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Abstract: In data-driven bearing fault diagnosis, sufficient fault data are fundamental for algorithm
training and validation. However, only very few fault measurements can be provided in most
industrial applications, bringing the dynamics model to produce bearing response under defects.
This paper built a Modelica model for the whole bearing test rig, including the test bearing, driving
motor and hydraulic loading system. First, a five degree-of-freedom (5-DoF) model was proposed
for the test bearing to identify the normal bearing dynamics. Next, a fault model was applied to
characterize the defect position, defect size, defect shape and multiple defects. The virtual bearing
test bench was first developed with OpenModelica and then called in Python with OMPython. For
validation of the positive effect of the dynamics model in the direct transfer learning for bearing fault
diagnosis, the simulation data from the Modelica model and experimental data from the Case Western
Reserve University were fed separately or jointly to train a Convolution Neural Network (CNN).
Then the well-trained CNN was transferred directly to achieve the fault diagnosis under the test
set consisting of experiment data. Additionally, 157 features were extracted from both time-domain
and frequency-domain and fed into CNN as input, and then four different validation cases were
designed. The results confirmed the positive effect of simulation data in the CNN transfer learning,
especially when the simulation data were added as auxiliary to experimental data, and improved
CNN classification accuracy. Furthermore, it indicated that the simulation data from the bearing
dynamics model could play a part in the actual experimental measurement when the collected data
were insufficient.

Keywords: bearing; transfer learning; dynamics model; fault diagnosis; modelica; Convolutional
Neural Network (CNN)

1. Introduction

Bearing fault diagnosis and prognosis can effectively prevent rotating machines from
most failures and therefore have much significance. In recent years, data-driven methods
have gained increasing attention in this field, and many good results have been achieved.
Among the different kinds of data-driven methods, Convolution Neural Network (CNN) is
the most commonly used due to its powerful ability in deep feature extraction and complex
nonlinear mapping. CNN was first introduced to realize bearing fault diagnosis by O.
Janssens in 2016 [1]. Thereafter, many improvements and variants have been proposed
to strengthen the CNN’s performance, such as 1D-CNN, 2D-CNN, multiscale CNN and
adaptive CNN [2–5]. Though satisfying results have been obtained in the extensive re-
search mentioned above, the premise to guarantee such results for data-driven methods is
sufficient data for algorithm training. However, in practice, limited rather than massive
data are typical, which has become a significant barrier of data-driven PHM (Prognostics
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and Health Management) being applied in industrial settings. Data augmentation and
generation have been adopted to address this problem. Oversampling was first proposed
for data generation, and the main idea is to generate more samples by direct replication for
such labels that had very few ones [6,7]. Although this method is simple and efficient to
implement, causes overfitting easily since no new information is incorporated. As another
perspective method for data generation, Generative Adversarial Network (GAN) has al-
ready been used for new sample generation in fault diagnosis, generating new samples
similar to the actual measurement with random noise input. Both W. Zhang and S. Shao
employed GAN to create more vibration data and to expand the available imbalanced
dataset, with results confirming that the diagnosis accuracy could be improved once the
imbalanced data was augmented by GAN [8,9].

This previous research has proven effective in sample generation for small or imbal-
anced datasets. Still, most of these methods are data-driven and generate new samples
merely based on the given existing measurements or random noise, ignoring the physics
mechanism behind data. This brings bearing dynamics model as an alternative to produce
bearing response under given normal and defect conditions. To date, the methods for
bearing dynamics and vibration response simulation can be classified into two categories,
namely, mechanism-based models and signal-based models. Cui et al. proposed a 5-DoF
model to describe bearing’s dynamic behavior [10]. Moreover, a defect model was built
to address defect position, defect shape and defect size [11]. In terms of bearing response
simulation based on signal analysis, the first model was proposed by McFadden in 1983 to
identify the amplitude spectrum of bearing with a single defect on the inner race [12]. In
2000, slight random variations were incorporated into the impulse responses to resemble
actual vibration signals generated by bearing faults [13]. After that, Cong et al. put forward
a new fault signal model for bearing with the combination of decaying oscillation fault
signal model and rotor dynamic response influence [14]. In a real test bench, dynamics
from driving and loading systems also affect the test bearing response. Nevertheless, to our
exhausted knowledge, nearly all published papers on bearing fault modeling only focus on
the bearing without considering the dynamics from driving motor and loading actuator,
also very limited work has been reported on bearing modeling in Modelica, which defines
the goal to build a whole bearing test bench in this study [15]. In this paper, a virtual
bearing test bench is developed in OpenModelica, including test bearing, connecting shaft,
hydraulic loading and force controller, driving motor and speed controller. The test bearing
dynamics model elaborates under normal conditions and various defect scenarios. After
validation, the virtual test bench is used to generate simulation samples. Afterward, the
generated samples are fed into CNN for network training. Finally, the well-trained CNN is
transferred directly to achieve fault diagnosis on pure experiment data collected from the
Case Western Reserve University bearing test rig.

