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Abstract: A model with capability for precisely predicting readmission is a target being pursued
worldwide. The objective of this study is to design predictive models using artificial intelligence
methods and data retrieved from the National Health Insurance Research Database of Taiwan for
identifying high-risk pneumonia patients with 30-day all-cause readmissions. An integrated genetic
algorithm (GA) and support vector machine (SVM), namely IGS, were used to design predictive
models optimized with three objective functions. In IGS, GA was used for selecting salient features
and optimal SVM parameters, while SVM was used for constructing the models. For comparison,
logistic regression (LR) and deep neural network (DNN) were also applied for model construction.
The IGS model with AUC used as the objective function achieved an accuracy, sensitivity, specificity,
and area under ROC curve (AUC) of 70.11%, 73.46%, 69.26%, and 0.7758, respectively, outperforming
the models designed with LR (65.77%, 78.44%, 62.54%, and 0.7689, respectively) and DNN (61.50%,
79.34%, 56.95%, and 0.7547, respectively), as well as previously reported models constructed using
thedata of electronic health records with an AUC of 0.71–0.74. It can be used for automatically
detecting pneumonia patients with a risk of all-cause readmissions within 30 days after discharge so
as to administer suitable interventions to reduce readmission and healthcare costs.

Keywords: pneumonia readmission; imbalanced dataset; integrated genetic algorithm and support
vector machine (IGS); logistic regression (LR); deep neural network (DNN)

1. Introduction

Readmission refers to patients who have been admitted to inpatient wards again after
being discharged from hospitals within a short period of time. It may be attributed to
unsuccessful treatments, new diseases, worsening comorbidities, or degraded quality of
care [1], and can be caused by clinical and non-clinical factors [2,3], resulting in increased
healthcare cost. The non-clinical factors include poor social support, housing instability, and
drug abuse [2], whereas the clinical factors are related to patents having a high Charlson
comboridity index, using 10 or more medications, and living in a community with home
care [3]. The readmission rate is generally considered as an indicator for evaluating the
healthcare quality of a hospital [4], although it has been challenged that substantial errors
were found when using it as a marker of healthcare quality [5]. In addition to improving
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hospital quality, the hospital readmission reduction program (HRRP) has also been shown
to be useful for reducing healthcare cost and elevating patient satisfaction [6].

1.1. Policies for Reducing Readmissions

Appropriate policies, including financial incentives [7–9], care transition processes [10],
and health information exchange (HIE) [11], as well as improved nursing environments [12]
and integrated skilled nursing facilities (SNF) [8], are effective at decreasing patient read-
missions. For example, due to the recent passage of US legislation of imposing financial
penalties on hospitals with excessive patient readmissions, a system was designed to iden-
tify chronic obstructive pulmonary disease (COPD) patients who had a higher probability
and higher healthcare cost of readmission for post-discharge interventions so as to save
aftercare cost [9]. Compared to patients provided with costly aftercare, it saved 90% health-
care cost by identifying COPD patients with a high potential readmission and potentially
the highest care cost from discharge summaries in order to perform readmission mitigation
interventions [9]. Financial incentives provided by Medicare’s HRRP in the U.S. were
also reported to have reduced the readmission rate by 0.3–1.2% for each of the five HRRP-
targeted conditions, i.e., acute myocardial infarction, heart failure, COPD, pneumonia, and
hip and/or knee surgery [7].

Care transition processes were also shown to be useful to reduce the risk standardized
readmission rate (RSRR); among the 20 care transition processes evaluated in a study
performed at ten veterans affairs hospitals in the U.S., more care transition processes
performed before and after patient discharge could achieve a lower RSRR [10]. Additionally,
health information exchange (HIE) is also a good strategy for reducing the readmission
rate; hospitals are suggested to adopt HIE to exchange health information with primary
care providers for the collaboration of patient care in order to reduce readmission rate [11].

In [12], the relationship between patient readmission and hospital nursing factors,
including work environment, staffing level, and education, were studied and it was found
that nurse work environment and staffing level were related to 30-day readmission among
23.2% heart failure, 19.1% acute myocardial infarction, and 17.8% pneumonia patients.
Excessive nurse’s workload with one more patient per nurse was found to be related
to a 7%, 9%, and 6% higher chance of readmission for heart failure, acute myocardial
infarction, and pneumonia patients, respectively; furthermore, a good hospital healthcare
environment was also related to a 7%, 6%, and 10% lower chance of readmission for
heart failure, acute myocardial infarction, and pneumonia patients, respectively, when
compared to a poor environment [12]. By analyzing the data of hospital and year fixed
effects for both pneumonia and heart failure, except for investor-owned hospital, the
vertical SNF integration was shown to be significantly associated with a reduction of 30-day
pneumonia readmission in other types of hospitals. However, vertical SNF integration was
not significantly associated in all types of hospitals for the reduction of 30-day heart failure
readmission [8].

1.2. Factors Associated with Readmissions and Interventions for High-Risk Patients

Demographic (gender, age, income, resident region, and education), treatment and
clinical (principal diagnosis, treatment department, surgery, clinical test results, number of
accompanied treatments, number of comorbidities, depression, and mental health status),
and healthcare utilization (length of hospital stay, number of out-patient visits, frequency
of hospital admission, type of insurance, type of patient room, frequency of emergency
visit, and route of admission) factors were reported to be the greatest risks for readmis-
sion [13–15]. As observed in [14], factors including unemployment, less than a high school
education, and diagnosed diseases (chronic obstructive pulmonary disease and coronary
artery disease) were found to be independent factors associated with readmissions. In [15],
other diseases, including infection, neoplasm, heart failure, gastrointestinal disorder, and
liver disorder, were also reported to be the most frequent primary diagnoses of potentially
avoidable readmissions. Patient’s social risk factors and the community’s social determi-
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nant of health were also reported to effect the readmission rate in [16]. It was suggested that
the readmission performance of the CMS HRRP readmission model may be improved by
including factors of patient social risk and community social determinant of health, thereby
removing unjustified penalties on hospitals located at geographic areas accommodating a
large proportion of high-risk patients [16]. Hence, after being discharged, the comorbidities
of high-risk patients should be carefully cared for by providing appropriate interventions in
high-risk patients for effectively reducing readmission rate. It was noted that even simple
interventions, such as telephonic case management, were useful for reducing all-cause
readmissions in high-risk patients prioritized based on episodic risk group (ERG) score
after discharge [17].

