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Abstract: Layered two-dimensional (2D) and quasi-zero-dimensional (0D) materials effectively
absorb radiation in the wide ultraviolet, visible, infrared, and terahertz ranges. Photomemristive
structures made of such low-dimensional materials are of great interest for creating optoelectronic
platforms for energy-efficient storage and processing of data and optical signals in real time. Here,
photosensor and memristor structures based on graphene, graphene oxide, bismuth oxyselenide, and
transition metal dichalcogenides are reviewed from the point of view of application in broadband
image recognition in artificial intelligence systems for autonomous unmanned vehicles, as well as the
compatibility of the formation of layered neuromorphic structures with CMOS technology.
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1. Introduction

In recent years, there has been an increased interest in the creation of optoelectronic
devices based on photomemristors capable of energy-saving storage and processing of
signals, such as neurons and synapses in biological systems [1]. The need to improve
the speed and energy efficiency of big data processing is especially acute in systems such
as artificial intelligence (AI) in autopilot and autonomous unmanned vehicles. In 2021,
Elon Musk presented the development of the D1 Dojo processor for the AI of the Tesla
autopilot, designed to work in neural networks for pattern recognition [2]. The D1 Dojo is
manufactured using 7 nm complementary metal-oxide semiconductor (CMOS) technology,
has an area of 645 mm2, and contains 50 billion transistors (5 × 1010/mm2 ~ 4 × 109 cm2).
For comparison, the density of conventionally computational and memory elements in
the human brain is −1011 (neurons) and 1015 (synapses), respectively. A computer with
a variable set D1 (Figure 1), built on the basis of 3000 such chips, would perform 1018

operations per second (1.1 EFLOPS) and consume 1.2 MW (a board of 25 chips with heat
removal up to 15 kW consumes ~10 kW) [2].
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1. Introduction 
In recent years, there has been an increased interest in the creation of optoelectronic 

devices based on photomemristors capable of energy-saving storage and processing of 
signals, such as neurons and synapses in biological systems [1]. The need to improve the 
speed and energy efficiency of big data processing is especially acute in systems such as 
artificial intelligence (AI) in autopilot and autonomous unmanned vehicles. In 2021, Elon 
Musk presented the development of the D1 Dojo processor for the AI of the Tesla autopi-
lot, designed to work in neural networks for pattern recognition [2]. The D1 Dojo is man-
ufactured using 7 nm complementary metal-oxide semiconductor (CMOS) technology, 
has an area of 645 mm2, and contains 50 billion transistors (5 × 1010/mm2 ~ 4 × 109 cm2). For 
comparison, the density of conventionally computational and memory elements in the 
human brain is −1011 (neurons) and 1015 (synapses), respectively. A computer with a vari-
able set D1 (Figure 1), built on the basis of 3000 such chips, would perform 1018 operations 
per second (1.1 EFLOPS) and consume 1.2 MW (a board of 25 chips with heat removal up 
to 15 kW consumes ~10 kW) [2]. 

 
Figure 1. A set of D1 Dojo processors (2021) for Tesla’s AI autopilot, designed to work in neural 
networks (left). The design of the processor, consisting of various plates: heat sink, computation, 
and power and control (right). 
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This development can be compared with the K Computer of the Japanese corporation
Fujitsu (2017), one of the most powerful supercomputers in the world. When simulating
the work of 1% of human brain neurons, the K Computer performed 1016 operations per
second (10 PFLOPS) and consumed ~10 MW. The human brain (100% neurons) consumes,
as is known, about 10–20 watts. Moreover, to simulate 1 s of brain work, the supercomputer
needed ~40 min. The performance of the Dojo computer is two orders of magnitude higher,
but the energy consumption for autonomous operation of the autopilot remains too high. For
comparison, the capacity of all power plants of the UES of Russia, including thermal, hydro,
nuclear, solar, and wind power plants, as of 01.12.2021 amounted to 247,913.51 MW [3].

