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Abstract: This article proposes a new high-gain transformerless dc/dc boost converter. Although they
possess the ability to boost voltage at higher voltage levels, converter switching devices are under
low voltage stress. The voltage stress on active switching devices is lower than the output voltage.
Therefore, low-rated components are used to implement the converter. The proposed converter can
be considered as a promising candidate for PV microconverter applications, where high voltage-gain
is required. The principle of operation and the steady-state analysis of the converter in the continuous
conduction mode are presented. A hardware prototype for the converter is implemented in the
laboratory to prove the concept of operation.
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1. Introduction

Currently, dc/dc converters are used in most industrial applications. However, for
photovoltaic (PV) energy systems, a step-up dc/dc boost converter is mandatory to boost
the low voltage to higher level to enable grid integration or supply power to an islanded
load, see Figure 1. In most of the practical cases, the converter is configured to generate
output voltage around 400 V, with input voltage only ranging from 18 to 50 V [1–4].
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Figure 1. Two stage PV microinverter. 

In ideal scenarios, the voltage gain of the classical boost converter is infinite. How-

ever, practically, its step-up ability is limited and restricted by the power device’s parasitic 

components, capacitance and inductance, and conduction losses caused by resistances 

and diode voltage drops. Another limitation for having such a high step-up ratio is that 

triggering the power switch during the high duty cycle may causes reverse recovery prob-

lems and magnetic saturation issues [5–8]. Several papers have been published in the lit-

erature, attempting to create boost converters with high gain and high efficiency [9–17]. 

Step-up dc/dc converters can be classified based on the inclusion of a transformer that is 
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Figure 1. Two stage PV microinverter.

In ideal scenarios, the voltage gain of the classical boost converter is infinite. However,
practically, its step-up ability is limited and restricted by the power device’s parasitic
components, capacitance and inductance, and conduction losses caused by resistances
and diode voltage drops. Another limitation for having such a high step-up ratio is that
triggering the power switch during the high duty cycle may causes reverse recovery
problems and magnetic saturation issues [5–8]. Several papers have been published in the
literature, attempting to create boost converters with high gain and high efficiency [9–17].
Step-up dc/dc converters can be classified based on the inclusion of a transformer that is
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isolated vs. non-isolated. Topologies that include a transformer can provide high voltage-
gain by controlling the turns ratio of the transformer. Moreover, transformers provide
isolation between the output and input sides. Transformerless topologies are competitive
in terms of cost, weight, and design simplicity [15].

Topology presented in [17], which is based on cascading boost converters, is able to
achieve higher voltage gain without an extreme duty cycle as compared to the classical
boost converter; however, its switching devices are under high voltage/current stress.

Another possible solution for providing a higher voltage gain is the use of switched
inductors/capacitors [18–22]. A switched inductor converter has a voltage gain double of
that reported for the classical boost converter; however, its semiconductors are under high
voltage stress.

In some papers, voltage lift methodology is applied [23–25] in order to achieve high
voltage-gain, as well as reduce voltage/current stress on the switches. However, multiple
diodes and capacitors are required when the conversion ratio is high.

Isolated topologies, such as coupled inductors and flyback converters, use the turns
ratio, in addition to the duty cycle, to control the converter voltage gain. As the required
step-up ratio is performed at moderate duty cycle, the overall efficiency is increased.
However, in topologies such as the flyback converter, voltage spikes on the active switch
appear due to the discharging energy of leakage inductance. Increasing dissipations are the
inevitable result of the discharging energy of leakage inductance on the active switch [25,26].
Different solutions for such problems exist such as the employment of active clamp circuits
(considered a costly solution) and passive clamp circuits [26,27].

Switched capacitor converters are used to provide boosting ability without any mag-
netic components [28–31]. Hard switching switched capacitor boost converters suffer from
low efficiency, less than 75%, as reported in [32]. Adding a resonance inductor improves
the switched capacitor performance [32,33]. The boosting range is still somewhat limited
compared to converters with inductors, the duty cycle of which can be varied for a wide
range of boosting.

In certain applications, the PV module is connected directly to its dc-dc converter; in
this case, input voltage would be in the range of 33 V to 45 V; hence, a high step-up ability
is mandatory. One of the main functions of the dc-dc converter is to elevate module voltage
from 33~50 V to 400~700 V. Hence, a high step-up ability is required. In this paper, a new
dc/dc converter with high step-up ability is proposed. The proposed converter is well
suited for different applications, such as photovoltaic (PV) systems. The proposed topology
has some distinct advantages, including a high step-up capability, low voltage-stress on the
active devices, and moderate efficiency.