Charles et al. [18] adopted the LACE index to screen high-risk older patients in an
acute care hospital for care coordination intervention by providing medications, equipment,
and homecare services to the high-risk group, achieving lower rates of 30-day ED revisits
(30.5%), as well as 90-day (39.3%) and 6-month (50.9%) readmissions, when compared to
the non-intervention group (33.3%, 44.6%, and 58.4%, respectively). Although detecting
patients with a high-risk readmission accompanied with a high care cost for aftercare
intervention is useful to save hospital healthcare cost, patient safety is generally deemed
as the main concern of HRRP. A clinical decision support system (CDSS) provides useful
information and expert knowledge to improve the diagnostic performance, treatment
outcome, or healthcare quality in the clinical setting [19], and has been widely applied
in the detection of medical events [20–32]. In this study, we aimed to design a CDSS
model for predicting readmissions of high-risk patients admitted with pneumonia, so that
post-discharge intervention can be administrated to prevent all-cause readmissions and
elevate patient safety.

1.3. AI Models for Predicting Associated Events of Hospital Admission and Readmission

Recent studies that have focused on constructing AI models for predicting associated
events of hospital admission are summarized in Table 1. In [33], a model integrating multi-
layer perceptron (MLP) and convolutional neural network (CNN), input with 24 numeric
and categorical features, as well as four text notes at a triage of emergency departments
(ED), respectively, was proposed for predicting hospital admission, with a performance
reaching an AUC of 0.83. In [34], by analyzing the effectiveness of various machine learning
(ML) models for predicting mortality, critical care outcome, and the need for hospitalization
of ED patients reported in 11 studies, and showed that deep neural network (DNN) [35–37]
and extreme gradient boosting (XGBoost) [37–39] achieved the greatest predictive accuracy
among the assessed ML models, with an AUC of 0.782–0.92 and 0.922–0.962, respectively.

Table 1. Recent AI models for predicting associated events of hospital admissions.

Study
(Year)

Prediction
Event Method Dataset Used Features or

Input
Predictive

Performance Issue

[33]
(2020)

Hospital
admission at

ED

MLP with
numeric and
categorical

features + CNN
with textual

data

260,000 ED records
of a hospital in

France collected
within 2015–2019

28 features of
numeric, categorical,

and textual data
AUC = 0.83

[40]
(2020)

Daily hospital
admission due
to respiratory-

and circulatory-
related

disorders

LSTM + CNN

Patients ≥ 65 y due
to circulatory or

respiratory
disorders across the
region of Madrid,

Spain, within
2001–2013

13 locations and
12 features of
chemical air

pollutants, weather
observations, and

pollen observations

RMSE = 11.21
and 11.76 for

circulatory and
respiratory

cases,
respectively

Patients
with

age < 65 y
were

excluded
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Table 1. Cont.

Study
(Year)

Prediction
Event Method Dataset Used Features or

Input
Predictive

Performance Issue

[41]
(2021)

ICU admission
for COVID-19

patients

COVID-Net
Clinical ICU

1925 COVID-19
patient records
retrieved from a

hospital in Canada
in 2020

228 clinical features
in fields of

demographic
information,

previous diseases,
blood results, and
vital signs for each

patient

ACC = 96.9%

[42] (2021)

In-hospital cost
and LOS of
admitted
patients

RUP

750,000 EMRs of
discharged patients
from 2012 to 2015
collected from a
hospital quality

monitoring system
of China

Patient features,
diagnosis texts,
operation texts,

diagnosis IDs, and
operation IDs

RMSE = 7765
CNY and

7.056 days for
cost and LOS
predictions
respectively

[43]
(2020)

LOS for
cardiovascular
hospitalization

in ICU

Stacking
regression

Health data of
61,532 ICU stays in

the MIMIC-III
dataset provided

by MIT Lab

Demographics, vital
signs, laboratory

tests, medications,
and more clinical

variables

MAE =
1.92 days

In [40], independent meteorological, pollen, and chemical pollution data were adopted
to design predictive models using long short-term memories and CNN (LSTM + CNN) to
forecast daily hospital admissions for patients due to respiratory- and circulatory-related
disorders, which showed that the models could precisely forecast hospital admissions with
a root mean squared error (RMSE) of 11.21 and 11.76 for circulatory and respiratory cases,
respectively. Moreover, in [41], a neural network, namely COVID-Net Clinical ICU, was
proposed to predict admission to intensive care units (ICU) for COVID patients with an
accuracy of 96.9%.

In [42], a deep in-hospital resource utilization prediction (RUP) approach with multi-
task learning from electronic medical records (EMRs) was proposed to estimate the in-
hospital cost and length of stay (LOS) of admitted patients. Inputs for the multi-task
learning included patient features, diagnosis/operation texts, and the diagnosis/operation
IDs. The performance of the RUP model reached an RMSE of 7765 CNY and 7.056 days for
in-hospital cost and LOS, respectively. Additionally, in [43], stacking regression was shown
to outperform DNN, gradient boosting regression (GBR), and random forest in predicting
LOS for cardiovascular hospitalization in the ICU, with a mean average error (MAE) of
1.92 days.

Recent studies on predicting associated events of hospital readmissions are summa-
rized in Table 2. In [44], a trajectory-based deep learning (TADEL) method was proposed
to capture series of admissions in the medical history for representing the patient’s read-
mission trajectory for being input to train the deep-learning model, reaching a predictive
performance with a recall, precision, F1 score, and AUC of 99.3%, 77.9%, 87.3%, and 0.884,
respectively, for predicting all-cause readmission.
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Table 2. Recent AI models for predicting hospital readmissions.

Study
(Year)

Prediction
Event Method Dataset Categories of

Features AUC Issue

[44]
(2021)

30-day
hospital

readmission

TADEL by
capturing
dynamic

medical history

A balanced dataset
of 72,668

readmission and
72,663

non-readmission
patients acquired

from national
Medicare claims of
all hospitals in the

US from 2011 to
2015

Health status
factors, insurance

coverage and
payment, history of

health service
utilizations and
hospitalizations,

and
sociodemographic

information

0.884

Using a balanced
dataset for testing

is not the real
situation in

practice, the dataset
is usually very

imbalanced, which
may degrade the

predictive
performance

[45]
(2018)

90-day
hospital

readmission
GBM + GA

69,984 encounters
retrieved from

10-year dataset of
130 US hospitals

55 attributes
(including HbA1c,
gender, discharge

disposition,
admission source,

specialty of the
admitting

physician, primary
diagnosis (9), race,

age, time in
hospital, etc.)

Not shown,
ACC =
97.05%

AUC not shown

[46]
(2018)

30-day
hospital

readmission,
etc.

