The approach achieved 83.7%
TRP and 4.2% FPR. The drawback of this approach is that it did not cover Phases 1 and 4
(Reconnaissance and Exploit) of the APT cycle. Parra et al. [29] proposed a cloud based
distributed DL framework for detecting phishing and botnet attacks in the IoT domain.
The experimental results provided accuracy of 94.30% and 94.80%, respectively, on the
N_BaIoT dataset. The dataset is composed of 10 attack classes related to Botnet targeting
IoT devices that covers all seven APT attack phases.

Zheng et al. [30] proposed a linear discriminant analysis based extreme learning
technique for IoT intrusion detection. Researchers evaluated the technique on the NSL-
KDD dataset. The accuracy of their approach was 92.35% and used four main attack classes,
i.e., DoS, Remote to Local (R2L), User to Remote (U2R) and probe attack covering all
seven APT phases. Khalvati et al. [31] implemented a system to detect and classify IoT
attacks using SVM and Bayesian ML algorithms. The authors achieved an accuracy of
91.50% on the KDDCup99 dataset. The approach targeted four attack classes that cover all
seven APT phases. Ghafir et al. [32] presented an autonomous system for the detection of
APT signatures. The system is composed of three layer detection, i.e., threat detection, alert
correlation and attack prediction that provided an accuracy of 84.4%. The system needs to
be tested for real time APT signature covering all seven phases of the APT life cycle.

Shudong et al. [33] proposed an attribution classification method of APT malware
in IoT using the ML approach. The method analyzes samples, pre-processes the acquired
behavioral data, constructs a behavioral data set of malware samples, then uses the TF-IDF
method to perform the feature representation forming a vector matrix and calculates the
chi-square value of the high latitude feature vector to perform feature selection. SMOTE-RF
model is used in the multi-class model to train and test sets for predicted output with
accuracy of 80%. Table 1 summarizes the APT specific related work.

It is observed from the existing literature that many intrusion detection systems
are available but they cannot accurately classify modern threat signatures on mission
critical systems. The existing intrusion detection techniques can be categorized into three
categories based on their working principle, i.e., machine learning (ML) based approaches,
deep learning based approaches and autonomous approaches that are deployed in different
domains, including IoT and I-IoT domains. The publicly available datasets KDDCup99,
NSL-KDD and simulated dataset have been utilized mostly for the development and
evaluation of detection schemes. These datasets have widely been used to facilitate specific
applications of IoT as well as I-IoT domains. Analysis of the above mentioned approaches
suggests that deep learning based approaches demand high processing power and storage
capacity to identify complex threats such as Advanced Persistent Threats (APT). These
are the prime reasons for not making them first choice for developing intrusion detection
systems for I-IoT environment. The main issue with autonomous approaches is that they
are not scalable. The machine learning based approaches are highly scalable because of
their capability to process huge amounts of data and perform massive computations in a
cost- and time-effective manner. This positively affects the productivity (fast deployment).

Moreover, it is observed that existing APT detection approaches are not appropriate
for the I-IoT domain because of the large voluminous data size that is generated by the
system. Furthermore, the existing research work is not compatible with resource constraint
edge devices of I-IoT. Therefore, it is required to develop a computationally efficient APT
attack system for I-IoT networks that promptly identifies the security threats.
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Table 1. Summarized related work.

Papers Techniques Dataset Accuracy Remarks

Teyou et al. [23] CNN NSL-KDD 80.7% The targeted classes of the dataset are
correlated to 7 APT attack phases

Latif et al. [24]

Implementation of
RaNN model for
classification of
anomaly data

DS2OS 99.20% Covered 7 APT attack phases

Wang et al. [25] Non-ML autonomous
approach Simulated Dataset 83.3% TPR Evasion is possible when infected hosts

join the C&C domains

Brogi et al. [26] Non-ML autonomous
approach Simulated Dataset 100% TPR High FPR rate. Covered 4 APT

attack phases

Sigholm et al. [27] Non-ML autonomous
approach Simulated Dataset -

Real-time detection is not possible.
Targets only 1 APT attack phase of

data ex-filtration

Cheng et al. [28] Non-ML autonomous
approach Simulated Dataset 83.7% TPR

83.7% TRP and 4.2% FPR. Targeted only
Phase 1 and 4 (Reconnaissance and
Exploit phases) of the APT life cycle