The low speed and energy efficiency of big data processing in digital systems is associ-
ated with the physical separation of the memory and processor (Figure 2), which causes
traffic problems and limits the efficiency of information processing and the performance of
computing systems.
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The so-called “in-memory computing” can improve the energy efficiency of compu-
tations using memristor circuits similar to biological neural networks [4–9]. Significant
research progress has been made in improving the performance of memristive devices
based on 2D layered materials [10–12]. Two-dimensional layered materials have unique
physical properties and open up great opportunities for applications in neuromorphic
computing. However, to solve the problem of time delay in processing the detected signal,
new approaches are needed to create photoelectronic components of AI visual systems.
One such approach is “photodetecting and computing in-memory”. The development of
AI systems for automatic control (piloting) of machines in an autonomous mode requires
the development of a fundamentally new element base of sensor and computing devices
that allow detecting and processing information in real time. Memristor structures made
of photosensitive low-dimensional layered materials [13–16], which effectively absorb
radiation in the ultraviolet, visible, and infrared ranges [17–19], can be used as an optoelec-
tronic platform embedded in CMOS technology for fast and energy-efficient neuromorphic
processing of an optical signal and pattern recognition.

2. Photomemristor

A photomemristor made from MoS2 crystals was demonstrated in 2016 [15]. Polarization
of the memristor in an electric field upon excitation by light led to multilevel switching. The
faster polarization process of the photomemristor in comparison with the transport of ions and
the fast optical access make it possible to detect and quickly process signals in the memory.

Figure 3 shows the switching diagrams of the MoS2 photomemristor by electrical and
optical pulses. The memristor, polarized at different voltages, shows eight different states that
can be read electrically under optical excitation. The photomemristor provides fast multi-level
non-linear dynamic operation and can be used for image detection and processing.

A photomemristor has also been demonstrated based on two-dimensional materials
graphene (G) and graphene oxide (GO) [20]. It has been shown that the photocatalytic
oxidation of graphene with ZnO nanoparticles creates self-assembling photosensitive
G/GO heterostructures exhibiting photomemristive states. Oxygen groups released during
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the photodecomposition of water molecules on nanoparticles in ultraviolet light oxidize
graphene, locally forming G/GO heterojunctions with a density of up to 1012/cm2. G/GO
nanostructures have nonlinear current–voltage characteristics and switch resistance in an
electric field upon photoexcitation, providing four resistive states at room temperature.
Photocatalytic oxidation of graphene with ZnO nanoparticles makes it possible to form high-
density photomemristors due to the process of the self-organization of G/GO structures,
which can be used to create non-volatile ultrahigh-capacity photomemory.
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LRSL3, HRSD6, HRSL6, LRSD6, LRSL6) with electrical and optical excitation [15].

Figure 4 shows a diagram of a G/GO photomemristor matrix, formed by photocatalytic
oxidation in the regions near ZnO nanoparticles and a diagram of the switching of their
resistive states under electrical and optical excitation. Four memristive states with an on/off
current ratio of ~ 10 are well controlled in an electric field in the dark and in the light. G/GO
photomemristors are promising for multi-level non-volatile ultrahigh-capacity memory that
can be implemented using photocatalytic oxidation compatible with CMOS technology.
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Figure 4. Schematic diagram of a graphene/GO-based photomemristor matrix on a Si/SiO2 substrate,
formed by photocatalytic oxidation in the regions near ZnO nanoparticles (ZnO NPs) and a switching
diagram (SET, RESET) of high-resistive (HRS) and low-resistive (LRS) states in the dark (HRSD, LRSD)
and with photoexcitation (HRSL, LRSL) [20].
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3. Photosensitive 2D Crystals and Their Embedding in CMOS Technology

Two-dimensional crystals have great potential to operate in a wide spectral range
from UV to THz [21–26]. Most of them cover the visible and short-wave infrared range
(Figure 5).
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Figure 5. Spectral sensitivity of photodetectors made of 2D layered materials at 300 K. The black
line shows the spectral sensitivity of an ideal photodiode with 100% QE and g = 1. The sensitiv-
ity of commercially available photodetectors (InGaAs and HgCdTe photodiodes) is presented for
comparison [21].

The uniqueness of the atomic surface of 2D materials without dangling bonds allows crys-
tals to be embedded in CMOS technology without introducing structural defects, which makes
it possible to produce high-quality functional integrated circuits for broadband detection.