SVM + feature
selection

algorithm
(EMOBPSO),

etc.

2871 and 40,460
readmission and
non-readmission

cases from the HIS
of a hospital in

northeast China

21 fields of 3
databases

(outpatient
information, EMR,

and inpatient
information) in the

HIS

0.9038 Low precision
(43.43%)

[47]
(2020)

hospital
readmissions

JICFS
(including
`1-norm

regularization
for

class-imbalance
aware feature

selection)

6 open readmission
datasets (all-cause,

LACE-score,
MIMIC, T-carer,

RA, and diabetic)

15–243 features 0.733–
0.9299

Low MCC for
2 datasets ranging
from 0.5012–0.546

[48]
(2021)

hospital
readmissions Graph-CL

6 open readmission
datasets (All-cause,

LACE-score,
MIMIC, T-carer,

RA, and diabetic)

Adopted 15–75
features 0.776–0.886

Low MCC for
3 datasets ranging
from 0.561–0.617

[49]
(2019)

30-day ICU
readmission MLP

MIMIC-III dataset
with 42,307 ICU
stays of 31,749

patients
from a US hospital

in 2001 to 2012

12 features 0.642
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Table 2. Cont.

Study
(Year)

Prediction
Event Method Dataset Categories of

Features AUC Issue

[50]
(2021)

30-day
hospital

readmission

GBM (AI
model) + CDM
(for applying

trained AI
model to
multiple

institutions)

106,304
hospitalizations

with 32,242
readmissions

retrieved from EHR
of Seoul National

University Hospital
in 2017–2018, etc.

Demographics,
clinical index score,

diagnosis,
medication, visit

records, surgeries,
and clinical

examination test.

0.8414

(1) Precise features
adopted for model

creation and
prediction are not

clear;
(2) predictive

parameters except
AUC are not

shown;
(3) the predictive

performance
degrades when

applying the model
trained in a

hospital to another
hospital

MCC = (TP× TN− FP× FN)/
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In [45], an integrated gradient boosting machine with a genetic algorithm (GBM +
GA) was applied to design a model for predicting 90-day hospital readmission with an
accuracy as high as 97.05%. In [46], an enhanced version of the multi-objective bare-bones
particle swarm optimization (EMOBPSO) method, which integrated machine learning
models with feature selection algorithms, was proposed for constructing the model, and it
reached a predictive performance of AUC = 0.9038 and precision = 43.43%. In [47], a joint
imbalanced classification and feature selection (JICFS) algorithm, which included `1-norm
regularization for class-imbalance aware feature selection, was proposed for constructing
models for predicting readmissions using six open datasets, and it reached a predictive
performance of AUC = 0.733–0.9299.

The graph-based method, which creates a similar AI model concept used for graph
or image recognition, was also proposed for designing models for readmission prediction.
For example, in [48], the graph-based class-imbalance learning (graph-CL) method was
adopted for constructing within-class graphs (for positive and negative samples) as well
as a between-class graph for learning the pattern discrimination from within-class and
between-class samples, and it reached a predictive performance of AUC = 0.776–0.886 for
predicting readmission.

1.4. State-of-the-Art Models for the Prediction of Pneumonia Readmissions

In [51], the predictive performances of 11 models in seven studies for predicting
pneumonia readmission were reviewed. It was observed that the average rate of pneumonia
readmission reported in these studies was 17.3%, showing a high readmission rate for
patients admitted with pneumonia after being discharged. The predictive performances of
the aforementioned models exhibited an AUC ranging from 0.59 to 0.77, with an average of
0.63 [51]. Table 3 compares the state-of-the-art studies on the prediction of readmissions for
pneumonia patients.
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Table 3. Comparison of state-of-the-art studies in the prediction of readmissions for pneumonia patients.

Study
(Year) Prediction Event Method Dataset Adopted

Features AUC Issue

[52]
(2009)

30-day
pneumonia-

unrelated
readmission #1

LR #2

1117 pneumonia
patients

discharged at
Galdakao Hospital
in Basque country,

Spain

Age, CCI #3, and
decompensated
comorbidities

0.77
The predictive

performances obtained
using only 52/29

pneumonia-
unrelated/

related readmission
cases were less
representative

30-day
pneumonia-

related
readmission #1

Treatment failure
and instability

factors
0.65

[53]
2014

30-day
all-cause

readmission
LR

965 cases
(148 readmissions)

of pneumonia
admission
collected at

Hartford hospital,
Connecticut

16 significant
features (5

demographic
items, previous

admissions,
income,

7 comorbidities,
and 2 lab values)

selected from
31 variables

0.71 Patients with age <
65 y were excluded

[54]
2017

30-day
all-cause

readmission
LR

EHRs #4 of 1463
patients (199
readmissions)

hospitalized with
pneumonia

collected from
6 hospitals in

northern Texas

Income, platelets,
prior

hospitalizations
in past year, vital
sign instabilities
#5 on discharge,
updated PSI #6,
and disposition

status at hospital
discharge

0.731

Readmissions to
hospitals beyond
100-mile radius of

Dallas were not
counted

[55]
(2018)

30-day
all-cause

readmission
LR

EHRs of 1295
hospitalizations

(330 readmissions)
with pneumonia at
the Cleveland clinic

main campus in
Ohio

13 significant
features (age,

cancer, CHD #7,
stroke, antibiotics,

opioids,
temperature,

BUN #8,
hemoglobin,

albumin, sodium,
INR #9, and prior

admissions
within 6 months)

0.74 Excluded
age < 65 y
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Table 3. Cont.

Study
(Year) Prediction Event Method Dataset Adopted

Features AUC Issue

Pilot study
[56]

(2018)

30-day
all-cause

readmission #1
IGS

1103/4331 w/wo
readmissions of

pneumonia
patients retrieved

from NHIRD
(medical

administrative
records) in

Taiwan

20 features
(demographics,
comorbidity no.,

comorbidity
index, events
within 1 year

before admission,
inpatient

interventions,
category of
admitted

hospitals, LoA
#10, healthcare
cost, discharge

status, and
dosage of

antibiotics)

0.76

Physiological signals,
laboratory test

results, and social
determinants, were not

included in NHIRD
and not adopted in our

pilot study

This study
30-day

all-cause
readmission #1

IGS,
DNN, and

LR

1545/6228 w/wo
readmissions of

pneumonia
patients retrieved

from NHIRD
(medical

administrative
records) in

Taiwan

49 features listed
in Table 4

0.7758,
0.7547,

and
0.7689

Physiological signals,
laboratory test

results, and social
determinants were not

included in NHIRD
and not adopted in

this study

#1 of pneumonia patients; #2 logistic regression; #3 CCI = Charlson comorbidity index; #4 EHR = electronic health
record; #5 vital sign instabilities were defined as temperature ≥ 37.8 ◦C, heart rate > 100 beats/min, respiratory
rate > 24 breaths/min, systolic blood pressure ≤ 90 mmHg, or oxygen saturation < 90%; #6 PSI = pneumonia
severity index; #7 CHD = coronary heart disease; #8 BUN = blood urea nitrogen; #9 INR = international normalized
ratio; #10 LoA = length of admission (days).