The main innovation of this paper includes: (1) A general platform for bearing dy-
namics simulation and CNN-based fault diagnosis is developed based on OpenModelica
and Python. The calling method and interface are presented, giving a new and efficient
solution for studying the data-driven fault diagnosis with open source languages. (2) The
simulation data from the dynamics model was used for CNN training. In addition, the
positive effect on the CNN’s transfer learning performance from the generated simulation
data was studied and analyzed with four designed validation cases.

This paper’s remaining part is structured as follows: Section 2 introduces the modeling
theory of bearing dynamics with defects. Section 3 details the implementation process of
the bearing dynamics model in OpenModelica and the calling interface in Python with
OMPython. After that, the feature extraction and fault diagnosis based on CNN are
presented in Section 4. Section 5 describes the direct transfer learning of CNN from the
simulation model to the test bench when involved in bearing fault diagnosis and analyzes
the positive effect from simulation data. Finally, Section 6 concludes the whole paper.
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2. Dynamics Modeling of Bearing with Defects

The ball bearing comprises the outer ring, inner ring, cage and rolling elements. A
standard bearing achieves dynamic balance in a stable operating condition, while a series
of impulses will be generated once there is a defect between the contact surfaces. A 5-DoF
dynamics model and a defect model will be introduced in the following.

2.1. The Nonlinear 5-DoF Model

This model describes the nonlinear dynamic behavior of bearing, as shown in Figure 1.
In the 5-DoF model, 4 DoF represents the horizontal and vertical directions of inner and
outer rings, and 1 DoF stands for the vertical direction of the resonator, which is modeled
as the spring-mass system [10].

Figure 1. The 5-DoF model of bearing [10].

Based on Newton’s second law, the bearing dynamic equilibrium equations can be
formulated as Equation (1) [10].

ms ẍs + Rs ẋs + Ksxs + fx = 0 ,

msÿs + Rsẏs + Ksys + fy = Fy −msg ,

mp ẍp + Rp ẋp + Kpxp − fx = 0 ,

mpÿp + (Rp + RR)ẏp + (Kp + Kr)yp − RRẏb ,

− KRyb − fy = −mpg ,

mRÿb + RR(ẏb − ẏp) + KR(yb − yp) = −mRg .

(1)

fx and fy are contact force at x and y axis, respectively, Fy is external load. The meanings
and values of other variables can be found in [15]. According to Hertzian contact theory,
the contact force between rolling element and raceways can be given by:

f j = Kbδ1.5
j , (2)

with j from 1 to nb, nb which represents the number of rolling elements. Kb stands for the
ball’s stiffness, δ denotes deformation. The deformation of the jth ball, δj, is determined by
the displacement between the inner and outer races, the angular position θj and the total
clearance c caused by the oil film and assembly clearance, as:

δrawj =
(
xs − xp

)
cos θj +

(
ys − yp

)
sin θj − c . (3)

The angular position of the jth ball can be calculated by Equation (4).

θrawj =
2π(j− 1)

nb
+ ωct + φ0 , (4)
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where φ0 is initial cage angular position and ωc is cage angular frequency, which can be
further obtained from shaft frequency ωs like Equation (5).

ωc =

(
1− Db

Dp

)
ωs

2
, (5)

where Db and Dp are the ball diameter and pitch diameter, respectively.
Usually, there is inevitable sliding for bearings in real applications when a ball rolls

on the raceways. The sliding direction depends on where the ball is located; when the
ball enters the load zone, the angular speed of the ball center is faster than that of the
cage; otherwise, the ball would slide backward. Consequently, with sliding considered, the
angular position of each ball can be modified by Equation (6) [10].