The structure of this paper consists of three subsequent sections. Section 2 discusses the
proposed converter operation and the steady-state analysis. Section 3 includes experimental
results and discussions. The last section, Section 4, is the conclusion.

2. Proposed High Step-Up Converter

The configuration of the proposed converter is depicted in Figure 2. It consists of two
diodes, three inductors, two capacitors, and three switches. The three switches are triggered
on and off simultaneously. The two-diodes are operate in a complementary manner to
the switches in order to provide a free path for the inductor current. Inductors charge in
parallel when the switches are turned on and discharge their energy to the output load
once switches are turned off. In the upcoming analysis, the small-ripple approximation
is used. The converter is designed to operate in the continuous conduction mode (CCM).
The parameters are assumed to be ideal for the upcoming analysis in order to facilitate
the analysis of the converter. A graph of the ideal key waveforms of the circuit devices
is shown in Figure 3. The two possible operating modes of the converter are discussed
as follows:
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2.1. Mode I

This mode is activated once the switches are turned on, and the depiction of this mode
is illustrated in Figure 4. The three switches are turned on simultaneously. In this mode,
inductor L1 is energized from the input dc-source, while inductors L2 and L3 are energized
from capacitor C1. Diodes D1 and Do are reversely biased. Output capacitor Co releases its
energy to the load side. The characteristic equations that describe this mode of operation
are as follows: 

vL1(t) = Vin
vL2(t) = vL3(t) = VC1(t)

ico(t) = −Vo(t)/R

iC1(t) = 2iL2(t)

(1)

where Vin, Vo, Vc1, D, R, VL1, VL2, ico, iL1, and iL2 are denoted to input voltage, output
voltage, capacitor C1 voltage, duty cycle, load resistance, inductor L1 voltage, inductor L2
voltage, capacitor Co current, inductor L1 current and inductor L2 current, respectively.
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2.2. Mode II

This mode is activated once the switches are turned off, and the depiction of this
mode is illustrated in Figure 5. The three switches are turned off at the same time. In this
mode, inductor L1 is discharging its energy into capacitor C1, while inductors L2 and L3 are
discharging their energy into output load and output capacitor Co. In order to maintain a
continuous path for the inductor currents, diodes D1 and Do work as freewheeling diodes
when they are turned on. The characteristic equations that describe this mode of operation
are as follows: 

vL1(t) = Vin(t)−VC1(t)
vL2(t) = vL3(t) = (VC1(t)−Vo(t))/2

ico = iL2 − Vo(t)/R

iC1(t) = iL1(t)− iL2(t)

(2)
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The steady state voltage of capacitor C1 is obtained from (1) and (2). VC1 =
(

1
1−D

)
∗Vin

VC1 =
(

1−D
1+D

)
∗Vo

(3)

Vo

Vin
=

(1 + D)

(1− D)2 (4)

Equation (3) represents the relationship between the voltage across capacitor C1 and
input/output voltages. The voltage gain of the converter is given by Equation (4).

The voltage and current stresses of each component are depicted in Tables 1 and 2,
respectively. All components have a voltage stress lower than the output voltage. This is a
distinct advantage of this topology. It enables us to select the devices with low ratings, thus
improving the overall efficiency of the system.
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Table 1. The voltage stresses of the switching devices.

Switching Device Peak Voltage Stress

S1 Vo ∗ (1 − D)/(1 + D)

S2 Vo/(1 + D)

S3 Vo/(1 + D)

D1 Vo ∗ (1 − D)/(1 + D)

Do 2 ∗ Vo/(1 + D)

Table 2. The current stresses of the switching devices.

Switching Device RMS Current Stress

S1 Iin ∗
√

D

S2 (1 − D) ∗
√

D ∗ Iin/2

S3 (1 − D) ∗
√

D ∗ Iin/2

Freewheeling Diodes Average Current Stress

D1 Iin ∗ (1 − D)

Do (1 − D)2 ∗ Iin/2

Figure 6 is the depiction of the device voltage stress as a function of the converter
voltage gain with a fixed input voltage. The switch S1 and diode D1 are under the same
voltage stress, while the output diode Do is the component under the highest voltage stress.
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The design and selection of converter parameters, such as inductor and capacitor
values, are based on the amount of ripple allowed on each element. The design of the
proposed circuit parameters are illustrated in the following sections.