CMOS-integrated circuits, which are at the heart of the microelectronics technological
revolution, enable the creation of compact and inexpensive microelectronic circuits and
imaging systems. However, the use of this platform in applications other than microcircuits
and visible light cameras is hampered by the difficulty of combining non-silicon semicon-
ductors with CMOS technology. Monolithic integration of a CMOS-integrated circuit with
graphene acting as a high-mobility phototransistor was demonstrated in 2017 [22]. The
high-resolution CMOS broadband image sensor can be used as a digital camera that is
sensitive to ultraviolet, visible, and infrared light. The demonstrated graphene-CMOS
integration is critical for incorporating 2D materials into next-generation microelectronics,
sensor arrays, low-power integrated photonics, and CMOS imaging systems spanning
visible, infrared, and terahertz frequencies. An example of such an alignment is shown
in Figure 6, which shows arrays of broadband image sensors based on the integration
of graphene and CMOS. The integration of CMOS ICs with graphene and quantum dots
(QDs) allows the creation of a broadband image sensor with high resolution and sensitivity
in the UV, visible, and IR ranges from 300 to 2000 nm. Due to the high mobility of graphene
(here ∼1000 cm2 V−1 s−1), this photoconductor structure exhibits an ultrahigh gain of 108

and a sensitivity above 107 AW−1, which is a significant improvement over photodetectors
and imaging systems based only on QDs [22]. The large signal and low noise result in a
measured detectivity for prototype photodetectors above 1012 cm

√
HzW−1 (Jones). This

large detectivity, spectral sensitivity in the 300–2000 nm range, and the recently demon-
strated switching time of 0.1–1 ms clearly support the applicability of this approach for
infrared imaging. In addition to the array of light-sensitive pixels, the imager contains a
series of blind pixels that are used to subtract the dark signal because the photo detectors
are electrically biased. Note that here the spectral range is determined by the material
and size of the QDs, but this approach can be generalized to other types of sensitizing
material in order to expand or adjust the spectral range of the sensing element. Mono-
lithic integration of graphene with CMOS image sensor arrays allows for a wide range
of optoelectronic applications such as low-power optical data transmission, integrated
photonics, high-frequency electronics and sensor arrays, and compact and ultra-sensitive
sensor systems for AI. Graphene-based image sensors can be designed to operate at higher
resolutions, over a wider wavelength range. Unlike modern hybrid imaging technologies
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(which are not monolithic), monolithic integration with 2D materials does not face funda-
mental limitations in terms of decreasing the pixel size and increasing the thermal imager
resolution. Ultimately, the limiting factor will be the formation of the pattern and contact
with graphene, that is, lithography. Consequently, competitive multi-megapixel image
sensors with a pixel pitch of about 1 µm are already within reach.
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due to their layered atomic structure and optical and electronic properties. To date, most 
of the applied research in this area is focused on field-effect electronics, as well as photo-
detectors and LEDs. The photonic and electronic design of a 2D semiconductor photovol-
taic system represents a new direction for ultra-thin, efficient solar cells with applications 
ranging from portable and ultra-lightweight optoelectronic battery power generation to 
intelligent photosensors. The absorption of light in the active layers of a photovoltaic cell 
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Figure 6. CMOS integration of CVD graphene with image-sensor readout circuit. Embedding of
transferred CVD graphene on a 15.1 mm-high and 14.3 mm-wide crystal containing a CMOS image-
sensor readout circuit that consists of 388 × 288 pixels (left). Side view (right) showing a graphene
photoconductor lying on a readout circuit. Graphene channels are sensitized to ultraviolet, visible,
near-infrared, and short-wave infrared light using QDs: when light is absorbed, an electron–hole pair
is generated; due to the built-in electric field, the hole turns into graphene, while the electron remains
trapped in the QD [22].