Parra et al. [29] DL NBaIoT 94.30% Focused all 7 APT attack phases

Zheng et al. [30] Linear discriminant
analysis (LDA) NSL-KDD 92.35% Targets all 7 APT attack phases

Khalvati et al. [31] SVM and Bayesian
classification KDDcup99 91.50% Targets all 7 APT attack phases

Ghafir et al. [32] Autonomous Correlation clustered
dataset 84.4%

Composed of threat detection, alert
correlation and attack prediction layers

that covered all 7 APT attack phases

Shudong et al. [33] ML Behavioural data of a
malware sample 80.0% APT phases unknown

4. Methodology

In light of the above discussion, the main objective of the present research is to
propose a novel lightweight and fast ML based APT signature classification system that can
detect and predict malicious nodes using various conventional ML algorithms on publicly
available KDDCup99 datasets specifically suitable for the I-IoT domain. The proposed
system for APT detection and classification for the I-IoT domain is presented in Figure 5. It
consists of data acquisition, pre-processing, prediction and performance evaluation phases.
These phases are discussed in the following subsections:

4.1. Data Acquisition Phase

In this phase, the publicly available dataset KDDCup99 is used to develop the pro-
posed system [34]. This dataset is widely used for classification and clustering problem
handling for the development of IDS. It was developed by the Cyber Systems and Technol-
ogy Group of MIT Lincoln Laboratory in 1999 to evaluate computer network IDS and is
composed of 4,94,021 single-labeled connection vectors, each containing 42 features. The
simulated network traffic can be classified into the following categories:

• Normal
• Probing Attack
• Distributed Denial of Service Attack (DDoS)
• Remote to Local Attack (R2L)
• User to Root Attack (U2R)

The attacks mentioned above occur when an attacker sends packets to an I-IoT node
over a network. It aims to exploit vulnerability persistent in the node to gain access and
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perform network reconnaissance to gather information about the network. The apparent
purpose of these types of attacks is to circumvent the security controls of the system. Cyber
adversaries use similar attack classes to launch a successful APT attack on their targeted
I-IoT network [35]. The attack classes mapped to their corresponding APT attack phase are
presented in Table 2.

APT Attack data 
collection from 

I-IOT

Exclude Irrelevant Field 

Handling Missing Values

KDDCup 99 
Raw Dataset

Data Acquisition Phase
Data Pre-processing Phase Prediction Phase

Performance Evaluation Phase

Feature Extraction using 
Correlation Function

Data Splitting using         
K-Fold validation

Normalization Function

AdaBoost

Bagging

Logistic Regression

Gradient Boosting

Support Vector Machine

Random Decision Forest

Decision Tree

Model Training Score

Model Testing Accuracy

Precision

Recall

Execution Time

If APT 
Signature 

Match

Message Alert & Action

(1) APT Positive

Negative Message Alert

(0) APT Negative

Figure 5. Block diagram of the proposed system.

Table 2. Attack classes and types.

Attack Class Attack Type Mapping to APT Phases

Normal Data without intrusion Serialized TCP/IP network Packets
with no intrusion.

Probing Satan, Mscan, Portsweep, Nmap Phase-1: Reconnaissance.

DDOS Back, Land, Neptune, Pod, Smurf,
Teardrop, UDPstrom, Worm

Phase-2: Weaponization

R2L FTP Write, Guess Password, Imap, Phf,
Spy, Xlock, Sendmail, Named, Xsnoop,
Waremaster, Multihop

Phase-3: Delivery, Phase-4: Exploita-
tion and Phase-5: Installation.

