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Abstract: In this paper, a new realization of electronically tunable voltage output second-order
low-pass (LP) and band-pass (BP) filter is presented. The circuit has a multiple-input single-output
structure, and LP and BP outputs are provided using the same structure. One electronically variable
second-generation voltage conveyor (VCII), whose impedance at the Y port can be electronically
varied using a control current (Icon), two capacitors, and one resistor are used. By changing the value
of Icon, the impedance value at the Y port can be electronically varied; therefore, the value of ω0 can
be tuned. This feature helps to reduce the number of passive components used. Interestingly, the
LP and BP outputs are provided at the low-impedance Z port of the VCII, and there is no need for
an extra voltage buffer for practical use. The circuit enjoys a simple realization consisting of only
24 MOS transistors. Simulation results using PSpice and 0.18 µm CMOS parameters are provided.
The value of ω0 can be varied from 1.2 MHz to 1.7 MHz, while Icon varies from 0 to 50 µA, with a
power consumption variation from 244 µW to 515 µW.

Keywords: band-pass filter; CCII; current mode signal processing; electronically tunable; low-pass
filter VCII; second-order filter; voltage conveyor

1. Introduction

Filter design represents a widespread and important topic, due to the interesting
application in communication, measurement, instrumentation, control, and signal process-
ing [1–3]. In recent years, current mode signal processing has been the focus of researchers
in the design of various types of active filters. This is attributed to the numerous advan-
tages offered by current mode signal processing, such as simple realization, high-frequency
performance, low-voltage operation, etc. [4–9]. Importantly, current mode signal processing
provides the opportunity of realizing electronically tunable filters, which are highly suitable
for the requirements of full integration. These features have enabled various innovative
current mode solutions in the realization of active filters [1–3,10–19].

A survey of the literature shows that considerable effort has been devoted to realizing
filter topologies based on various current mode active building blocks (ABBs), such as
current buffers (CBs) [1,3], second-generation current conveyors (CCIIs) [8–11], current dif-
ferential transconductance amplifiers (CDTAs) [13], differential voltage current conveyors
(DVCCs) [15,17], current differencing transconductance amplifiers (CCCTAs) [12,18], cur-
rent feedback operational amplifiers (CFOAs) [19], current differencing buffered amplifiers
(CDBAs) [20,21], fully differential CCIIs (FDCCIIs) [22], etc. However, the current mode
active filters reported in [1,3–19,22] suffered from a common weakness of applications
requiring voltage signals. In these circuits, the output signal was either in current form,
making them unsuitable for applications requiring voltage signals, or in voltage form
provided on a high impedance port, necessitating additional voltage buffers for practical
use. In addition, the circuits reported in [1,3,10,11,15,17–22] were not electronically tunable.
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Moreover, the CB-based circuit reported in [3], which was able to realize all-pass and notch
functions, required additional current followers (CFs) at the outputs for practical applica-
tion. In the CCII-based circuit presented in [11], up to five active building blocks were used.
The CCCTA- and CDTA-based filters presented in [12,13,18] were implemented using BJT
technology. The filter reported in [16] suffered from circuit complications, because the
FDCCII used as the active building block was realized using 60 MOS transistors, and thus
required a high supply voltage of±1.65 V. The topology of [17] employed three dual-output
DVCC blocks with a total number of 84 transistors. The CFOA-based filter presented in [19]
required extra current buffers at the outputs for practical use.

Recently, researchers’ focus has been concentrated on the dual circuit of the CCII,
referred to as a second-generation voltage conveyor (VCII) [22–27]. Owing to the low-
impedance voltage output port, VCII is highly suitable for applications requiring output
signal in voltage form. A new research area has opened up related to the design and
possible applications of the VCII. VCII-based voltage output second-order high-pass (HP),
low-pass (LP), band-stop (BS), band-pass (BP) and all-pass (AP) filters have been reported
recently [28,29]. However, these structures include more than one ABB. They also lack
electronic tuning capability. In this paper, we aim to present second-order LP and BP
filters using only one VCII with electronic tunability. The ω0 of the proposed filters can be
tuned using a control current. The organization of this paper is as follows: in Section 2, the
proposed circuit is presented. A non-ideal analysis is given in Section 3. Section 4 includes
the simulation results, and finally, Section 5 presents the conclusions.