θj = θrawj + ξ j

(
1
2

rand
)

φslip . (6)

There are two constants and a sign function in Equation (6). φslip is a parameter
defining the mutation percentage of average contact frequency, which is normally between
0.01 and 0.02 rad. rand is a random number with uniform distribution with the range of
[0, 1], and the sign function ξ j is expressed as:

ξ j =

{
1, load zone

− 1, else
(7)

Considering δj should be nonnegative in physics, its final value is determined by:

δj = Max(δrawj , 0) . (8)

With the contact force of each ball obtained from Equation (2), the total contact forces
in x and y direction are determined with Equations (9) and (10).

fx =
nb

∑
j=1

f j cos θj , (9)

fy =
nb

∑
j=1

f j sin θj . (10)

2.2. Bearing Defect Model

When bearing has defects either on races or balls, an additional deformation, δ f au,
will be released when the ball moves over the defect zone. Thus, with defect considered,
deformation of the jth ball can be further identified as:

δrawj =
(

xs − xp
)

cos θj +
(
ys − yp

)
sin θj − c− δ f auj

. (11)

Once bearing deformation under defect is obtained, it can be substituted into
Equations (9) and (10). The nonlinear contact force can be calculated and further sub-
stituted into Equation (1) for the fault-bearing response. δ f au changes with defect position,
defect shape and the number of defects. Due to space limitation, only the modeling of
defect position will be presented in this paper, the modeling of defect size, defect shape,
and multiple defects can be found in the original conference paper [15].

Before defect modeling, four basic geometrical parameters are chosen to feature the
defect, as demonstrated in Figure 2, the defect width B, the defect depth Hd, the defect
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initial angle φd and the defect span angle ∆φd. Take a defect on the outer ring as an example,
the relation between ∆φd and B is expressed as:

sin
(

1
2

∆φd

)
=

B
Db + Dp

. (12)

Figure 2. Size definition of defect on the outer ring [15].

Suppose the local defect depth is cd, the additional deformation δ f au generates only
when a ball falls into the defect zone within φd and φd + ∆φd, then the deformation released
by defect on raceway is given by:

δ f auj
=

{
cd, φd ≤ θj ≤ φd + ∆φd

0, else
(13)

The defect location on the outer ring or inner ring changes with different rules. For
the outer ring, the defect is fixed at the defect initial angle φdo. However, for the inner ring,
the defect location changes with time when the inner ring rotates. Thus, φd in Equation (13)
can be further modeled as follows.

φd =

{
φdo, defect on the outer ring

ωst + φdi, defect on the inner ring
(14)

Different from rings, when a defect happens on a rolling element, the defect spins with
ball speed ωb and its position φs can be obtained like:

φs = ωbt + φsini , (15)

hereby the ball speed ωb can be calculated from shaft speed as follows,

ωb =
ωs

2
Dp

Db

[
1−

(
Db
Dp

cos α

)2
]

. (16)

The defect on balls contacts the inner and outer ring periodically. Besides, the curvature
radii of inner and outer rings are different. Therefore, the same defect span angle ∆φd
produces different angular widths. The angular widths of defect on the outer ring and
inner ring, ∆φbo and ∆φbi, can be calculated by Equations (17) and (18).

∆φbo = ∆φd
Db
Do

, (17)

∆φbi = ∆φd
Db
Di

, (18)

with Do and Di as the diameters of outer ring and inner ring, respectively.
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Obviously, the curvature radius determines the depth when ball enters into the race-
way, and the curvature radii of ball cdr, inner ring cdi and outer ring cdo can be obtained,
respectively, by Equations (19)–(21) [16].

cdr =
1

2
(

Db −
√

D2
b − B2

) , (19)

cdi =
1

2
(

Di −
√

D2
i − B2

) (20)

cdo =
1

2
(

Do −
√

D2
o − B2

) , (21)

During one revolution of the ball, defect contacts the inner ring and outer ring in
succession, with an angular distance of π. So, cd can be given by Equation (22) [16].