In [52], the model constructed for predicting pneumonia-unrelated readmissions of
pneumonia admitted patients using logistic regression analysis by including data retrieved
from the EHR of a single hospital achieved a predictive performance of AUC = 0.77, while
the AUC of the model constructed for predicting pneumonia-related readmission was
only 0.65.

In [53], a logistic model for predicting 30-day all-cause readmission was designed
using a dataset extracted from the EHR of a tertiary-care hospital, reaching a predictive
performance of AUC = 0.71. The features included laboratory values, vital signs, age, sex,
comorbidities, nursing home resident, marital status, income, prior admission, length of
stay, etc. (Table 3). It suggested that income and number of previous admissions included
for model construction significantly improved the predictive performance.

In [54], a full-stay model for predicting 30-day all-cause readmission was designed
using the EHR data of 1463 pneumonia patients (13.6% were readmitted) collected from six
hospitals, including safety net, community, teaching, and nonteaching hospitals, achieving
a predictive performance of AUC = 0.731. The features selected for model construction
included disposition status, vital sign instabilities on discharge, and an updated pneu-
monia severity index calculated using values from the day of discharge, etc. (Table 3).
The full-stay pneumonia model (AUC = 0.731) outperformed the first-day pneumonia
model (AUC = 0.695), Centers for Medicare and Medicaid Services pneumonia model
(AUC = 0.64), and two pneumonia severity scores (updated PSI: AUC = 0.673 and CURB-65
score: AUC = 0.604).
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Table 4. Comparisons between pneumonia patients with and without readmission.

Variables
Readmission p-Value

Yes (n = 1545) No (n = 6228)

Gender a, b, c, n(%) <0.001
Men 1023 (66.2%) 3495 (56.1%)
Women 522 (33.8%) 2733 (43.9%)

Age b in year, mean (SD) 74.7 (15.1) 65.7 (20) <0.001
Comorbidity, mean (SD)

No. a, b, c 3.6 (0.9) 2.8 (1.4) <0.001
CCI score 2.2 (1.9) 0.9 (1.3) <0.001

Events within 1 year before admission
ED visits b, c, n (%) 1224 (79.2%) 4621 (74.2%) <0.001
Hospitalizations a, b, c, mean (SD) 2.2 (1.9) 1.5 (1.1) <0.001
Outpatient visits c, mean (SD) 20.2 (19.8) 17 (17.7) <0.001

Inpatient Interventions
Surgical operations, mean (SD) 1.1 (1.4) 0.7 (1.1) <0.001
Adm. Medications a, b, c, mean (SD) 18.2 (8.3) 15 (7.3) <0.001
Ventilator use/therapy a, b, c, n (%) 1149 (74.4%) 3650 (58.6%) <0.001
Other interventions a, b, c, n (%) 820 (53.1%) 1717 (27.6%) <0.001

Category of admitted hospitals a, b, c, n (%) <0.01
Medical center 333 (21.6%) 1410 (22.6%) Chi-square = 9.658;

p = 0.008Regional hospital 713 (46.1%) 3056 (49.1%)
District hospital 499 (32.3%) 1762 (28.3%)

Length of admission b, c, mean (SD) days 11.4 (6.7) 8.4 (5.5) <0.001
Total healthcare cost a, b, mean (SD) NT$ 54,268 (46,311) 36,975 (39,346) <0.001
Discharge status b, c 0.654

No follow-up, n (%) 49 (3.2%) 184 (3.0%)
Outpatient follow-up, n (%) 1496 (96.8%) 6044 (97.0%)

Outpatient visits within 1 year before admission, mean (SD)
Myocardial infarction a, b, c 0.2 (2) 0.2 (1.9) 0.594
Congestive heart failure 2.5 (7.8) 1.7 (6.2) <0.001
Peripheral vascular disease b, c 0.4 (2.7) 0.3 (2.4) 0.128
Cerebrovascular disease b 8 (18.1) 6.3 (17.3) 0.001
Dementia a 2.9 (8.4) 2.3 (8.1) 0.008
Chronic pulmonary disease b 0.2 (2.2) 0.1 (2.1) 0.408
Rheumatologic disease a, c 0.5 (5.6) 0.5 (4.9) 0.833
Peptic ulcer disease a, b, c 2.4 (6.3) 2.1 (6.1) 0.069
Mild liver disease a 1.3 (6.4) 1.3 (5.9) 0.815
Diabetes w/o chron. compl. 6.1 (13.8) 5.6 (13.1) 0.214
Diabetes w chron. compl. a, b, c 1.1 (4.9) 1.3 (6) 0.25
Hemiplegia or paraplegia a, c 0.7 (6.7) 0.6 (5.4) 0.334
Renal disease a, b, c 4.1 (14.3) 3.6 (14.6) 0.283
Leukemia or lymphoma a, b, c 5.6 (15.5) 3.6 (14.4) <0.001
Moderate/severe liver disease b, c 0 (0.6) 0 (0.6) 0.668
Metastatic solid tumor 0.2 (2.9) 0.1 (2) 0.069
AIDS/HIV b, c 0.1 (1.7) 0 (0.9) 0.298

Hospitalizations within 1 year before admission, mean (SD)
Myocardial infarction a, b, c 0.1 (0.3) 0 (0.2) <0.001
Congestive heart failure a, b, c 0.6 (1.4) 0.2 (0.9) <0.001
Peripheral vascular disease a, b, c 0.1 (0.3) 0 (0.2) <0.001
Cerebrovascular disease a, b, c 0.6 (1.4) 0.3 (1) <0.001
Dementia b, c 0.1 (0.6) 0.1 (0.4) <0.001
Chronic pulmonary disease a, b 0 (0.3) 0 (0.2) 0.052
Rheumatologic disease b, c 0.1 (0.7) 0 (0.3) 0.007
Peptic ulcer disease a, b, c 0.3 (0.8) 0.1 (0.5) <0.001
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Table 4. Cont.