4. Photocells Based on 2D Crystals and Nanocomposites

Two-dimensional semiconductors provide unique opportunities for optoelectronics
due to their layered atomic structure and optical and electronic properties. To date, most of
the applied research in this area is focused on field-effect electronics, as well as photodetec-
tors and LEDs. The photonic and electronic design of a 2D semiconductor photovoltaic
system represents a new direction for ultra-thin, efficient solar cells with applications
ranging from portable and ultra-lightweight optoelectronic battery power generation to
intelligent photosensors. The absorption of light in the active layers of a photovoltaic cell
is one of the key performance indicators that determines the efficiency of a device. For
semiconductors, including 2D materials, absorption is determined by the structure of the
electron band and the band gap. There is an inevitable trade-off between bandgap (voltage)
and absorption (photocurrent). Figure 7 shows the values of the energy of the band gap
and the absorption coefficients for the main photovoltaic materials studied to date on a
commercial and research scale [25]. As can be seen from Figure 7 that of all the materials
considered for photovoltaic applications with a band gap close to the optimal value for
visible light of 1.34 eV, 2D transition metal dichalcogenides show the maximum absorption.
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Figure 8a shows the characteristics and response times of various photodetector tech-
nologies (2D and modern technologies) and shows the direction to follow for competitive
new technologies [25]. In the case of p-n junction photosensors in graphene, the speed of
the photodetector is of paramount importance, especially when remote sensing in time or
when transmitting data. A fast photodetector must also be sensitive enough to operate
under real conditions (temperature, form factor, etc.). Two-dimensional materials can
rapidly enter the infrared detector market through broadband absorption of graphene and
combination with associated low-dimensional infrared sensitizers. Figure 8b illustrates
the perspectives of using 2D photodetectors in terms of their superiority in performance
and cost of currently used semiconductor infrared technologies, based mainly on InGaAs
and HgCdTe photodiodes. If we compare the sensitivity and response time of standard
and 2D photosensors, as well as their specific detectivity for different wavelengths, then
2D photosensors based on MoS2 and graphene are superior to standard technologies for
the 1–5 µm range. Thus, the use of low-dimensional materials can solve the problem of
creating inexpensive, highly sensitive IR sensors for machine vision.
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MoS2/GO heterostructures and nanocomposite materials make it possible to create
structures with controlled absorption in a wide range from UV to IR, due to the formation of
self-organizing MoS2 (Eg = 1.3–1.9 eV)/GO (Eg = 0–6 eV) heterostructures [27]. MoS2/rGO
nanocomposites synthesized using preliminary ultrasonic treatment and a one-stage hy-
drothermal and reduction process are self-organizing MoS2 nanocrystals in a reduced GO
(rGO) matrix [27]. The effect of quantum confinement in nanostructures controlled by the
degree of reduction of graphene oxide and the size of graphene and MoS2 nanocrystals
led to tunable optical absorption in a wide UV–IR wavelength range from 280 to 973 nm
(Figure 9). Low-dimensional layered MoS2/rGO heterostructures have great potential for
creating high-performance broadband photosensors.
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5. Layered Quantum Dots

Layered materials have recently emerged as layered atomically thin QDs consisting of
only a few layers or even a single layer of material with transverse dimensions of less than
10 nm [28–35]. The band gap of such QDs can be tuned by optimizing their lateral size and
the number of layers. Layered QDs have unique luminescent, adsorption, and chemical
properties due to their inherent two-dimensional structure. Most layered QDs retain their
two-dimensional lattices from their bulk form, but with improved solution dispersibility
and surface functionalization capabilities. With a greater surface area, higher solubility,
and heterostructure formation flexibility, QD-based devices can be modified to provide
better performance and stability characteristics [34,35].

The formation of quantum dots consisting of one or several 4H-SnS2 layers was
demonstrated by the liquid-phase separation method [28]. With a decrease in their size, a
systematic shift of the peaks in the Raman and absorption spectra was observed. The band
gap of QDs, estimated from absorption spectra and tunneling spectroscopy using graphene
electrodes, varied from 2.25 to 3.50 eV with decreasing QD size (Figure 10) [28]. Single-layer
QDs 2–4 nm in size, transparent in the visible region, showed selective absorption and
photosensitivity at wavelengths in the ultraviolet region of the spectrum, while larger
multilayer quantum dots (5–90 nm) showed broadband absorption in the visible region
of the spectrum and good photoresponse when excited by white light. Layered QDs
exhibited a well-controlled band gap and absorption over a wide tunable wavelength range.
Such layered QDs, obtained using an economical method of separation and deposition on
various substrates at room temperature, can be used to form high-performance broadband
photomemristive heterostructures embedded in CMOS technology.
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Figure 10. Dependences of (αhν)1/2 on hν for SnS2 QDs, obtained from the absorption spectra in
the UV–visible range at 2000 (left, top) and 11,000 rpm (right, top). Band gap of quantum dots
obtained from UV–visible spectra of SnS2 nanocrystals formed at different centrifugation speeds
(left, bottom). Dependence of the band gap of the SnS2 QD on the QD size, obtained in the effective
mass approximation (blue line), and the band gap obtained from the spectra in the UV–visible range
(red spheres) (right, bottom). The inset shows the distribution of QD sizes obtained at a speed of
11,000 rpm and the QD band gap calculated from the effective mass approximation [28].