cd =

{
cdr − cdo, 0 ≤ ϕs ≤ ∆φbo

cdr + cdi, π ≤ ϕs ≤ π + ∆φbi
(22)

Deformation released by fault only appears on the fault ball (kth ball). As a result, the
contact deformation with ball defect is given by:

δj =

{
0, j 6= k

cd, j = k
(23)

Besides the test bearing, the virtual bearing test bench also consists of a driving module
and a loading module. The loading module guarantees that test bearing works under
defined external load, and the driving module is responsible for speed profile definition. In
this research, the driving module is modeled by a DC motor and a shaft, while the loading
module is modeled by an electro-hydraulic servo system. More details about the modeling
of these two modules are introduced in [15].

3. Model Implementation in Modelica and Model Calling in Python

To build a general and efficient platform for bearing dynamics simulation and data-
driven fault diagnosis, two open-source languages, OpenModelica and Python, are selected
in this paper. The former is an object-oriented non-causal multi-domain modeling language,
and the latter is a popular open language for data analysis, especially for machine learning
and deep learning. In this section, the model structure, virtual bearing test bench, and
implementation process in Modelica will be introduced. The interface between Modelica
and Python will also be explained shortly.

3.1. Overview of the Virtual Bearing Test Bench in Modelica

First, based on the mathematical models derived above, a model library is created
for the virtual bearing test bench in OpenModelica-v1.16.0. As shown in Figure 3a, three
main modules like TestBearings, DrivingSystem and LoadingSystem, are packaged and
can be used as plug-in components. Each component contains many modules and is also
sub-packaged with corresponding names. For example, the TestBearings package provides
three instance models: Healthy, RaceDefect and BallDefect, and a Components sub-package
containing a DoF model and another sub-package named DefectModel. These models
can be constructed into any configuration as required. All components, sub-packages,
and models can be used separately or in combination to meet user demand. In Figure 3b,
the detailed layout of the whole virtual bearing test bench is presented, which consists of
modules from the library in Figure 3a, like the driving module, load module and test bearing
module. Specifically, the driving module includes a motor, a shaft and a PID controller,



Electronics 2022, 11, 622 7 of 18

which provides a stable shaft speed for the test bearing. The loading module comprises an
electro-hydraulic servo system and a PID controller, which outputs a steady radial load for
the test bearing. The shaft speed (‘omega’) and radial load (‘load’) are regulated by two
corresponding PID controllers. As to the test bearing module, as illustrated in Figure 3c, it
has two inputs, like shaft speed and external load, and one output, acceleration (accx).

(a) (b) (c)

motor shaft test 
bearing

E-hydraulic

speed PID 
controller

load PID 
controller

target speed target load

Figure 3. Bearing test bench in Modelica: (a) Component and module library; (b) Layout of virtual
bearing test bench; (c) Interface of test bearing [15].

3.2. Procedure of Simulation with Virtual Bearing Test Bench in Modelica

Figure 4 illustrates the procedure of simulation with the virtual bearing test bench
in Modelica. Firstly, users need to choose one working sub-module from the healthy,
raceway defect and ball defect bearing sub-modules for the test bearing and configure the
simulation setups such as simulation time, interval and output format. Subsequently, all
virtual bearing test bench parameters should be configured, including geometrical and
material parameters, defect properties and operating parameters. The last step is to run the
simulation and obtain the results.

Figure 4. Simulation flowchart with virtual bearing test bench in Modelica [15].

3.3. Calling Modelica Model in Python with OMPython

As mentioned above, the virtual bearing test bench was developed in Modelica.
However, Modelica has relatively limited support for advanced signal analysis and data-
driven intelligent algorithm development [17]. On the contrary, due to being empowered
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by numerous third-party modules and extensive support libraries, especially on machine
learning and deep learning, Python is very suitable for developing the data-driven fault
diagnosis algorithm. Therefore, to explore a possible framework to combine these two
open-source languages, a GUI has been developed in Python to run the Modelica model
of the ‘virtual bearing test bench’ in this study. This procedure is realized with Python
3.7.9, OMPython and PyQt5, where OMPython is a Python interface to communicate with
OpenModelica via CORBA or ZeroMQ. In this paper, ZeroMQ is used. Furthermore, to
operate the OpenModelica model in Python through OMPython, the user can firstly import
Python class ‘ModelicaSystem’ from the ‘OMPython’ package. Then the OpenModelica
model can be loaded and built as an object in Python. Additionally, users can operate the
model in Python via class ‘ModelicaSystem’ and other standard get methods, traditional
set methods, simulation methods. Finally, the simulation results can also be acquired and
processed as demand.