2. The Proposed Circuit

A symbolic representation and internal structure of an electronically tunable VCII is
shown in Figure 1 [23]. An E-VCII consists principally of a current buffer between the Y
and X ports, and a voltage buffer between the X and Z ports. In the electronically tunable
VCII, the input resistance of the CB is shown by rY, which is electronically tunable. Matrix
Equation (1) shows the operation of the VCII with electronically tunable impedance at Y: IX

VZ
VY

 =

 ±1 0 0
0 1 0
rY 0 0

 IY
VX
IZ

 (1)

In Equation (1), + and − indicate a VCII+ and a VCII−, respectively. There is a current
buffer between the Y and X ports with a current gain of unity, while there is a voltage
buffer between the X and Z ports with a voltage gain of unity. The resistance at the Y port
is shown by rY, which is electronically tunable. We take advantage of the electronically
tunable rY instead of adding an external passive resistor.
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Figure 1. VCII with electronic tunable impedance at the Y port: (a) symbolic representation; (b) inter-
nal structure.

Figure 2 shows the schematic of the proposed VCII−-based BP/LP filter. It is composed
of one VCII−, one external resistor, and two grounded capacitors. The internal resistance at
Y is shown as rY, and is exploited to electronically vary the natural frequency of the filter.
BP/LP outputs as voltage signals are produced at the Z port.
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As can be seen in Figure 3, for Iin = 0, there will be a second-order BP transfer function.
The analysis of the proposed BP circuit under ideal conditions is as follows:
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By assuming Y port at ground, for IY we have:

IY =
sC1

1 + sC1rY
Vin (2)

Using Equation (1):
IX = IY (3)

Using Equations (2) and (3), VX is found as:

VX =
sC1R2

(1 + sC1rY)(1 + sC2R2)
Vin (4)
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Using Equations (1) and (4), VBP is:

VBP =
sC1R2

(1 + sC1rY)(1 + sC2R2)
Vin (5)

From Equation (5),ω0 and Q are found, respectively, as:

ω0 =
1√

C1rYC2R2
(6)

Q =

√
C1rYC2R2

C1rY + C2R2
(7)

As can be seen from (6), the value ofω0 can be electronically tuned by varying rY.
If Vin = 0 and the input signal is applied as Iin, a second-order LP transfer function

is achieved, as shown in Figure 4. A similar analysis gives the second-order LP transfer
function as:

VLP =
R2

(1 + sC1rY)(1 + sC2R2)
Iin (8)
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3. Non-Ideal Analysis

The operation of a VCII− in non-ideal conditions is given by Equation (9). Here, β and
α are current gain between the Y and X terminals and voltage gain between the X and Z
terminals, respectively. The main parasitic impedances associated with the VCII− ports are
shown by rx (the parasitic resistance related to X port), Cx (parasitic capacitance related
to X port) and rY (parasitic resistance related to Y port). The ideal values of rx and Cx are
infinity and zero, respectively. IX

VZ
VY

 =

 −β 1
rx
+ sCx 0

0 α 0
rY 0 0

 IY
VX
IZ

 (9)

Figure 5 shows the proposed second-order BP filter in which all parasitic elements are
modeled. Using Equation (9), the transfer function of Figure 5 is found as:

VBP =
sαβC1Req

[1 + sC1rY)] [1 + s(C2 + CX)Req
]Vin (10)

where:
Req = rX||R2 (11)
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From Equation (9),ω0 and Q are found, respectively, as:

ω0 =
1√

C1rY(C2 + CX)Req

(12)

Q =

√
C1rY(C2 + CX)Req

C1rY + (C2 + CX)Req
(13)

Similar analysis for the proposed second-order LP filter gives:

VLP =
αβReq

(1 + sC1rY)
(
1 + s(C2 + CX)Req

) Iin (14)

4. CMOS Implementation of VCII− with Electronically Tunable Impedance at the
Y Port

Figure 6 shows the CMOS implementation of VCII− with electronically tunable
impedance at the Y port. It consists of 24 MOS transistors. Inversion of the current buffer
comprising transistors M1–M6 is performed to transfer the Y port input current to the X
port. The control current Icon is used to change the bias current of common gate transistor
M2; therefore, electronically variable impedance at the Y port is provided. To maintain a
constant bias current at the other branches, Icon is also applied to node 2; therefore, only
the bias current of M2 is varied. In addition, to maintain a zero offset voltage at the Y port,
bias currents of M1 and M2 must be kept equal, so Icon is also applied to node 1.
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The voltage buffer consists of transistors M7–M11, which are a differential pair cas-
caded by a voltage follower. They are connected in a closed loop configuration so as to
decrease Z port impedance and improve the overall accuracy of the buffering action of
transferring the X node voltage to the Z node. Transistors MBi for i = 1–12 provide the bias
and control currents. The electronically variable impedance at the Y port is given by (with
the usual meanings of the symbols):

rY =
1

gmM2
=

[√
µCox

WM2

LM2
(IB1 + Icon)