U2R Buffer overflow, Loadmodule, Rootkit,
Perl,Sqlattack, Xterm

Phase-6: Command and Control and
Phase-7: Actions on Intent.

4.2. Data Pre-Processing Phase

Data pre-processing of the dataset is an imperative phase that leads to cleaning the
data and making it more meaningful for the classification model to get better accuracy. The
following steps were carried out in the data pre-processing phase:

4.2.1. Resolving Missing Value

Analysis of dataset for missing values is a first step towards pre-processing. No
missing values were observed in the dataset.
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4.2.2. Exclusion of Irrelevant Fields

The only relevant target attributes of APT are selected. Those attributes that do not
contribute to the prediction of the attack are excluded by applying the Principle Component
Analysis (PCA) technique. The attributes that contribute to the prediction of APT signatures
are illustrated in Table 3.

Table 3. Feature Selection and Extraction.

Selected Attributes Description Class Level APT Attack Phase

Normal Normal data Data without
intrusion

Serialized TCP/IP network
packets with no intrusion

Ipsweep ICMP sweep echo requests to multiple
destination addresses Probe APT Phase-1: Reconnaissance

Nmap Network Reconnaissance Probe APT Phase-1
Portsweep ICMP packets to port Probe APT Phase-1

Satan Vulnerability testing of TCP/IP hosts using
common TCP/IP protocols Probe APT Phase-1

Back Shut down a machine or network so intended
users cannot access DDos APT Phase-2: Weaponization

and Point of Entry

Smurf
A type of distributed denial of service (DDoS)

attack that renders computer
networks inoperable

DDos APT Phase-2

Teardrop Sends fragmented packets to a target machine
intending to crash the target network device DDos APT Phase-2.

Neptune

An SYN Flood attack that, exploits the flaws in
handshake TCP protocol by sending a large no.

of spoofed SYN packets directed the
targeted machine

Dos APT Phase-2

Land
A layer 4 DoS attack which crashes target
machine crash due to packet processing in

repeatition by TCP stack
Dos APT Phase-2

Ftp_write Write on the remote machine or delete any files Remote to Local
(R2L)

APT Phase-3: Delivery, Phase
4:Exploitation and Phase 5:

Installation
Guess passwd Authenticate a particular user R2L APT Phase-3,-4,-5

Imap IMAP for password-spray attacks R2L APT Phase-3,-4,-5

Multihop Identification of malicious traffic source by
tracing through several proxies R2L APT Phase-3,-4,-5

Phf A remote to local (R2L) attack against
Web Server R2L APT Phase-3,-4,-5

Spy Malware installed on systems without the end
user’s information R2L APT Phase-3,-4,-5

Warezclient (WC) Exploit the vulnerabilities of FTP. An
implementation of FTP-based R2L attacks R2L APT Phase-3,-4,-5

Warezmaster (WM) Exploit the vulnerabilities of FTP. An
implementation of FTP-based R2L attacks R2L APT Phase-3,-4,-5

Buffer Overflow System anomaly that overwrites adjoining
memory blocks User to Local (U2L)

Phase-6: Command and
Control (C& C), Phase-7:

Actions on Intent and Data
Exfiltration

Loadmodule Load dynamically loadable kernel driver U2L Phase-6, Phase-7

Perl A vulnerability that uses a perl script to gain
root access U2L Phase-6 and Phase-7

Rootkit Rootkit malicious packets U2L Phase-6 and Phase-7

4.2.3. Feature Selection and Extraction

The Pearson correlation coefficient (PCC) technique is used for feature extraction
because the study shows [36] that it consistently generates the best results among different
sample sizes with an area under the receiver operating characteristics curve (AUC), to be
as high as 0.975. The AUC is the best measurement which is independent of the precise
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threshold. Figure 6 shows that the PCC technique outperforms the PCA technique for
the anomaly based dataset. PCA is a data analysis descriptive and adaptive tool used
for dimensionality reduction and widely used in describing the variation and covariance
arrangement of a set of variables through linear permutation.
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Figure 6. Comparison of PCC with PCA technique.