3.4. Bearing Dynamics Model Validation

Based on the developed GUI and Modelica model, users can simulate the bearing
dynamics response under any reasonably defined bearing specification, working condition
and defect scenario. Based on our experience, when the simulation duration and stepsize
are set as 10 s and 0.001, respectively, the simulation can be finished within 2 min. Figure 5
shows the simulation results of standard bearing and defect bearing, including the inner
face fault, outer race fault and ball fault. The acceleration envelope shape under different
fault positions agrees well with the previously published results [18]. The time interval
between the adjacent fault peaks is consistent with the theoretical fault characteristic
frequency, which confirms the effectiveness of the virtual bearing test bench in bearing
dynamics simulation. More detailed validation and analysis of the virtual bearing test
bench can be found in [15].
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Figure 5. Simulation results with Modelica model. (a) Normal bearing, (b) Inner race fault, (c) Outer
race fault, (d) Ball fault.
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4. Bearing Fault Diagnosis Based on CNN
4.1. Cnn Structure and Hyperparameters

LeNet-5 is one of the most frequently used CNN structures. It consists of two sets of
convolutional and pooling layers, one flattening layer, two fully-connected layers and one
softmax classifier. In this research, it is slightly modified for bearing fault classification. The
modified structure is sketched in Figure 6.

Figure 6. Structure of LetNet-5 [19].

The hyperparameters of CNN are determined by Particle Swarm Optimization (PSO).
The optimized hyperparameters are summarized in Table 1 [19].

Table 1. Hyperparameters of CNN.

Hyperparameter Value

Drop rate 0.55
Learning rate 0.0006

Kernel size of the 1st layer 5 × 5
Kernel size of the 2nd layer 3 × 3

Number of filters in the 1st layer 128
Number of filters in the 2nd layer 256

Batch size 110
Density layer(flatten) 512

4.2. Feature Extraction from Time and Frequency Domains

Although CNN has a strong ability to extract deep features from data, many re-
searchers still prefer to process the input before it is fed into CNN. When a bearing starts to
degrade, the time-domain acceleration response will gradually present non-stationary and
non-Gaussian dynamics. Therefore, 13 indexes in total are selected from the time-domain
in this work and are presented in Table 2, with kurtosis and skewness characterizing
non-Gaussian dynamics, impulse factor, crest factor, standard deviation and shape factor
identifying non-stationary characteristics. Similarly, when a defect occurs on the bearing,
in the frequency domain, peaks will appear at the corresponding component’s fault charac-
teristic frequencies (FCFs). For example, a bearing with an outer ring fault will produce
peaks at the ball pass frequency of the outer race (BPFO) and its harmonics at the frequency
spectrum. The same is true for the inner race fault and ball fault, corresponding to the
ball pass frequency of the inner race (BPFI) and the ball spin frequency (BSF), respectively.
These FCFs contain much information of bearing health condition and therefore are taken
to extract the frequency-domain features. Additionally, the fault characteristic frequencies
can be affected by many factors, like the shaft speed fluctuation, variant contact angles,
external load and sliding movement from rolling elements. Therefore, bias often exists
between theoretical and actual BPFs (BPFO, BPFI, BSF). Moreover, some harmonics of
BPFs influenced by modulation of other vibrations may not be detected [20]. Thus, to
ensure to include the FCFs into frequency-domain features, eight amplitude values around
the theoretical FCFs are selected for each order, and FCFs from the 1st to 6th orders are
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considered. This brings 48 amplitude values for each FCFs (eight values for each order
from the first to sixth). This paper considers 3 FCFs, namely BPFI, BPFO and BSF. Hence,
144 frequency-domain features are extracted in total and summarized in Table 3 [19].

Table 2. Features from time-domain.

Number Feature

1 Mean
2 Standard deviation
3 Skewness
4 Kurtosis
5 Max
6 Min
7 Range
8 Median
9 Variance
10 Root mean square
11 Impulse factor
12 Crest factor
13 Shape factor

Table 3. Features from frequency-domain.