Variables
Readmission p-Value

Yes (n = 1545) No (n = 6228)

Mild liver disease c 0.3 (1.3) 0.1 (0.6) <0.001
Diabetes w/o chron. compl. a, b 1.1 (2.3) 0.5 (1.2) <0.001
Diabetes w chron. compl. a, c 0.1 (0.7) 0.1 (0.4) <0.001
Hemiplegia or paraplegia b, c 0.1 (0.7) 0 (0.3) <0.001
Renal disease a, b, c 0.5 (1.7) 0.2 (1) <0.001
Leukemia or lymphoma a, b, c 1 (2.9) 0.3 (1.1) <0.001
Moderate/severe liver disease a, b, c 0.1 (0.7) 0 (0.2) <0.001
Metastatic solid tumor b 0.5 (2) 0.1 (0.6) <0.001
AIDS/HIV b, c 0 (0.2) 0 (0.1) 0.043

Note: Variables selected by IGS models with a OB1, b OB2, and c OB3, respectively.

In [55], a logistic model was created using an EHR dataset of 1295 pneumonia patients,
in which 330 patients were readmitted within 30 days after discharge, with a readmission
rate as high as 25.5%. A total of 13 features were adopted for the model design, in which
linear or nonlinear relationship fitting between the continuous features and readmission
outcome were obtained, and it achieved a predictive performance of AUC = 0.74.

1.5. Problem Statements and Research Objectives

As the readmission rate is deemed as an indicator of hospital healthcare quality [4],
HRRP has been adopted to improve healthcare quality, reduce healthcare costs, and elevate
patient satisfaction [6]. A predictive model designed to identify patients with a higher
readmission probability is useful for post-discharge interventions to save aftercare cost;
for example, identifying COPD patients with a high potential readmission for performing
readmission mitigation interventions saved 90% of the healthcare cost when compared to
patients provided with costly aftercare [9]. Hence, designing models to precisely predict
high-risk readmissions patients admitted with pneumonia for post-discharge intervention
is crucial for the prevention of patient readmissions and for decreasing the healthcare
cost. However, most models for predicting the readmission of discharged pneumonia
patients performed poorly, with AUCs ranging from 0.71 to 0.74 [53,55], and they were
mostly designed based on data collected from a single medical center or were validated
among older patients by excluding patients younger than 65 years old [53,55]. Although,
in certain healthcare settings, these models might be useful in readmission prediction, we
still need to enhance the predictive performance for admitted pneumonia patients caused
by non-typical influenza, such as SARS, MERS, or COVID-19, which become more and
more widespread.

In our previous report [56], we designed models for predicting readmissions for
patients admitted with pneumonia by applying the IGS (integrated genetic algorithm
with support vector machine) algorithm based on the data retrieved from the National
Health Insurance Research Database (NHIRD) with 20 features adopted, and we achieved a
predictive performance with an accuracy, sensitivity, specificity, and AUC of 69.33–71.44%,
66.27–69.41%, 69.32–72.24%, and 0.7518–0.7601, respectively. In the current study, our
objective was to design predictive models using NHIRD with more features (49 features) to
further improve the predictive performance in the identification of high-risk readmission
patients admitted with pneumonia. Moreover, in contrast to data collected from a single
hospital for model design, as reported in previous studies [53,55], NHIRD covers multiple
hospital data submitted by more than 97% of hospitals scattered around different areas
in Taiwan for claiming healthcare reimbursement from the Bureau of National Health
Insurance. Additionally, deep neuro network (DNN) and logistic regression (LR) were also
applied to design the predictive models, so as to be compared with the models created
using the IGS algorithm.



Electronics 2022, 11, 673 11 of 22

2. Materials and Methods
2.1. Data Source

The data were retrieved from a subset including the claim data of 1 million patients
randomly sampled from the NHIRD, containing information of medical facility registries,
inpatient orders, ambulatory care, prescription drugs, and physicians providing services to
the entire 23 million Taiwanese population enrolled in the NHI program. The diagnoses in
the NHIRD dataset were coded according to the International Classification of Diseases,
ninth edition, Clinical Modification (ICD-9-CM), and the dataset has been widely used for
studying issues of public health and the causal relationship of a disease associated with
other comorbidities [57].

2.2. Samples

Data of patients older than 20 years old admitted within 2010–2011 due to pneumonia
(ICD Code 480.xx, 481, 482.xx, 483.0, 483.x, 485, 486, and 487.0) were retrieved from the
NHIRD for constructing the predictive models. Patient claim data collected in 2010 were
used for the training the models, while those collected in 2011 were used for the testing. The
training and testing datasets included 3911 (761 readmissions and 3150 non-readmissions)
and 3862 patient data (784 readmissions and 3078 non-readmissions), respectively, show-
ing that the datasets were highly imbalanced, with the ratio of the majority to minority
samples reaching 4.14 and 3.93, respectively. The readmitted patients were those who
had been admitted again with all-cause conditions within 30 days after being discharged
from the hospital. Table 4 compares the included variables between readmitted and non-
readmitted patients of the combined training and testing datasets (1545 readmissions and
6228 non-readmissions).

When classifying the imbalanced dataset, it has to be noted that samples in the majority
class outnumbered those in the minority class, which is often of more interest or importance,
making the algorithms optimized with accuracy adopted as the objective function biased
toward the majority class [58]. In general, the accuracies of these models are satisfactory,
yet their sensitivities are quite low. Hence, alternative fitness functions, such as AUC [59]
or weighted sum of accuracy, sensitivity, and specificity [60], have been proposed to solve
this problems.

2.3. Variables

To design the predictive models, a total of 49 candidate variables were considered,
including gender; age; comorbidity number and comorbidity index, i.e., Charlson co-
morbidity index (CCI) [61]; medical events (ED visits, hospitalizations, and outpatient
visits) within 1 year before admissions; inpatient interventions, number of surgical opera-
tions, number of administrated medications, ventilator use/therapy (ventilator therapy,
oxygen inhalation, humidity inhalation, or vapor/aerosol therapy), and other accompa-
nied therapies (urinal indwelling, C.V.P. catheter, N-G feeding, respiratory suction, or
tracheostomy care); category of admitted hospitals (medical center, regional hospital, or
district hospital); length of admission; total healthcare cost; discharge status; diagnosed
comorbidities included within CCI in outpatient visits; and hospitalizations within 1 year
before pneumonia admission.