]−1

(15)

5. Proposed LP/BP Second-Order Filter Simulation Results

PSpice simulations of the VCII− using 0.18 µm CMOS TSMC technology and a supply
voltage of ±0.9 V are presented in Figure 6. The transistor sizes for the used PMOS and
NMOS transistors were W = 9 µm, L = 0.9 µm and W = 27 µm, L = 0.9 µm, respectively. The
values of bias currents were IB = IB1 = IB2 = IB3 = 20 µA. The control current Icon was varied
from 0 µA to 50 µA. All bias currents were realized by simple current mirrors so as to ensure
the best possible voltage swing at each terminal. To validate the proposed tuning technique,
a comparison between the theoretical behavior of rY according to (15), and the values of
the same magnitude extracted from the simulations is presented in Figure 7. In particular,
µ = µelectrons = 0.13 m2/Vs, Cox = 9.51 × 10−4 F/m2 are constant values dependent on
the technology. As can be seen, the trend between the theoretical and simulated curves
matches, while the percentage error always remains below 10%. This error mirrors the
inaccuracies of MB1, MB2 and MB5–MB10, which generate IB1 and Icon, directly impacting
the simulated value of rY.
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The large signal behavior of the used VCII was evaluated by extracting the slew rate
(SR) figures both for the current output, X, and for the voltage output, Z. For the former,
a ±20 µA step was used, which corresponds to the full ±IB range, while for the latter,
a ±500 mV step was applied to the X terminal, with a 3 pF capacitive load at Z. The
current slew rates were: SR+

I = 13 × 103 A/s and SR−I = −0.64 × 103 A/s, and the voltage
slew rates were: SR+

V = 1.4 × 108 V/s and SR−V = −6.64 × 106 V/s. As expected, the
class A biasing of the input and output stages determines the difference between positive
and negative values, with the latter remaining lower due to the sinking capability of the
architecture being limited by the biasing current.

Table 1 shows the simulation results for the performance parameters and parasitic
elements of the used VCII−.
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Table 1. The simulated characteristics of VCII− with electronically variable impedance at the Y port.

Parameter Value

rY

Icon = 0 µA 3.43 kΩ
Icon = 25 µA 2.18 kΩ
Icon = 50 µA 1.8 kΩ

rX 244 kΩ
rz 48 Ω
α 0.981

β

Icon = 0 µA 1.04
Icon = 25 µA 1.03
Icon = 50 µA 1.023

Cx 64 fF
Power dissipation 244–515 µW

SRI (positive, negative) 13 × 103 A/s, −0.64 × 103 A/s
SRV (positive, negative) 1.4 × 108 V/s, −6.64 × 106 V/s

The proposed filter presented in Figure 2 was simulated using the VCII− presented in
Figure 6. The values of the passive components were C1 = 100 pF, C2 = 10 pF and R2 = 5 kΩ.
Figure 8 shows the AC frequency performance of the LP and BP outputs for different values
of Icon. On the basis of the simulation results, ω0 was 1.2 MHz, 1.59 MHz and 1.7 MHz
for Icon values of 0 µA, 25 µA and 50 µA, respectively. On the basis of Equation (12), the
values ofω0 were 1.22 MHz, 1.54 MHz and 1.69 MHz, respectively. Fortunately, there is
good agreement between the simulation and the calculation.
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The robustness of the proposed solutions was tested by running 30 Monte Carlo (MC)
simulations at each of the fast, typical, and slow corners. PVT combinations were as follows:
SS, ±0.85 V, 80 ◦C; TT, ±0.9 V, 25 ◦C; FF, ±0.95 V, −20 ◦C, whereas for the MC analysis, we
considered 3% mismatches in Vth and Cox of all transistors alongside a 5% variation in the
value of the passive elements. The results are summarized in Table 2. As can be seen, the
proposed circuit is robust against mismatches.

Finally, Figures 10 and 11 show a time domain example of both the low-pass and
band-pass filters. For the LP filter, an input current of 5 µA was used with frequencies of
100 kHz and 3 MHz. Icon was set to 50 µA. Similarly, for the BP, an input voltage of 10 mV
was applied at three different frequencies, of 1.6 MHz, 1 MHz and 3 MHz. Icon was set
equal to 50 µA.

