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Abstract: Attention deficit hyperactivity disorder (ADHD) is a mental disorder most notable in
children. The disease may affect the ability to focus and cause a physical and mental restlessness and
risky behavior. Recommended treatment consists of stimulant administration and behavioral therapy.
However, medicating children is problematic since there are indications that brain development
is affected by ADHD medication agents. Therefore, behavioral therapy is the preferred approach
in ADHD treatment for children. In order to monitor and optimize the success of such behavioral
therapies, neuro-feedback methods can be used. The most notable technology used in such methods
is Electroencephalography (EEG). In this article, an overview of the pathology of ADHD, EEG and its
usage as a diagnostic and therapeutic tool in the context of ADHD is given. Based on that knowledge,
novel EEG measurement modes, new development principles, and system on chip implementations
are presented and discussed.

Keywords: attention deficit hyperactivity disorder (ADHD); diagnosis; therapy; electroencephalogra-
phy (EEG); system on chip (SoC); neuro-feedback; signal processing

1. Introduction

According to the International Statistical Classification of Diseases Related Health
Problems (ICD10) catalog in its tenth revision [1], ADHD is classified as a “behavioral
and emotional disorder with onset usually occurring in childhood and adolescence”. The
Diagnostic and Statistical Manual of Mental Disorders V (DSM-5) catalog [2] provides a
similar definition. Still, when applying DSM5 criteria, ADHD is three times more likely
to be diagnosed compared to ICD10 [3,4]. This circumstance suggests that ADHD is
an unspecific disease, which is not yet fully understood and still requires research. In
particular, the concrete pathology of the disease is only vaguely discovered. This leads
to the diagnosis being more of a qualitative nature rather than relying on physiological
metrics, such as features extracted from EEG. Efficient therapy, however, requires a concise
method of diagnosis in order to be able to choose the right medication, track disease
progress, visualize therapy progress, and learn more about the disease in general.

Recent advances in the electronics domain, and particularly wearable devices, have
led to unprecedented access to physiological data. Wearable devices are used in many
applications, such as well-being and sport activities [5–7], physical health [8–14], and
mental health [5,7,15,16]. These advanced devices provide access to a vast amount of data,
which can be processed to improve the efficiency of therapy. In the case of ADHD, the data
collected by EEG are the most relevant and have the potential to improve the therapy and
diagnosis of this disease. This paper provides an overview of major topics that have to be
understood to be able to comprehend how electronics, particularly systems on chips, can
improve the therapy and diagnosis of ADHD. We focus on ease of application, cost, and
accuracy.

Section 2 presents the current understanding of the ADHD disease. After that, in
Section 3, a short excursus is taken to the principles of EEG. Combining the knowledge
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delivered in Sections 2 and 3, Section 4 shows how ADHD can be diagnosed with EEG.
Recent developments in the systems-on-chip domain and their application in ADHD
diagnosis and therapy are then presented in Section 5. Finally, the paper is concluded in
Section 6.

2. Pathology of ADHD

Since it is a subject of public discussion, ADHD faces a multitude of professional
and amateurish views. Some opinions suggest that ADHD should not be seen as a dis-
ease but as a deviation of socially accepted behavior [17,18]. However, several scientific
publications [19–21] define ADHD as a neurodevelopment disease, which manifests itself
mostly in childhood. According to these publications, the disorder is characterized by
(for the specific age of the person) inappropriate levels of overactivity, inattention, and
impulsiveness. The meta-study conducted by [22] states a prevalence of 3.4% in all children,
while [23] suggests a percentage of 1.4%.

Diagnosis of ADHD is difficult, partially because its presence is often accompanied
by other mental disorders [24–26]. Additionally, the occurrence of the disorder is not
connectable to single bio-markers, such as a sole defective gene [27]. The most significant
circumstance for the lack of a concise ADHD diagnosis is the limited knowledge about the
brain mechanisms that lead to the disease. Animal models suggest that impairments in
some brain signal transmission processes lead to the symptoms of ADHD [28,29]. However,
it is not yet completely clear to what extent those animal models can be translated to
humans [19]. In order to achieve at least a minimum level of consensus and comparability
between cases, standardized criteria are used to determine if a patient is affected by ADHD.
Popular instances of such criteria are classifications systems, such as DSM5 or ICD10. For
example, a positive diagnosis via DSM5 requires the patient to show at least six of the
behaviors described in Listing 1 from either the “Inattentive symptoms” or “Hyperactivity
or impulsivity symptoms” sections. The patient must not be older than the age of 16, and
the symptoms have to have appeared before the age of 12. Additionally, the symptoms
must not be better described by other diseases. The experienced symptoms have to lead to
impairments in at least two social settings (e.g., school, domestic life, or workplace). Note
that other criteria are applied to patients older than the age of 16. However, these shall
not be further elaborated here, as this paper focuses mainly on the diagnosis of ADHD
in children.