4.2.4. Data Normalization

As a pre-processing procedure, the dataset is statistically analyzed to check the nor-
mality of the dataset being used by the classifiers. It ensures high prediction results for
deploying the ML algorithms. It also helps in noise reduction and outlier removal. In
this step, the dataset is checked through a series of features, including data having an
asymmetric bell shape. The mean and median are both equivalent and centrally distributed.
About 68% of data lies within 1 Standard Deviation (SD). As the dataset fulfills all features,
the dataset is normally distributed. Figure 7 illustrates the covariance matrix plot of chosen
attributes. The covariance matrix is an efficient method for selecting features and reducing
dimensions [37].

4.2.5. Bi-Variate Data Visualization

The t-Distributed Stochastic Neighbor Embedding (tSNE) plot is used to understand
high dimensional data and project it into low dimensional space like 2D. It is a non-linear
technique for reducing dimensionality suited for visualization of elevated dimension
datasets [38]. Figures 8 and 9 describe the bivariate analysis of the KDDCup99 dataset with
two different perplexities and levels of iteration. For the dataset, both graphs illustrate that
the dataset is not linearly separable.

4.2.6. Dataset Splitting

This phase of the dataset involves the splitting of the dataset into training and testing
data. The train–test split approximates the performance of ML algorithms used to predict
the data attributes not used to train the model. The K-fold validation method is applied to
split the data into test and train parts. At first, the dataset is shuffled to make the inputs
and outputs completely random. This is done to ensure that the inputs are not biased.

4.3. Prediction Phase

After the pre-processing phase, the dataset is ready to train and test the classification
models. In this work, eight classification models are used for APT prediction, including
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Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, Gaussian
Naive Bayes, Bagging, XGBoost and Adaboost.
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Figure 7. Selected features covariance matrix.

4.4. Performance Evaluation Phase

This phase involves the performance evaluation of the classifiers based on different per-
formance measures including model training score, accuracy, precision, recall, F-measure
and model execution time.
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4.4.1. Model Training Score

Model training score demonstrates how perfectly and accurately training data fits the
model. This phase is carried out on training data before the execution of the model on
testing data. The training score closer to 1 yields the best-fit model.
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4.4.2. Accuracy

Accuracy is a benchmark to assess the classification models. It measures the fraction
of predictions that have been accurately classified. The accuracy of the model is calculated
according to Equation (1) [39].

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

4.4.3. Precision, Recall and F1-Score

Precision is defined as the benchmark that measures the number of a correct optimistic
predictions made that calculate the accuracy for the minority class. Equation (2) defines the
precision [40].

Precision =
TP

TP + FP
(2)

The outcome is a value between 0.0 for no precision and 1.0 for full or ideal precision.
The recall is a benchmark that quantifies the number of accurate optimistic predictions
made from all positive predictions that could have been made. Equation (3) defines the
recall [40].

Recall =
TP

TP + FN
(3)

The outcome is a value between 0.0 for no recall and 1.0 for full or ideal recall.
F-measure or F1 score combines precision and recalls into a sole measure that incul-

cates both properties. It is the harmonic mean of the two fractions and is illustrated in
Equation (4) [40].

F1 Measure =
2 × Precision × Recall

Precision + Recall
(4)

5. Experimental Analysis

For experimental analysis, Scikit learns python library is used along with Grid-
SearchCV (cross-validated grid-search over a parameter grid) for determining optimal
hyper-parameters from a given range for a particular machine learning model. Simulation
is performed on a machine with Intel 1.70 GHz Core i7 CPU and 8 GB of RAM. Several
ML classification algorithms were used to classify the data into the APT or normal type of
analogous traffic. The following subsections explain the performance of classifiers.

5.1. Decision Tree

This is a supervised learning algorithm that is used for solving regression and classi-
fication problems [41]. The input parameters for the decision tree algorithm are listed in
Table 4. Figure 10 shows the confusion matrix for the DT classifier. The labels on the x-axis
show predicted results, whereas the y-axis refers to actual results. The DT model’s average
accuracy is 96.6%, with a 1.021 s execution time.