Layered quantum dots have also been obtained using plasma processing. Studies of
photoluminescence and atomic force microscopy of bilayer graphene treated with nitrogen
plasma revealed the formation of localized nanoscale features, the properties of which are
determined by the processing modes (Figure 11) [29]. Using Raman scattering and spectro-
scopic ellipsometry, the effects of doping caused by oxygen or nitrogen plasma on the optical
properties of single-layer and double-layer CVD graphene were investigated. Excitation at a
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wavelength of 250 nm of bilayer graphene treated with nitrogen plasma leads to photolumi-
nescence in a wide spectral range with peaks at 390, 470, and 620 nm (Figure 11), which is
consistent with the formation of quantum dots sensitive in the UV–IR range.
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Figure 11. AFM image (left) of two graphene layers transferred onto a SiO2/Si substrate and
processed in nitrogen plasma (scan size 600 × 600 nm2), and photoluminescence spectra (right)
obtained by excitation of the resulting structure with light with λexc = 250 nm or 290 nm [29].

A hybrid structure consisting of zero-dimensional (0D) GQD and 2D MoS2 has demon-
strated remarkable properties for optoelectronic devices, outperforming MoS2 photodetec-
tors [31]. GQDs have unique optoelectronic characteristics such as long carrier lifetimes
and fast electron-extraction due to huge transition energies and weak coupling to exciton
states. When GQDs interact with 2D materials, quantum effects can influence the dynamics
of charge carriers, enabling the efficient separation, transport, and collection of charge
carriers. Hybrid GQD/MoS2 photodetectors are shown in Figure 12.
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Figure 12. Schematic of the GQD/MoS2 hybrid device under optical illumination (left). The insets
show the corresponding molecular structures of GQD (top view) and MoS2 (side view). Photosensitiv-
ity of hybrid GQD/MoS2 (red) and bare MoS2 devices (black) versus wavelength at fixed Vds = 10 V
with laser wavelength varying from 400 to 1100 nm at room temperature (right) [31].

The photoelectric mechanism of this device consists of various physical stages of pho-
toexcitation, reabsorption, tunneling, and thermal excitation. When the energy of incoming
photons exceeds the GQD band gap, photoexcitation occurs in MoS2 and GQD. Then, the
process of re-absorption of photons emitted by GQD, MoS2 is detected, thereby increasing
the photocurrent by creating more electron–hole pairs. Thereafter, photoexcited electrons in
the GQD conduction band are injected into MoS2 to initiate the tunneling process. Similarly,
holes from the MoS2 valence band will be transferred to the GQD, resulting in a higher
recombination rate. In addition, the formation of a Schottky barrier at the GQD–MoS2
interface leads to thermal excitation of higher-energy electrons from the GQD to MoS2.
As a result of several charge carrier amplification processes, the photoresponse of hybrid
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GQD/MoS2 devices will be higher than that of bare MoS2 devices. Using a tunable laser
source for optical illumination, the photoresponse of hybrid GQD/MoS2 devices and bare
MoS2 devices was analyzed as a function of wavelength, as shown in Figure 12. The
photosensitivity of hybrid GQD/MoS2 was found to be 775 AW−1 at a laser wavelength
of 400 nm, while the photosensitivity of bare MoS2 is 44.8 AW−1. Compared to previous
studies of photodetectors based on other material systems such as CuPc and CdTe, the
experimentally determined photosensitivity is more than 300 times higher [31,32]. In addi-
tion, the hybrid GQD/MoS2 device exhibits a detectivity of 2.33 × 1012 Jones and an EQE
(~241%) that is almost 17 times higher than that of a simple MoS2 device (~14%).