Number Feature Number Feature

14–21 1st BPFI 110–117 5th BPFOI
22–29 1st BPFO 118–125 5th BPFO
30–37 1st BSF 126–133 5th BSF
38–45 2nd BPFI 134–141 6th BPFI
46–53 2nd BPFO 142–149 6th BPFO
54–61 2nd BSF 150–157 6th BSF
62–69 3rd BPFI
70–77 3rd BPFO
78–85 3rd BSF
86–93 4th BPFI

94–101 4th BPFO
102–109 4th BSF

4.3. Experimental Set up and Data Preprocessing

The bearing test data used in this paper come from Case Western Reserve University
Bearing Data Center. The test stand shown in Figure 7 comprises a two-hp motor, a torque
transducer/encoder, a dynamometer, control electronics and test bearings that support
the motor shaft. Accelerometers attached to the housing with magnetic bases are used to
collect vibration data. Driving end fault data with a sampling frequency of 12 kHz are
used in this paper. There are three failure types (ball fault, inner race fault and outer race
fault). Aside from standard bearing, each failure type has three different fault diameters
(0.007 inches, 0.014 inches and 0.021 inches). In this study, the data from 0.014 to 0.021 inches
are addressed separately. Under each defect size, the sample size of the training/test set
and labeling method is the same, as shown in Table 4.
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Table 4. Sample size and labels for training set and test set.

Fault Type Fault Diameter
(unit: inches)

Sample Size of
Training Set

Sample Size of
Test Set

Labels

Ball failure 0.021 197 197 1
Inner race failure 0.021 197 197 2
Outer race failure 0.021 197 197 3
Health 0.021 409 409 0

Sum / 1000 1000 /
The sample size of the training set and test set from simulation data and experiment data, under both 0.014 inches
and 0.021 inches, are the same as shown in this table.

Figure 7. Experimental setup.

5. Direct Transfer Learning from Simulation Model to Bearing Test Bench
5.1. Procedure Overview of Direct Transfer Learning

As analyzed in the introduction section, sufficient training data are the precondition
for data-driven fault diagnosis. Moreover, the training and test sets should belong to the
same domain. Otherwise, the accuracy cannot be guaranteed even when the network is
trained with enough data from the domain different from the target one. Transfer learning
is proposed to solve the network performance reduction when involved across domains.
Lei et al. summarized the reported transfer learning methods into four categories [21], like
feature-based [22,23], GAN-based [24,25], instance-based [26], and parameter-based [27].
In these published researches, the domain-invariant feature extraction and space alignment
should be addressed, either by maximum mean discrepancy constraints or network training
or parameter fine-tuning, which is complex and not feasible in industry applications.
Essentially, there are two main steps in CNN-based fault diagnosis: feature extraction and
feature-label mapping identification. Though the simulation and experiment data come
from two different domains, the inevitable differences may arise between them due to the
modeling error and some unavailable geometry parameters or parameter identification
errors. Nevertheless, there are still some shared features like fault characteristic frequency.
Therefore, this research explores whether it is possible to train the CNN with simulation
data and part experiment data and then transfer the well-trained CNN to realize the fault
diagnosis for a real test bench. Figure 8 demonstrates the procedure of direct transfer
learning from the virtual bearing test bench to the Case Western Reserve University bearing
test bench.

5.2. Validation Case Design

Four validation cases are designed to thoroughly study and compare the effect of
simulation data on the CNN performance when the CNN trained with simulation data
is directly transferred to realize fault diagnosis on experiment data. As shown in Table 5,
for these four cases, the test set is the same and made up of 1000 sets of experimental
data, while the training set is different. In Case A, the training set is pure experiment data,
while in Case B, it is pure simulation data. In these two cases, the number of samples in
the training set will increase gradually. Case C consists of a fixed number of simulation
samples and an increasing number of experiment samples, and Case D is the opposite.
These four different cases will be adopted to validate the CNN’s transfer learning ability,
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namely the training sets from four cases will be used to train the CNN at first. Then the
well-trained CNN will be directly transferred to resolve the fault diagnosis on the test set
without further training or fine-tuning. Additionally, these designed cases will be validated
on cases of 0.014 inches and 0.021 inches separately for complete study and comparison.