The emergence of the disease is believed to be genetically inheritable. A study [30]
suggests that the risk of developing ADHD is five times higher if first-grade relatives
possess the disorder. However, inheritance seems to not be the only risk factor. Low birth
weight, malnutrition, substance abuse during pregnancy, and psychological trauma during
childhood also show a correlation with an ADHD diagnosis [31–34].

Therapy guidelines are published by several institutions, such as the National Insti-
tute for Health and Care Excellence (NICE) [35], the European ADHD Guidelines Group
(EAGG) [36], and the American Academy of Pediatrics (AAP) [37]. The different guide-
lines are similar in most aspects, with some significant differences. For instance, the US
guidelines are much less restrictive regarding pharmaceutical treatments of mild cases and
pre-school children [19]. The guidelines suggest that first-line treatment should consist of
drug administration. In this regard, stimulants, such as Methylphenidate (also known as
“Ritalin”), are an effective medication [38,39]. These drugs amplify the stimulus transmis-
sion between brain cells, causing increased focus for several hours. Stimulants have been
used relatively abundantly since the 1950s and were deemed harmless [20]. The recent
perception suggests a more cautious approach since suppositions emerged that stimulants
may cause side effects. These effects include but are not limited to sleep disturbances [40]
and growth suppression [41]. However, non-pharmaceutical treatments, such as neuro-
feedback therapy, do not reach the therapeutic success of stimulants [42]. While stimulants
remain a first-line treatment in ADHD cases, the same study [42] suggests that patients
that participate in accompanying behavioral therapy require lower prescribed doses of
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stimulants than those patients that are exclusively medicated. This circumstance serves as
the key motivation for EEG-based therapy and diagnostics.

Listing 1. List of symptoms that are used in the diagnosis of ADHD via DSM5. The items in this list
originate from the DSM5 catalog [2] and have been paraphrased by the author for conciseness. Note
that the occurrence of one or more symptoms from this list does not necessarily indicate a positive
ADHD diagnosis.

Inattentive symptoms:
• Often fails to pay close attention to details or makes careless mistakes;
• Has difficulty sustaining attention on tasks or game activities;
• Does not seem to listen when directly spoken to;
• Does not follow through on instructions and does not finish schoolwork, chores,

or duties in the workplace;
• Has trouble organizing tasks or activities;
• Avoids, dislikes, or is reluctant to do tasks, which need sustained mental effort;
• Loses things needed for tasks or activities;
• Easily distracted;
• Forgetful in daily activities.
Hyperactivity or impulsivity symptoms:
• Fidgets with or taps hands or feet, or squirms in seat;
• Leaves seat in situations when staying seated is expected;
• Runs about or climbs when not appropriate (may present as feelings of rest-

lessness in adolescents or adults);
• Unable to play or undertake leisure activities quietly;
• “On the go”, acting as if “driven by a motor”;
• Talks excessively;
• Blurts out answers before a question has been finished;
• Has difficulty waiting for their or her turn;
• Interrupts or intrudes on others.

3. Electroencephalography (EEG)

EEG is a technology dating back to the 1920s. EEG enables the visualization of
brain activity through the interpretation of electric signals. These signals are gathered from
electrodes placed on the scalp (mounted on the surface). It is mostly applied in neuroscience
and to an increasing extent in clinical diagnostic. The latter one is mainly related to the
relatively low cost and high availability of EEG compared to other functional brain imaging
methods. Comparable contenders are functional magnetic resonance imaging (fMRI) and
functional near-infrared spectroscopy (fNIRS). The availability of portable solutions and
the immediacy of measurement results further speak for the use of EEG (see Table 1 for a
more detailed comparison). Due to these points, this paper focuses on EEG-based ADHD
diagnosis methods.

Functional Description

The basic outputs of an EEG are curves of the electric potential picked up by a repro-
ducible electrode configuration. In medical applications, the 10–20 electrode placement
system is commonly used. Its use is recommended by the International Federation of
Clinical Neurophysiology (IFCN) [43,44]. A guide for the system can be found under [45].
The 10–20 system requires the application of 21 electrodes on the scalp. This process can be
tedious and may be uncomfortable for the patient. For some tasks, simpler consumer-grade
EEG devices may suffice. These systems consist of considerably fewer electrodes and are
optimized for patient comfort. However, due to the restricted electrode count, they are
more susceptible to signal artifacts induced by, e.g., eye movement [46].
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Table 1. A comparison between relevant brain imaging technologies that allow functional analysis of
brain mechanisms.