To create fast and energy-efficient photomemristive devices, quantum dot structures
with 2D MoS2 layers have been investigated [36]. Memristor structures based on low-
dimensional materials demonstrate low energy consumption and the ability to achieve
ultra-high cell density. The photoinduced phase transition in the structure of 2D MoS2 with
0D QDs provides dynamic photoresistive memory (Figure 13) [36,37]. The excitation of
MoS2 nanocrystals by a laser with a wavelength of 530 nm leads to an ultrafast (~fs) 2H-1T
phase transition from a semiconductor to a metal with a change in electrical resistance.
The photoinduced 2H-1T phase transition in MoS2 occurs when the laser radiation density
changes from 0.2 to 1.02 mW/µm−2 and is reversible. Changes in the current and tem-
perature in such a structure led to dynamic photomemristive switching and a shift in the
switching threshold upon optical excitation. Resistive switching of the structure is observed
in an electric field and can be controlled by local photoexcitation of QDs. The photoinduced
phase transition upon excitation of QDs leads to multilevel stochastic states similar to
those in a biological synapse. The dynamic photomemristive structure demonstrates great
potential for detection and computation required for rapid real-time pattern recognition
and photoconfiguration of neural networks over a wide spectral range.
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wavelength of 1.2 μm and an ultrafast photoresponse of ~1 ps at room temperature, which 
corresponds to a bandwidth limited by the material up to 500 GHz. Figure 14 shows the 
characteristics of a Bi2O2Se photosensor under a bias of 0.6 V for wavelengths of 1.2 and 
1.5 μm. It can be seen that the photosensor demonstrates responsivity in a wide region of 
the visible–IR range from 500 to 1500 nm. 

Figure 13. Crystal structure of MoS2 (left). Atoms in the lattice: molybdenum—yellow, sulfur—blue.
Phase transition in MoS2 from a trigonal prismatic (D3h) to an octahedral (Oh) structure, induced by
a negative charge. Current–voltage characteristic of the 2D MoS2 0D QD structure with graphene
electrodes on a logarithmic scale (right). The inset at the top schematically shows a diagram of the
photoexcited electron transfer process and the corresponding charging and discharging processes
leading to 2H-1T phase transitions. The inset below shows a diagram of the formation of a filamentous
channel from phase 1T. Graphene, 2H-MoS2, 1T-MoS2, and MoS2 QDs are displayed in gray, light
yellow, brown, and blue, respectively.

6. Ultrafast and Highly Sensitive IR Photosensors Based on 2D Crystals for
Pattern Recognition

Detection and sensing by infrared light are widely used in modern technologies,
which are based on various photovoltaic materials. The emergence of 2D materials, due
to their excellent electronic structure, extreme size limitation, and strong interaction of
light and matter, creates a unique platform for the development of next-generation infrared
photosensors, see Table 1 [38–41].
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Table 1. Characteristics of photodetectors based on low-dimensional layered materials and
their heterostructures.

Materials Responsivity
(A W−1)

Detectivity
(Jones)

Response
Time (ms)

Spectral
Range (µm) Ref.

MoS2 9.0 × 10−5 1 × 107 1 × 103 visible [42]

GQDs/MoS2 12.6 × 102 16.1 × 1011 7.0 × 101 0.400−1.100 [31]

Bi2O2Se 6.5 8.3 × 1011 2.8 UV–NIR [41]

Graphene - 5 × 108 7–17 [43]

G/SiQDs 1 × 109 1 × 1013 - 0.375–1.87 [44]

Bi2O2Se 65 3.0 × 109 1 × 10−9 1.2 [45]

graphene/WSe2 4.4 × 10−2 1 × 108 5.5 × 10−9 visible [46]

CuPc/MoS2 1.98 × 100 6.1 × 1010 3 × 102 0.405−0.780 [47]

Many 2D materials exhibit high environmental and chemical resistance, ideal mechan-
ical, electronic, and optical properties required for industrial applications [48–53]. Ideal
infrared detectors have fast response times, high sensitivity, and environmental resistance,
which are rarely found simultaneously in the same two-dimensional material. An ultrafast
and highly sensitive IR photodetector based on a 2D Bi2O2Se crystal was recently demon-
strated [45]. The photodetector showed a high responsivity of 65 A/W at a wavelength of
1.2 µm and an ultrafast photoresponse of ~1 ps at room temperature, which corresponds to
a bandwidth limited by the material up to 500 GHz. Figure 14 shows the characteristics
of a Bi2O2Se photosensor under a bias of 0.6 V for wavelengths of 1.2 and 1.5 µm. It can
be seen that the photosensor demonstrates responsivity in a wide region of the visible–IR
range from 500 to 1500 nm.
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Figure 14. Optical image of a device based on Bi2O2Se ~ 10 nm-thick (~16 layers), scale bar 20 µm
(top left). Scanning a photovoltaic device in the area marked with a dotted rectangle with a 1200 nm
laser at 150 µW, recording the photovoltage as a function of the laser position without external bias
(top middle). The spectrogram was obtained from the scanned photovoltage lines at various energies
of the incident photons. Dependence of the photosensitivity of a 2D Bi2O2Se photodetector at a bias of
0.6 V at wavelengths of 1200 and 1500 nm on the incident power and bias voltage at a wavelength of
1200 nm (bottom left). Comparison of photodetectors based on Bi2O2Se, graphene, black phosphorus
and transition metal dichalcogenides (TMD) (on right). The data include only the generation of a
photocurrent due to the excitation of interband transitions without additional processing, such as the
addition of waveguide or plasmonic structures [45].
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Figure 15 shows the data on an oxyselenide 2D photosensor array used for pattern recognition.
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Figure 15. Flexible 2D arrays of Bi2O2Se photodetectors. Images of 2D Bi2O2Se photodetectors and
arrays on mica (top left). The inset shows the photoresponse of one of the photodetectors when
the substrate is bent with a deformation of up to 1%. The current rises at 1200 nm IR illumination
with a power of about 100 µW. Photocurrent images with shapes 1, 2, 3, and 4 were obtained under
illumination with light at 1550 nm, 1310 nm, 1200 nm, and 665 nm, respectively [45].