Feature 
extraction

Feature 
extraction

Bearing fault diagnosis 
knowledge

Normal

Inner race fault

Outer race fault

Ball fault

Fault labels

Target domain

Source domain

Virtual bearing test bench

CWRU bearing test bench

Acceleration 
measurement

Acceleration simulation

CNN

CNN

Figure 8. Process overview of direct transfer learning from dynamics model to test bench.

Table 5. Data composition of four validation cases.

Case
0.014 / 0.021 inches

Train Set Test Set

Case A Exp. data (increasing)

Exp data (1000 sets)Case B Sim. data (increasing)

Case C Exp. data (increasing) + Sim.
data (fixed)

Case D Exp. data (fixed) + Sim. data
(increasing)

Exp. data denotes experimental data from CWRU dataset; Sim. data denotes simulation data from Modelica
model. suffix “increasing” means the training data increases from small sample size to big one; “fixed” means the
sample size of train data is fixed.

5.3. Results of Direct Transfer Learning on Fault Diagnosis
5.3.1. Case A

In the case of A, an increasing number of experimental bearing data is used to train the
CNN and then tested under the fixed test set. Here, we must mention that the classification
accuracy, i.e., the y axis in figures, refers to the average accuracy of 20 experiment times
under the test set. For example, in Figure 9, the ‘25e’ in the x-axis means the CNN is trained
with 25 sets of experimental data, and others are in the same manner. As can be seen from
Figure 9a,b, the CNN classification accuracy increases with the number of experimental
data. Moreover, with the increasing experiment data being fed to train CNN, the CNN
classification accuracy rises sharply at first and then slowly. It can be explained as follows:
at first, more training data means more information, and more information promotes the
CNN to extract more hidden features and enhance the classification accuracy. However,
when the training data increase further, most information from the samples is repeated,
and only very little new information will be brought in.
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Figure 9. Fault classification under case A. (a) 0.021 inches, (b) 0.014 inches.

5.3.2. Case B

In the case of B, an increasing number of simulation data is used to train the CNN,
and random noise with the same size is also used for CNN training as the contrast. The
results are presented in Figure 10, where the ‘25s’ in the x-axis means the CNN is trained
with 25 sets of simulation data, and ‘25n’ means the CNN is trained with 25 sets of random
noise. As shown in Figure 10, when only simulation data are used as the training data, the
CNN classification accuracy is relatively low either for the fault size of 0.021 inches (a) or
0.014 inches (b), but it is still much better than using the random noise. This demonstrates
that the simulation data from the bearing dynamics model contains some bearing fault
information that the random noise does not have and then contributes to the CNN’s fault
diagnosis performance. However, we can find that the classification accuracy does not
increase when using more simulation data to train the CNN with further analysis. In
Figure 10a, the accuracy rises when the training data increases from 25 sets to 50 sets, and
then it even reduces a little bit; In Figure 10b, with increasing simulation data added to the
training set, the accuracy increases at first and then fluctuates around the accuracy peak
value. Under both two fault sizes, the CNN reaches the accuracy peak values much faster
than the CNN trained with experimental data in Figure 9a,b. This is because the bearing
fault information in the simulation data are not as abundant as that in experimental data.
Moreover, the experimental data also contain process and measurement noise that the
dynamics model does not address. Therefore, we can find that only using simulation data
as the training data is not feasible with the above results. Thus, employing the simulation
data as auxiliary of experiment data to train CNN will be explored and compared in the
following cases.
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Figure 10. Fault classification under case B. (a) 0.021 inches, (b) 0.014 inches.
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5.3.3. Case C