2.4. Statistica Analysis

The statistic tool (SPSS 22.0, IBM) was adopted for the descriptive and inferential
analyses. Distribution differences in the demographic characteristics, events within 1 year
before admission, inpatient interventions, category of admitted hospitals, and discharge
status of readmitted and non-readmitted patients were compared using the Chi-square test.
Difference in continuous variables were compared with the unpaired Student’s t-test. The
statistical significance was defined as p < 0.05.
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2.5. Design of Prediction Models

Figure 1 shows the experimental procedure with IGS, DNN, and LR algorithms used
for creating the predictive models. Figure 2 shows the procedures of IGS, DNN, and LR
algorithms for optimizing the predictive performances of the models. As illustrated in
Figure 2a, in the IGS algorithm, GA was used for selecting the salient features and adjust-
ing the SVM parameters (cost value and kernel parameter), whereas SVM was used for
designing the predictive models based on three different objective functions [60]. For each
iteration when optimizing the IGS model, the n chromosomes were updated by combining
n/2 new chromosomes generated from crossover with the other n/2 chromosomes obtained
from mutation. The aforementioned steps were repeated until the best objective value
was obtained within the maximum number of iterations. As illustrated in Figure 2b,c,
hyperparameter tuning adopting the GridSearchCV function was used for optimizing the
LR and DNN models, respectively.

Figure 1. Experimental procedure for designing IGS, DNN, and LR predictive models.

In the training phase, the cluster-based kNN (k-nearest neighbors) undersampling
method [62] was adopted to prepare the training dataset. The samples in the majority class
(with M samples) were clustered into m clusters that each consisted of M/m or M/m + 1
samples. Then, the kNN algorithm was applied to select the sample that was nearest to the
center of gravity in each cluster, resulting in a balanced training set containing 2m samples
(m samples obtained from the majority group and m samples of minority group) for cross
validation. Ten-fold cross validation was adopted for training and validating the models in
order to obtain a model with the best performance. In the testing phase, the imbalanced
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testing dataset was applied to test the constructed predictive models obtained in the
training phase.

Figure 2. Optimization procedures of (a) IGS, (b) LR, and (c) DNN algorithms.

When designing the IGS models, selection of the objective function was crucial for
obtaining the optimal models. As indicated in Equations (1)–(3), in this study, the cost-
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sensitive objective functions, including combined accuracy, sensitivity, and specificity, AUC,
as well as g-mean, were used to obtain the optimal models with imbalanced datasets.

OB1 = ACC− |SEN− SPE| (1)

OB2 = AUC (2)

OB3 =
√

SEN× SPE (3)

Notice that in Equation (1), the maximum fitness value is obtained by maximizing
accuracy (ACC) and minimizing difference between sensitivity (SEN) and specificity (SPE)
to avoid the decision hyperplane biasing toward the majority class. In the testing phase,
the testing dataset was adopted for testing the models created in the training phase. Perfor-
mances of the constructed models were quantitatively evaluated using the SEN, SPE, ACC,
and AUC.

The IGS models were developed using the SVM package (LIBSVM [63,64]) and GA
algorithms under a Visual C++ environment operated under a Windows 10 operating
system in a personal computer with Intel i7-6700HQ 4-core CPU @2.60 GHz, 8 GB main
memory, and NVidia GeForce GTX950M GPU. As illustrated in Figure 3, the structure of
the DNN algorithm consisted of an input layer, three hidden layers, and an output layer
with 49, 20-20-20, and 1 nodes, respectively, with a rectified linear (ReLU) function adopted
in the hidden layer and sigmoid activation function applied in the output layer. In model
training, the epoch was set to 80 and the batch size was set to 50. A personal computer
consisted of Intel i7-7500U dual-core CPU @2.70 GHz, 8 GB main memory, and NVidia
Geforce MX150 GPU and was operated under a Windows 10 operating system, and the
Jupyter Notebook (Scikit-learn package, Tensorflow, Python) environment was used for
designing the LR and DNN models [65–67].

Figure 3. Structure of deep neural network (DNN).
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3. Results
3.1. Comparisons of Demographic Characteristics, Comorbidities, Inpatient Interventions, and
Related Variables between Readmitted and Non-Readmitted Patients

As shown in Table 4, data of readmitted (1545 patients; 1023 men and 522 women)
and non-readmitted (6228 patients; 3495 men and 2733 women) patients retrieved from the
NHIRD within 2010–2011 were compared. As indicated in the table, the age and gender
distribution of the readmitted and non-readmitted patients were significantly different
(p < 0.001). Readmitted patients were older and mostly male. Regarding comorbidity, read-
mitted patients had significantly more comorbidities (p < 0.001) and higher CCI (p < 0.001)
scores than the non-readmitted patients. It was also noted that readmitted patients ex-
perienced significantly more ED visits (p < 0.001) and exhibited a significantly higher
frequency of hospitalizations (p < 0.001) and outpatient visits (p < 0.001) within 1 year
before admission.

During hospitalization, readmitted patients received significantly more surgical op-
erations and administrated medications (p < 0.001) and also had a significantly higher
chance of using a ventilator and receiving additional interventions (p < 0.001), including
urinal indwelling, C.V.P. catheter, N-G feeding, respiratory suction, or tracheostomy care.
In addition, readmitted patients had longer hospital stays and more healthcare expenditure
than the non-readmitted patients (p < 0.001).

The category of admitted hospitals between readmitted and non-readmitted groups
was significantly different (p < 0.01). The admission rate to district hospitals for the
readmitted group was higher than the non-readmitted group. There was no significant
difference (p = 0.654) regarding discharge status; the outpatient follow-up rate of the
readmitted group was similar to the non-readmission group.

When comparing hospitalizations within 1 year before admission for 17 comorbidities,
except chronic pulmonary disease (marginally significant with p = 0.052), the frequencies of
all the other comorbidities in the admitted group were significantly higher (p < 0.05) than
the non-readmitted group. In contrast, only four comorbidities, including congestive heart
failure, cerebrovascular disease, dementia, and blood malignancy (leukemia or lymphoma),
in the readmitted group exhibited a significant higher frequency of outpatient visits than
the non-admitted group.