Table 4. Input Parameters for Decision Tree.

Hyper-Parameters Value

max_depth 5, 10, 20, 50, 100, 500
Min_samples_split 5, 10, 100, 500
N_estimators 5, 10, 50, 100, 500
Criterion gini
Splitter best
Class_weight Balanced
Cross validation (cv) 3
N_jobs 1
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Figure 10. Confusion matrix for Decision Tree.

5.2. Random Forest

Random Forest is an ensemble learning algorithm that constructs numerous decision
trees on various sets of features. It is widely used for classification and regression problems
by constructing a multitude of DT during the training phase and generating results that
are the mean prediction of each tree. They are well suited for the ensemble domain as
they are fast and stable concerning the creation of synergy in the decision tree or forest. In
this method, the technique uses trees that arbitrarily choose the attributes to divide the
data [42]. Furthermore, this method has better accuracy than standard entropy reducing
DT on many datasets in a large ensemble domain. The ensemble learning technique is
specifically developed to aggregate the results of numerous decorrelated decision trees that
are collected in a forest and classify the output results. RF is then trained using training
data against the test dataset. Table 5 shows the input parameters for Random Forest
classifier. After applying the classifiers, the experimental prediction accuracy of 98.5%, with
an execution speed of 1.092 s, is achieved. Figure 11 shows the confusion matrix for RF.
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Table 5. Input Parameters for Random Forest.

Hyper-Parameters Value

max_depth 5, 10, 100, 500, 1000
Min_samples_split 5, 10, 100, 500
N_estimators 5, 10, 50, 100, 500
Criterion gini
Class_weight Balanced
Cross Validation (CV) 3
N_jobs −1

Figure 11. Confusion matrix for Random Forest.

5.3. Support Vector Machine

This is a linear supervised ML algorithm that analyzes high-dimensional and sparse
data for pattern recognition, classification and regression [13,43]. SVM has been applied
to classify heterogeneous data of the proposed dataset, as we consider our problem to
be in line with multi-class pattern classification. Each data sample is classified into two
categories, i.e., regular traffic and APT or malicious data. The model can solve linear
and non-linear classification problems by creating a hyper-plane that segregates data into
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classes. The input parameters for SVM classifier are listed in Table 6. After applying the
classifiers, the experimental prediction accuracy is 98.7%; an execution speed of 0.976 s is
achieved. Figure 12 shows the confusion matrix of results by applying SVM classifiers.

Table 6. Input Parameters for SVM.

Hyper-Parameters Value

Alpha 10−8–103

penalty L1, L2
loss hinge
Cross validation (CV) 5
N_jobs −1

Figure 12. Confusion matrix for Support Vector Machine.

5.4. Logistic Regression

This is a supervised ML algorithm used for classification and regression problems [44].
The input parameters for the Logistic Regression algorithm are listed in Table 7. The
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average observed detection accuracy in LR is 98.5%, with an execution time of 2.954 s.
Figure 13 shows the confusion matrix of results by applying LR classifiers.

Table 7. Input Parameters for Logistic Regression.

Hyper-Parameters Value

Alpha 0.001, 0.01, 0.1, 1, 10, 20, 30
penalty L1, L2
loss log
Class_weight Balanced
Cross validation (CV) 5
N_jobs −1

Figure 13. Confusion matrix for Logistic Regression.

5.5. Gaussian Naive Bayes

This algorithm is based upon a probabilistic approach. A prior and posterior proba-
bility calculation of the classes in the dataset is involved in this type of ML algorithm [45].
The input parameters for the GNB classifier are listed in Table 8. The model accuracy of



Electronics 2022, 11, 742 18 of 25

GNB classifiers has been observed as 97.2%, with an execution time of 0.145 s. Figure 14
shows the confusion matrix of results by applying GNB classifiers.

Table 8. Input Parameters for GNB.