In the case of C, a different fixed number (50 sets, 150 sets, 500 sets) of simulation data
are used as auxiliary data and added to an increasing number of experiment data to train
the CNN. The results are illustrated in Figure 11, with the legend ‘cwru’ representing that
the CNN was trained with pure experiment data (like case A). The ‘cwru+500s’ refers to the
CNN was trained with an increasing number of experiment data (‘cwru’) and fixed 500 sets
of simulation data (‘s’), ‘cwru+150s’ and ‘cwru+50s’ are denoted in the same way. The
‘25e+s’ in the x-axis means the CNN is trained with 25 sets of experimental bearing data
and a certain fixed number (50 sets, 150 sets, or 500 sets) of simulation data. As Figure 11a
shows, no matter 50 sets, 150 sets or 500 sets of simulation data are added as auxiliary
data to train the CNN, and the CNN classification accuracy increases much faster than that
trained with only experiment data. Besides, when the sample size of experiment data is
small, the accuracy improvement is more pronounced. That is to say, regarding the bearing
fault diagnosis with CNN, simulation data can provide some supplementary information
to speed up the process, especially when the provided experiment training data is limited.
Additionally, CNN works even better when the number of simulation data and experiment
data in the mixed dataset is similar. The same conclusion can be drawn from the defect size
of 0.014 inches in Figure 11b.
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Figure 11. Fault classification under case C. (a) 0.021 inches, (b) 0.014 inches.

5.3.4. Case D

In contrast to case C, in the case of D, the sample size of experiment data is fixed
at certain values (25 sets, 50 sets, 75 sets) and then added to an increasing number of
simulation data to train the CNN. Figure 12 gives the results. The legend ‘s+25e’ refers
to the CNN trained with 25 sets of experimental data and increasing simulation data. At
the same time, the ‘25e’ means the CNN trained with only 25 sets of experiment data (like
case A). The other legends are denoted in the same way. As can be seen from Figure 12,
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when simulation data are added to the experiment data, the CNN classification accuracy
is always higher than that from the CNN only trained with experiment data, no matter
whether it is 25 sets, 50 sets or 75 sets. These results verify that simulation data as the
auxiliary experiment data can improve CNN’s fault classification accuracy. However, the
accuracy does not increase as the sample size of simulation data grows, which can be
explained as the bearing fault information in the simulation data is relatively repetitive. In
short, an appropriate number of simulation data can partly supplement the bearing fault
information when experiment data is insufficient. When simulation data are far more than
experiment data, it may mislead the classification. That is to say, using simulation data as
the auxiliary of experiment data is a more feasible way. With results in Figure 12a,b, the
same conclusion can be reached.
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Figure 12. Fault classification under case D. (a) 0.021 inches, (b) 0.014 inches.

6. Conclusions

Data-driven methods have been intensively used in bearing fault diagnosis, and many
satisfying results have been reported. However, nearly all data-driven approaches highly
rely on massive data for training. In practice, it is often the case that only limited fault
data can be collected, which hinders the application of data-driven fault diagnosis in the
industry. This paper developed a virtual bearing test bench in OpenModelica and then used
it to generate simulation data for CNN training. The target is to explore whether simulation
data from the physics model positively affects CNN fault diagnosis when the well-trained
CNN is transferred directly to experimental data. The work can be summarized as follows:



Electronics 2022, 11, 622 16 of 18

• A virtual bearing test bench has been developed in OpenModelica, with test bearing,
driving motor, hydraulic loading and connecting shaft considered. As to the test
bearing, besides normal dynamics modeling with the 5-DoF model, the modeling of
fault position, shape and size, multiple faults are also addressed.

• The OpenModelica-based virtual bearing test bench is called in Python environment
with OMPython and a developed GUI, which serves as a general study platform for
data-driven bearing fault diagnosis.

• The simulation data generated from the dynamics model are used to train CNN after
feature extraction. The trained-CNN is transferred directly to achieve fault diagnosis
under the experimental dataset. Four different validation cases are designed to confirm
the simulation data’s positive effect in the CNN’s direct transfer learning for bearing
fault diagnosis.

Based on case validation results, we can safely conclude that, compared with random
noise, simulation data from the dynamics model have a positive effect in raising CNN’s per-
formance in fault diagnosis. Specifically, using simulation data as auxiliary of experimental
data to train CNN is a more feasible way to improve the CNN’s fault classification accuracy.
Besides, CNN works even better when the numbers of simulation and experimental data
in a mixed dataset are similar.

As to the outlook for further research, improvement in the bearing dynamics model
will be the focus, like considering the transient contact angles in modeling. Furthermore,
the application of simulation data in more transfer learning scenarios, like domain-invariant
feature-based transfer learning, will be explored and compared.
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