The 2D Bi2O2Se photodetector quantifies the infrared reflection of the sample structure
by measuring the detected photocurrent. When scanning the structure, the recorded
values of the reflection signals are converted into an image. For different wavelengths—
1.5, 1.3, 1.2 µm, and 665 nm—photocurrent images were obtained with shapes 1, 2, 3,
and 4, respectively. The imaging capability, combined with high responsivity, ultra-fast
photoresponse, and chemical stability, makes 2D Bi2O2Se a promising candidate for the
implementation of ultra-fast and sensitive infrared photosensors for image recognition
operating at room temperature.

7. Conclusions and Perspectives

Low-dimensional layered (LDL) photosensitive memristive materials and structures
offer good scalability, and the potential for photodetection and in-memory computing is
seen as a promising candidate for next-generation broadband CMOS-compatible image-
recognition devices for AI applications in autonomous unmanned vehicles. Photomem-
ristor and photosensor structures based on two-dimensional crystals and van der Waals
heterostructures are a new class of optoelectronic components for autonomous energy-
saving neuromorphic visual information processing systems. The use of a floating QD
photogate makes it possible to optically control multilevel photomemristive states in a wide
visible–IR range. However, researchers are still looking for ideal LDL photomemristive
devices, as modern photomemristors based on charge trapping and phase transitions pro-
duce non-linear and asymmetric responses. In addition, it is still quite difficult to develop
proper processes for the fabrication of optoelectronic devices based on LDL materials using
conventional semiconductor technology. Another important issue of LDL materials for
photosynaptic applications is reliability. The quality of LDL material crystals, a key factor
in desired photosynaptic operations, depends on various synthesis conditions or growth
methods. In addition, at present, many studies are mainly focused on the optical and elec-
trical properties of LDL materials, while more attention to their mechanical and magnetic
properties can significantly improve the performance of photomemristive sensors. Photode-
tectors based on LDL materials are of great interest due to their wide photodetection range,
high sensitivity, flexibility, and potentially small size. With these advantages, it is possible
to revolutionize the mid-IR photodetector industry in favor of compact, small-sized and
low-cost visible–IR smart photodetectors that can be used in an AI visual system. The
nature of the atomic layer and the broadband photoresponse of LDL materials will be an
important part of the next-generation broadband artificial vision industry. However, it
remains a big challenge to obtain LDL photosensors with high response speed, high gain,
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and high detectability at the same time, especially in the mid- and far-IR range. Bismuth
oxyselenide has excellent physical properties due to its unique crystal configuration and
electronic structure, such as ultra-high mobility, good mechanical flexibility, and broadband
optical response. Due to its oxygen-containing composition, its remarkable stability makes
it a competitive candidate for practical applications in optoelectronics. However, a simple,
large-scale, and inexpensive synthesis of the LDL bismuth oxyselenide structure remains a
challenging task. Most existing LDL photomemristive devices currently cannot meet the
requirements of a commercially ideal photoelectronic synapses. However, there are huge
opportunities for improving the technology of manufacturing and storing data, processing
optical signals for truly autonomous unmanned vehicles. This will likely require a coor-
dinated effort from researchers across disciplines, including materials, devices, circuits,
and architecture.
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