Table 2. PVT and Monte Carlo simulation results for the magnitude of the filters and theirω0.

Value Max Min Mean

Icon = 0 µA
MagnitudeBP 2.78 dB 1.67 dB 2.16 dB
MagnitudeLP 74.16 dBΩ 73.96 dBΩ 74.05 dBΩ

ω0 1.25 MHz 1.13 MHz 1.19 MHz

Icon = 25 µA
MagnitudeBP 5.91 dB 4.66 dB 5.23 dB

MagnitudeLP 74.05 dBΩ 73.84 dBΩ 73.94 dBΩ
ω0 1.55 MHz 1.40 MHz 1.48 MHz

Icon = 50 µA
MagnitudeBP 7.11 dB 5.70 dB 6.36 dB

MagnitudeLP 73.94 dBΩ 73.73 dBΩ 73.83 dBΩ
ω0 1.70 MHz 1.52 MHz 1.61 MHz

The linearity performance of the proposed circuit was checked for different values of
Icon at ω0. The peak-to-peak values of Vin and Iin were 100 mV and 40 µA, respectively.
The resulting THD is reported in Figure 9. As can be seen, the maximum value of THD
remained below 4% and 8% for the LP and BP outputs, respectively.
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Table 3 shows a comparison between the proposed circuit and others reported in the
literature. As can be seen, the structures proposed in [1,3,13–17] provide output signal in
current form, and therefore they are not suitable for applications requiring output signal
in voltage form. In addition, the circuit of [3] requires an additional current buffer for
practical use. The circuit reported in [10] produces output signal in voltage form; however,
it needs extra voltage buffer at the output. Similarly, additional voltage buffer is necessary
for the circuits presented in [17,19]. The circuits in [20,21] are not electronically tunable,
and they suffer from a high supply voltage requirement. The VCII-based topology of [29]
provides BP and LP outputs at the low-impedance Z port of VCII. Unfortunately, it is
not electronically tunable. In contrast to other works, the proposed VCII-based circuit is
electronically tunable, and does not require additional voltage buffers at the output node.
More importantly, by taking advantage of the internal impedance at the Y port, the number
of passive components is reduced.
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Table 3. Comparison between the proposed circuit and other reported works.

Ref ABB
#of Electronic

Tunability Outputs VDD-VSS
Power

Dissipation
Extra

VB/CB
ABB R C

[1] CF 1 2 2 No ILP, IHP, IBP NA NA No
[3] CF 1 4 2 No IAP, Inotch NA NA Yes

[10] CCII 1 2 2 No VBP, VHP, VLP ±0.75 V NA Yes
[13] CDTA 2 0 2 yes IBP, ILP, IHP ±2.5 V 870 µW No

[15] VDCC 1 1 2 No ILP, IBP, IHP,
IBS, IAP

±0.9 V NA No

[16] FDCCII 1 2 2 No ILP, IBP, IHP,
IBS, IAP

±1.65 V 2.28 mW No

[17] DVCC 3 3 2 No VLP, VBP, VHP,
VBR, VAP

±0.9 V NA Yes

[18] CCCTA 3 0 2 yes IHP, ILP, IBP ±1.85 V NA No
[19] CFOA 1 3 2 No VBP, VLP NA NA Yes
[20] CDBA 3 5 2 No VHP, VBP, VLP ±1.25 V NA No
[21] CDBA 3 3 2 No VHP, VBP, VLP ±5 V NA No
[29] VCII 1 2 2 No VBP, VLP ±1.65 V 700 µW No

Proposed VCII 1 1 2 yes VBP, VLP ±0.9 V 244–515 µW No

6. Conclusions

In this paper, a new realization of an electronically tunable second-order LP/BP
filter using VCII− with the property of electronically tunable impedance at the Y port is
presented. The proposed circuit consists of one VCII−, two capacitors, and one resistor.
The output signal is in voltage form provided at the low-impedance Z port of the VCII,
which makes it unnecessary to use extra voltage buffer in practical applications. Theω0
of the proposed transfer functions can be tuned using a control current (Icon), by means
of which the impedance at the Y port of VCII can be varied. Therefore, the number of
passive resistors used is also reduced, resulting in a simpler circuit and a reduced chip
area. A non-ideal analysis is provided. Spice simulation results are reported to show the
functionality of the proposed structure.
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