Hyper-Parameters Value

Var_smoothing 10−9–103

Cross validation (CV) 5
N_jobs −1

Figure 14. Confusion matrix for Gaussian Naive Bayes.

5.6. Bagging

Bagging is an ensemble meta-model to improve the stability and accuracy of ML
algorithms that form the basis for prediction [46]. In this model, several independent
models have been fitted. Bagging has minimal variance as a model, thereby reducing the
inherent problem of overfitting [47]. The input parameters for the Bagging algorithm are
listed in Table 9. The average observed detection accuracy in bagging is 97.5%, with an
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execution time of 1.092 s. Figure 15 shows the confusion matrix of results by applying
Bagging classifiers.

Table 9. Input Parameters for Bagging.

Hyper-Parameters Value

Var_smoothing 10−9–103

Cross validation (CV) 5
N_jobs None
max_samples 1
max_features 1

Figure 15. Confusion matrix for Bagging.

5.7. XGBoost

XGBoost is an ML classification technique that is often used in regression to generate
a prediction model in the form of an ensemble for weaker prediction models like the
decision. It generalizes weaker models by optimization fashion of arbitrary differentiable
loss function [48]. The input parameters for the XGBoost algorithm are listed in Table 10.
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The model accuracy of the XGBoost classifier was observed as 98.7%, with an execution
time of 0.985 s. Figure 16 shows the confusion matrix of results for XGBoost.

Table 10. Input Parameters for XGBoost.

Hyper-Parameters Value

max_depth 2, 3, 5, 7, 10
N_estimators 5, 10, 50, 100, 500
objective Multi:softprob
Cross validation (CV) 3
N_jobs −1

Figure 16. Confusion matrix for XGBoost.

5.8. Adaboost (An Ensemble Technique)

An ensemble technique is a compound model, which combines multiple low perform-
ing classifiers to develop an enhanced classifier. The Adaboost algorithm, as an ensemble
approach to the classification models, also known as Adaptive boosting, is highly suited
for classification purposes. It combines multiple weaker models to generate one stronger
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model. The input parameters for the Adaboost algorithm are listed in Table 11. The accu-
racy of the Adaboost classifier was observed as 99.9%, with an execution time of 0.012 s.
Figure 17 shows the confusion matrix for AdaBoost classifiers.

Table 11. Input Parameters for Adaboost.

Hyper-Parameters Value

algorithm SAMME.R
Learning_rate 1.0
N_estimators 50
Cross validation (CV) 3

Figure 17. Confusion matrix for AdaBoost classifier.

5.9. Comparative Analysis

The experimental results for applied classification models in terms of evaluation
parameters are listed in Table 12.
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Table 12. Experimental Results.

Classification Models Training Score Accuracy Recall Precision F1-Score Execution Time Error

Decision Tree 0.995 0.966 0.988 0.992 0.990 1.021 0.004
Random Forest 0.985 0.985 0.996 0.996 0.996 1.092 0.015
Support Vector Machine 0.987 0.987 0.973 0.946 0.958 0.976 0.013
Logistic Regression 0.984 0.985 0.975 0.960 0.966 2.954 0.015
Gaussian Naive Bayes 0.971 0.972 0.974 0.963 0.967 0.145 0.028
Bagging 0.954 0.975 0.973 0.994 0.995 1.092 0.025
Gradient Boost XGBoost 0.988 0.987 0.975 0.961 0.966 0.985 0.013
AdaBoost 0.999 0.999 1.000 0.999 1.000 0.012 0.001

The results show that Adaboost outperforms others with 99.9%, accuracy and exe-
cution time of 0.012 s. While the XGBoost classifier has also yielded promising results of
98.7%, its execution time is comparatively higher than Adaboost. Furthermore, other ML
classifiers such as SVM, RF, LR and DT have also performed more or less similarly but
not better than XGBoost and Adaboost. Figure 18 shows the comparison among different
classifiers.
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Figure 18. Classifier comparison based on accuracy.