2.3. Inductor L1 Design

The inductor L1 current is shown in Figure 7. The average value of the inductor L1
current is defined as I1 and the difference between the inductor peak and the average
current is ∆iL1.
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As Equation (6) describes, the inductance of L1 depends on the input voltage Vin, duty
cycle D, sample time TS, and inductor current ripple ∆iL1.

2.4. Inductor L2 and L3 Design

The inductor L2, which is similar to L3, current is shown in Figure 8. The average
value of the inductor L2 current is defined as I2 and the difference between the inductor
peak and the average current is ∆iL2. Considering the first interval of the switching cycle,
the ripple of inductor L2 is given by

2∆iL2 =

(
Vin
L2

)(
DTS

1− D

)
(7)

L2 = L3 =

(
Vin

2∆iL2

)(
DTS

1− D

)
(8)
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As Equation (8) describes, the inductance of inductors L2 and L3 depend on the input
voltage Vin, duty cycle D, sample time Ts, and the inductor current ripple ∆iL2.

2.5. Output Capacitor Co-Design

The output voltage ripple of the converter is limited by the amount of ripple permitted
on the capacitor Co voltage. Consequently, capacitor Co should be designed to ensure that
the converter output voltage exhibits ripple within the permitted range.

The capacitor Co voltage is expressed in Figure 9, where Vo is the capacitor voltage
average value and the difference between the capacitor peak and the average voltage is ∆vo.
Considering the first interval of the switching cycle, the ripple of capacitor Co is given by

∆vo =

(
Vo

2RCo

)
DTS (9)

Co =

(
Vo

2∆vo

)
DTS (10)
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Figure 9. The capacitor Co output voltage.

As can be seen from Equation (10), the value of capacitor Co depends on the output
voltage Vo, duty cycle D, sample time TS, and the capacitor voltage ripple ∆vo.

2.6. Capacitor C1 Design

The design of capacitor C1 is not straightforward; similar to capacitor Co, its current is
equal to the inductor L1 current, but without the dc components (see Figure 10). As seen
in Figure 9, the capacitor C1 voltage reaches its maximum and minimum limits at the two
zero crossing points of is current waveforms [34].

Let ∆vc1 be the difference between the average and max value of the capacitor C1
voltage value; the relation between the total charge q and the peak-to-peak ripple of the
capacitor C1 voltage is

q = C1(2∆vC1) (11)
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Figure 10. The capacitor C1 current and voltage.

The value of charge q is obtained by integrating the shaded area of the capacitor C1
current (see Figure 9), and due to the symmetry of the capacitor, the current waveform q is
given by:

q =
1
2

∆iL
TS
2

(12)

Substitute Equation (12) into Equation (11) and a solution for the voltage ripple peak
amplitude yields

∆vC1 =
∆iLTS
8C1

(13)

Hence,

C1 =
∆iL1TS
8∆vC1

(14)

The capacitor C1 value depends on the inductor L1 current ripple, the sampling time,
and the permitted ripple on the capacitor C1.

3. Results

A testbench for the proposed converter was implemented in the laboratory to verify
its operation and characteristics. The parameters used for implementing the proposed
converter are given in Table 3. The developed prototype is illustrated in Figure 11.

Table 3. The specification of the system parameters.

Component Description Specification

Vin Input voltage 20–35 V
Vo Output voltage 100–350

L1, L2, L3 Input inductor 3 mH
Cin Input capacitor 260 µF
C1 Parallel capacitor 260 µF
Co Output capacitor 260 µF

S1, S2 and S3 Power MOSFET IRFP264
D1 Power diode BYV72EW-200
Do Output diode BYV72EW-200
FS Switching frequency 30 KHZ
Po Rated output power 175 W
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Figure 11. A photo of the hardware.

The three switches are triggered simultaneously to avoid any short circuits; hence, no
deadtime is added to the controller. Switches S2 and S3 face similar voltage stress, while S1
encounters a different voltage stress (see Figure 12). Figure 12 is a case of study in which
the duty cycle is set to 0.4, the input voltage is 35 V, and the measured output across the
converter voltage is around 130 V.
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Figure 12. The output voltage, switch S1 drain source voltage, S2 drain source voltage, and S3 drain
source voltage at an input voltage 20 V and a duty cycle of 0.4.