3.2. Predictve Performance

Table 5 compares the predictive performance among five different models designed
using IGS, DNN, and LR algorithms, with the training dataset prepared using a cluster-
based undersampling method (kNN). Accuracy was calculated as the fitness value for
DNN and LR models, while three objective functions were applied for optimizing the IGS
models. As shown in Table 5, the predictive performance of the DNN and LR models
achieved 61.50%, 79.34%, 56.95%, and 0.7547, as well as 65.77%, 78.44%, 62.54%, and 0.7689
in ACC, SEN, SPE, and AUC, respectively. The IGS models using AUC as the objective
function exhibited a better predictive performance than the other models with ACC, SEN,
SPE, and AUC achieving 70.30–71.22%, 68.85–78.33%, 70.30–73.58%, and 0.7536–0.7729,
respectively, in the training phase, as well as 68.20–70.11%, 70.40–74.61%, 66.56–69.59%,
and 0.7599–0.7758, respectively, in the testing phase.

As indicated in Table 5, although the model trained using OB2 achieved a slightly
better predictive performance, the IGS models optimized with objective functions OB1,
OB2, and OB3 had a similar predictive performance in both the training and testing phases.
The ACC, SEN, SPE, and AUC obtained in the testing phase were 68.20%, 74.61%, 66.56%,
and 0.7727, respectively, for the IGS-OB1 model; 70.11%, 73.46%, 69.26%, and 0.7758,
respectively, for IGS-OB2 model; and 69.75%, 70.40%, 69.59%, and 0.7599, respectively,
for the IGS-OB3 model. The variables selected by the IGS models optimized with three
objective functions were different (Table 4). The salient variables selected by the IGS method
for designing the predictive models included gender, age, number of comorbidities, ED
visits, frequency of hospitalizations and outpatient visits within 1 year before admission,



Electronics 2022, 11, 673 16 of 22

number of administrated medications, ventilator use and accompanied therapies, other
interventions, category of admitted hospital, length of admission, total healthcare cost,
discharge status, and outpatient visits and hospitalizations visits for comorbidity within
1 year before admission.

Table 5. Predictive performances of models designed by the IGS, DNN, and LR methods.

Method Objective
Function ACC (%) SEN (%) SPE (%) AUC

Training Phase

IGS
OB1 70.30 70.30 70.30 0.7536
OB2 70.63 78.33 72.93 0.7729
OB3 71.22 68.85 73.58 0.7595

DNN ACC 65.81 65.04 66.54 0.7266
LR ACC 69.18 65.45 72.76 0.7543

Testing Phase

IGS
OB1 68.20 74.61 66.56 0.7727
OB2 70.11 73.46 69.26 0.7758
OB3 69.75 70.40 69.59 0.7599

DNN ACC 61.50 79.34 56.95 0.7547
LR ACC 65.77 78.44 62.54 0.7689

The execution time was 70.2 s and 1.8 s for training and testing the DNN models,
respectively, and 2.2 s and 1.6 s for training and testing the LR models, respectively. The
time for training the IGS model with each objective function was much longer (around
1–2 weeks) compared to the LR and DNN models, while the time for testing the IGS model
was around a few seconds only.

4. Discussions
4.1. Model Explainability

As shown in Table 4, among the 49 variables included for analysis, 34 showed sig-
nificant differences (p < 0.05) between readmitted and non-readmitted patients. Variables
including gender; comorbidity number; hospitalization number within 1 year before admis-
sion; adminstrated medication number and ventilator use/therpies, and other interventions;
catergery of admitted hospitals; mean outpatient visits within 1 year before admission
for myocardial infarction, peptic ulcer disease, diabetes with chronic complication, renal
disease, and leukemia/lymphoma; and mean hospitalization within 1 year before ad-
mission for myocardial infarction, congestive heart failure, peripheral vascular disease,
cerebrovascular disease, peptic ulcer disease, renal disease, leukemia/lymphoma, and
moderate/severe liver disease were all selected by the three IGS models. Although highly
statistically significant in discriminating the readmitted patients from the non-readmitted
ones, variables, including age (p < 0.001); all-cause (p < 0.001), cerebrovascular disease
(p < 0.01), and dementia (p < 0.01) outpatient visits within 1 year before admission; and
mild liver disease (p < 0.001) and metastatic solid tumor (p < 0.001) hospitalizations within
1 year before admission, were selected by only one IGS model. On the other hand, al-
though not reaching statistical significance, discharge status (p = 0.654) and outpatient visits
within 1 year before admission for myocardial infarction (p = 0.594), peripheral vascular
disease (0.128), chronic pulmonary disease (0.408), rheumatologic disease (0.833), peptic
ulcer disease (0.069), mild liver disease (0.815), diabetes with chronic complication (0.25),
hemiplegia/paraplegia (0.334), renal disease (0.283), moderate/severe liver disease (0.668),
and AIDS/HIV (0.298) were selected by at least one IGS model. These findings verified that
filter methods, such as statistical analysis, F-score, or entropy, may not be appropriate for
selecting features when designing predictive models [60,64]. Moreover, it also revealed that
non-significant variables observed by univariate statistical analysis may have compensatory
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effects for increasing the predictive performance of the created models. Variables that are
highly correlated can also be adopted together to strengthen the predictive performances
of the predictive models [64].

As indicated in Table 5, the AI model with the best predictive performance in the
testing phase was the IGS model optimized with the OB2 objective function. As indicated
in Table 4, the number of men was more than women in the readmission group, which
is consistent with previous studies [21,22], but inconsistent with another study regarding
pneumonia readmission [54]. The age of readmission group was significantly older than
the non-readmission group, which is consistent with previous studies [21,54], indicating
that the elder patients usually have worse health status and thus have a higher risk of
readmission than the younger patients.

The number of comorbidities in the readmission group was significantly more than that
of the non-readmission group, denoting that pneumonia patients with more comorbidities
had a higher risk of readmission after discharge, which is consistent with a previous
study [21]. Frequencies of ED visits and hospitalizations within 1 year before admission
were both significantly more in the readmitted group than the non-readmitted group, which
is consistent with previous studies [53–55], reinforcing that pneumonia patients with more
recent ED visits or hospitalizations exhibited worse health status and thus had a higher
risk of readmission after discharge.

During hospitalization, pneumonia patients received more administrated medications
and also had higher rates of using ventilators and receiving additional interventions, again
indicating that readmitted patients tended to have worse health status, resulting in a higher
chance of readmission after discharge. The above inpatient intervention variables were
adopted for designing our models, but not in the previous study [55]. In [55], only adminis-
trated opioids and time until first administered antibiotics were included. Notice that, as
shown in Table 4, the number of surgical operations was not selected by any IGS models,
even it was significantly different between the readmitted and non-readmitted groups.