Therefore, it can be stated that boosting algorithms can positively affect the ML
algorithms’ overall performance when classifying complex malware signatures, including
the classification of APT data signatures. Table 13 states the comparative analysis of the
proposed system with state of the art techniques for APT detection and classification.
Results show the superiority of the proposed approach with respect to detection and
classification accuracy. Various ML and autonomous approaches have been proposed by
different researchers. While Brogi et al. [26] presented a non-ML autonomous approach
providing accuracy of 100% TRP, the approach only covers four APT attack phases and
that too on a simulated dataset. This approach may not provide an accurate and true
representation of APT signatures when deployed on mission critical systems. Contrary to
this and other approaches summarized in the table above, minimum computational power
is required to process the anomaly data packets in the proposed system, facilitating the
overall performance by minimizing comprehensive execution time and computation power
consumed by the network that covers all APT attack phases.

Another main attribute of the proposed system is its scalability, as it is based on
machine learning algorithms that make it highly scalable because of its capability to process
huge amounts of data and perform massive computations in a cost- and time-effective
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way. The proposed system can be deployed on the I-IoT gateway to analyze the whole
network traffic. This results in high scalability, productivity (faster deployment), modularity
and portability.

Table 13. Comparison of proposed methodology with existing techniques.

Papers Techniques Dataset Accuracy

Teyou et al. [23] CNN NSL-KDD 80.7% with 7 APT Life cycle phase.
Latif et al. [24] RaNN DS2OS 99.20% with 7 APT attack phases.
Wang et al. [25] Autonomous approach Simulated Dataset 83.3% TPR with 1 APT attack phase.
Brogi et al. [26] Autonomous approach Simulated Dataset 100% TPR with 4 APT attack phase.

Cheng et al. [27] Autonomous approach Simulated Dataset 83.7% TPR with 2 APT attack phase.
Parra et al. [28] DL NBaIoT 94.30% TPR with 7 APT attack phase.
Zheng et al. [29] Linear discriminant analysis (LDA) NSL-KDD 92.35% with 7 APT attack phase.

Khalvati et al. [30] SVM and Bayesian KDDcup99 91.50% with 7 APT attack phase.

Ghafir et al. [31] Autonomous approach Correlation clustered
dataset 84.4%

Shudong et al. [32] ML Behavioural data 80.0%

Proposed System NB, DT, RF, SVM, LR,
Bagging,XGBoost and AdaBoost KDDCup99 99.9% (Adaptive Boost) accuracy and

reduced detection time

6. Conclusions and Future Directions

APT is a highly complex and enigmatic attack that targets traditional and enterprise
networks such as I-IoT. Such types of attack must be detected at the earliest possible
moment, as I-IoT networks are highly sophisticated and an attack on such a network can
lead to a catastrophic disaster. This paper presented an intelligent APT detection and
classification system for securing I-IoT. After pre-processing, several machine learning
algorithms were applied to detect and classify malicious I-IoT nodes prone to APT attacks.
To develop a system, a publicly available dataset KDDCup99 is used. The experimental
results show that the Adaboost algorithm outperforms the rest of the applied machine
learning algorithms by showing 99.9% accuracy, 100% model training score, 99.9% precision,
100% recall and 0.012 s execution time. Moreover, the comparative analysis of the proposed
system with state-of-the-art systems depicts its superiority.

In future, the proposed system can be deployed on the I-IoT gateway for real-time
traffic analysis of I-IoT networks, including smart cities, smart power plants, smart indus-
tries, smart communication systems, etc. The I-IoT gateway is directly connected to the
Distributed Control System (DCS) of the I-IoT networks. Whenever a malicious packet is
sent into the node that interfaces with the DCS, the system can detect APT traffic signatures
and other attack vectors from the regular network traffic that help take the necessary actions
to minimize the damage. Furthermore, the arrangement of such methodology may be
expanded into other domains, besides I-IoT network, such as SCADA systems to determine
new possibilities and limitations imposed by different kinds of datasets.
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