The circuit diodes D1 and Do operate as a freewheeling diodes, and both are on when
the switches are off. The diode D1 reverse voltage is illustrated in Figure 13. Figure 13
shows a new case study, where the duty cycle is set to 0.6 with 20 V input voltage, and the
output voltage is around 200 V. The inductor L1 current is illustrated in Figure 14.
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Figure 13. The output voltage, switch S2 drain source voltage, and diode D1 reverse voltage at an
input voltage of 20 V and a duty cycle of 0.6.
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In the case study shown in Figure 15, the converter duty cycle is set to 0.6 with 20 V
input voltage; the measured output voltage in this case is around 240 V.
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An analytical analysis for the converter losses is performed with the help of PSIM
thermal modules. A case study is illustrated in Figure 16, where the input power, input
voltage, switching frequency, voltage gain and duty cycle are set to 20 V, 240 W, 30 kHz, 3.9,
and 0.6, respectively. As illustrated in the figure, the conduction losses are dominant. The
switch S1 is the main source of conduction losses, while inductor L1 has the highest value
of conduction loss compared to L2 and L3.
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Figure 16. The switching and conduction losses distribution—(a) element losses distribution; (b) total
losses distribution.

Figure 17 illustrates the relation between the calculated and measured converter
voltage gain; the results are consistent and the slight differences are due to the effect of the
losses on the converter voltage gain. Efficiency is a major factor in selecting a converter for
a specific application, and achieving higher efficiency at a higher voltage gain is a desirable
factor for some applications, such as for PV microconverters. Figure 18 is a depiction of
the efficiency of the proposed converter, with the input voltage set to 20 V and the duty
cycle set to 0.6; the voltage gain at this point is around 10 times that illustrated in Figure 13.
Converter efficiency improves by increasing the input power. Efficiency at 175 W input
power is around 88%, which is comparable compared to the results reported in the literature.
The main sources for losses are the semiconductors. In Figure 19, two case studies are
presented where the converter efficiency is measured using IRFP264 MOSFETs and CREE
C3M00211120k. Utilizing silicon carbide switches improves the efficiency due to very low
resistance, in a range of 21 mΩ, and very small switching losses. Nevertheless, this comes
at a very high cost.

In the literature, several solutions have been presented for integrating PV systems
into existing systems. Providing high step-up capability is a mandatory characteristic
for any converter used in photovoltaic applications. Figure 20 provides a voltage gain
comparison between the proposed topology and other transformerless topologies reported
in the literature. The graph plots the voltage gain of all the converters with variable duty
cycles. The traditional boost converter has the minimum boosting capability among all
presented converters, while the proposed converter has the highest gain among the different
topologies. Table 4 compares the different topologies with the proposed topology from the
point of view of the number of active switches, number of diodes, and voltage stresses for
each device. The proposed converter provides high voltage-gain, while at the same time,
imposing small voltage stresses on the active devices. Such features make the proposed
converter a very good candidate for PV microconverter applications.
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Table 4. The comparison of Step-up Topologies.

Topology Boost SL-Boost SC-Boost [35] [36] [37] [38] New

No. Switches 1 1 1 2 4 2 2 3

No. Diode 1 4 3 4 0 6 2 2

Voltage Gain 1
1−D

1+D
1−D

1
1−D

3−2D
1−2D

(
1

1−D

)2 4
(1−D)

1+D−D2

(1−D)2
1+D

(1−D)2

Switch
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S1 Vo Vo
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2 Vo
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2
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(
1−D
1+D

)
Vo

S2 - - - Vo−Vin
2 Vo
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4

Vin

(1−D)2

(
1
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)
Vo

S3 - - - - Vo - -
(

1
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)
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S4 - - - - Vo (1 − D) - - -

Diode Stress
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4
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(
1−D
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)
Vo

D2 - Vo−Vin
2 - Vo−Vin

2 - Vo
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2 - Vo−Vin

2 - Vo
2 - -

D5 - - - - - Vo
2 - -

Do Vo Vo
Vo
2 Vo − Vin - Vo

2 -
(

2
1+D

)
Vo

Passive
component

L 1 2 1 1 2 1 3

C 1 1 3 3 2 5 2

4. Conclusions

The purpose of this work was to develop a new dc/dc boost configuration with
high voltage-gain capability for PV converters. The developed configuration consisted of
three switches, two diodes, and three inductors. A theoretical analysis of the converter
demonstrated its high voltage-gain, low voltage and current stress on its devices, and
moderate efficiency. The experimental results obtained were consistent with the theoretical
analysis of the converter. To support our results, a comparison with other topologies
presented in the literature is provided.
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