Length of admission and total healthcare cost were both selected by the IGS-OB2 model
and were also adopted in [44]. Pneumonia patients who stayed longer in hospital and
accumulated higher medical expenses tended to be more severe and had a higher chance of
future readmissions. Interestingly, for readmitted patients, only 4 among 17 comorbidities
treated in outpatient visits within 1 year before admission were significantly more frequent
(p < 0.05) than the non-readmitted patients, indicating that patients with frequent physi-
cian visit had better management of comorbidities and had the effect of preventing the
deterioration of comorbidities [68], which in turn presented a lower chance of readmission.
In contrast, 16 (and 1 marginally significant p = 0.052 for CPD) out of 17 comorbidities
causing hospitalizations within 1 year before admission for the readmitted patients exhib-
ited significantly higher rates than the non-readmitted patients, denoting that health status
presented in recent hospital admissions, especially the last one, was useful for predicting
the following readmission. Trajectory of previous admissions and prior readmissions were
the most important features for precisely discriminating readmission from non-readmission
patients [44].

4.2. Performance Comparison

Table 3 compares the state-of-the-art models for predicting the readmission of pneu-
monia patients after discharge. It can be observed that many previous works adopted
logistic regression (LR) with different features extracted from EHRs for designing the pre-
dictive models. The IGS models presented in this study achieved an AUC of 0.7727–0.7758,
which is similar to the model reported in [52] (0.77) and outperforms the models presented
in [53] (0.71), [54] (0.731), and [55] (0.74), which are designed based on EHRs. In [52], the
AUC of LR models for predicting 30-day pneumonia-unrelated and pneumonia–related
readmissions for patients with pneumonia admission reached 0.77 and 0.65, respectively, in
which only 52 cases of pneumonia-unrelated readmission and 29 pneumonia-related read-
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mission were observed among the 1117 pneumonia admitted patients who were included
for model construction.

On the other hand, in [53,55], younger cases < 65 y old were excluded from the
extracted samples when designing the predictive models. In contrast, our study included
patients ≥ 20 y old for the model design, and was more comprehensive and representative
for readmission prediction. As demonstrated in Table 4, in general, elder patients had a
significantly higher chance of readmission compared to the younger patients. In Taiwan,
the NHI program provides healthcare to more than 99% of the 23 M citizens. NHIRD has
collected more than 20 years of long-term patient data for almost all Taiwanese citizens from
the data submitted by the participating healthcare institutions for claiming reimbursements.
Most citizens intend to migrate around hospitals to visit physicians with a high reputation
for better treatment due to the good accessibility, comprehensive population coverage,
short waiting time, and low costs, making the long-term collection of healthcare data for an
individual patient in a single hospital very difficult. The healthcare data of an individual are
generally distributed in the EHRs of many hospitals situated in different areas of Taiwan.
Therefore, in general, EHRs have recorded only incomplete or short-term patient healthcare
data [22]. In this study, compared to the model constructed with EHRs, our models were
designed based on the long-term NHIRD dataset, which is capable of exhibiting the long-
term health status of a patient, resulting in an improved predictive performance.

The TADEL method reached an excellent predictive performance with an AUC of
0.884 for predicting the all-cause readmission for all-cause conditions, with the performance
improvement mainly achieved by adopting an attenuation coefficient and amplification
coefficient [44]. However, in [44], the ratios of the readmission group to the non-readmission
group in numbers of admissions and ED visits were 16.3 and 16.8, respectively, which
were very high compared to our study (admission: 1.5; ED visit: 1.1) and a recent study
(admission: 1.6) for predicting all-cause readmission [21]. We suggest that data with such a
high ratio of readmission to non-readmission groups in the number of hospitalizations and
ED visits presented in [44] could enable the designed model to achieve a higher predictive
performance. Furthermore, a balanced dataset was adopted for designing the TADEL
model in [44]; in contrast, our model and other models reported in previous studies were
designed based on the imbalanced dataset, more similar to the real world, with a ratio of
readmission to non-readmission case number of 4 in our model, 13.8 in [52], 6.5 in [53],
7.4 in [54], and 3.9 in [55], which greatly degraded the predictive performance of the
created models.

As demonstrated in [69], laboratory test results, including the white blood cell count
and albumin at discharge, as well as the number of comorbidities, are independent risk
factors of readmission for pneumonia patients. However, compared to the predictive
models presented in [54,55], variables associated with laboratory test results (concentration
of platelets, albumin, and blood urea nitrogen) were not used in our models, as they
were not available in the NHIRD. Although not significant (p = 0.654) in the discrimination
readmitted from non-readmitted patients, discharge status (with/without outpatient follow-
up) was selected by constructing two IGS models. As noted in [70], discharge disposition
was an independent predictor of readmission for community-acquired pneumonia patients,
and follow-up interventions after patient discharge is necessary for reducing morbidities
and mortalities.

Variables that were used for creating the predictive models in this study and also
adopted in previous studies include age, gender, CCI, LOS, previous admissions, and dis-
position status at hospital discharge, as well as related comorbidities, including congestive
heart failure, coronary heart disease, cerebrovascular disease, chronic lung disease, renal
disease, diabetes mellitus, and major psychiatric disorders [52–55].

4.3. Future Works

Only a moderate predictive performance (AUC < 0.8) has been achieved so far for mod-
els designed for predicting the readmission of pneumonia admission. In contrast, models
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for predicting all-cause readmissions of discharged patients admitted with all-cause condi-
tions exhibited a higher predictive performance with an AUC as high as 0.877–0.9038 [46].
As shown in Table 4, the laboratory test results, physiological parameters, and social
determinants of health available in EHRs were not included in the NHIRD dataset and
were not available for our model design. Future work will focus on applying transfer
learning algorithm [71–73] to transfer the knowledge learned from models obtained using
the long-term NHIRD dataset to train models based on the short-term EHRs for improving
the predictive performance.

In addition to transfer learning, other advanced AI methods, such as extreme gradient
boosting (XGBoost) [37–39], time trajectory learning of adopted features [44], integrated AI
models [45], feature selection algorithms [46,47], and graph-based methods [48] mentioned
in Section 1.3, may also be adopted for model construction to further elevate the predictive
performance of pneumonia readmission prediction.

5. Conclusions

According to the analytical results, it was observed that the IGS model for predicting
pneumonia readmissions designed using NHIRD outperformed the models designed
using data retrieved from EHRs presented in previous studies. It could be adopted to
assist physicians in detecting pneumonia patients who have a higher risk of readmission
after being discharged so that appropriate aftercare interventions can be administrated
to prevent readmissions in order to reduce morbidities, mortalities, and healthcare cost.
Future research will focus on further improving the predictive performance by using
advanced AI methods as well as more significant features.
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