EEG fMRI fNIRS
Temporal resolution High Low High
Spatial resolution Low High Low
Measurement of
brain activity Directly Indirectly Directly

Training needed Some Extensively Some

Portability Some systems
are protable Not portable Some systems

are protable
Cost (USD) ∼100+ 50 k+ 10 k+

The unprocessed signal can be manually assessed in order to discover relative changes
to a pre-determined resting-state EEG. Large-scale defects, such as an acute epileptic
seizure, can be analyzed in this fashion. More sophisticated modes (that are already consid-
ered state of the art for several years) let the acquired curves undergo signal processing.
The most prominent one is Fast Fourier transformation (FFT). The gathered power spec-
trum is divided into multiple named frequency bands. There is no single convention on
where to exactly set the margins of these bands and different studies use slightly different
ranges [47–49]. Table 2 shows three examples for different bands used in three different
studies.

Table 2. Examples for EEG frequency band systems.

Name [47] [48] [49]

Delta <4 Hz 0.1–4 Hz 1–3 Hz
Theta 4–7 Hz 4–8 Hz 4–7 Hz
Alpha 8–13 Hz 8–12 Hz 8–12 Hz
Beta 14–40 Hz 12–30 Hz 13–30 Hz
Gamma >40 Hz 30–57 Hz and 63–90 Hz 30–100 Hz

This division is based on the underlying brain mechanisms. Attenuation or exaltation
of one or multiple bands can be connected to specific diseases or patient moods or states.
For instance, the Delta band shows high activity in sleeping patients, while elevated Beta
power indicates active concentration on a task.

4. Diagnosis and Treatment of ADHD with EEG

A link between deviations in standard EEG and the occurrence of ADHD has been
known for 80 years [50], but it was only recently that the field gained reasonable traction.
One major breakthrough would be the approval of Neuropsychiatric EEG-based assessment
aid for ADHD (NEBA) systems by the American Food and Drug Administration (FDA) in
2013 [51]. It has been shown that using a NEBA system can prevent erroneous diagnosis,
help in the resolution of uncertain cases, and increase the accuracy of clinicians’ diagnoses
from 61% to 88% [52].

The first NEBA devices solely exploited the power ratio between Theta and Beta waves
(Theta-to-Beta Ratio (TBR)) as a metric for the diagnosis of ADHD. This ratio is sampled
while the patient is subjected to different stimuli (e.g., resting state, focus on a sound or
image, etc.). Comparison of this dataset to a norm yields the diagnosis.

Several publications provided evidence that a classification via TBR allows a diagnostic
accuracy of around 90% [53]. However, shortly after the FDA published the approval for
NEBA devices criticism over the relevance of TBR arose since multiple independent studies
failed to reproduce the proclaimed accuracy of TBR classification. The achieved accuracy
was in the range of 49.2–54.8% [54] and 53% [55]. A possible reason for this controversy
could be the heterogeneous nature of ADHD. In an approach postulated in [56], it is stated
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that ADHD is not caused by a single distinct brain fault. ADHD can rather be caused by
several independent defects, which all manifest themselves differently in EEG readings.
Therefore, a single EEG feature, such as TBR, is not enough to safely diagnose ADHD.
Multi-variate methods try to tackle this deficit by considering multiple features gathered
from independent measurement runs. For instance, multiple Event-Related Potential (ERP)
measurement epochs can be taken. In this measurement mode, the patient is consecutively
presented with different tasks stimulating different brains regions separately. The response
of the EEG signals to those tasks serves as a metric. In this case, an accuracy of around
80% could be achieved [57]. By employing machine learning methodologies, the accuracy
increases to values above 90% [57].

Despite promising results in regards to accuracy, multi-variate measurement ap-
proaches are quite demanding on patients and medical staff. Several 100 task repetitions
have to be undertaken to obtain meaningful ERP charts. Such sessions can span over hours.
In addition, the fatigue of patients and staff or random misalignment of measurement
equipment, etc., can lead to distorted results. This circumstance demonstrates that accu-
racy is not the single characteristic that should be looked into when developing a NEBA.
Methodologies should additionally be considered by the three qualities: robustness, inter-
pretability, and feasibility. Using the example given in [57], an X-ray to find tuberculosis is
robust because it is impervious to noise (e.g., patient movement). Interpretability is given
because abnormalities can easily be detected on the X-ray image. Eventually, the method is
feasible since an X-ray session can be administered in less than 10 min, and X-ray devices
are quite abundant.

The above-mentioned multi-variate approaches provide the means to achieve higher
accuracy but have the fundamental disadvantage of requiring long and potentially tiring
sessions. Feasibility and robustness therefore suffer. Due to these limitations, EEG-based
methodologies, in their current form, are only recommended as an accompanying aid to
visualize ADHD treatment response (e.g., neuro-feedback therapy) [57]. In order to be
usable as a diagnostic tool, it either lacks reproducible evidence (in case of TBR) or in
interpretability/feasibility (multivariate features). However, new developments in the field
of system on chips address the deficits in those fields and show promising results. The next
section therefore shall present three approaches, which try to push the boundaries in the
fields of feasibility, accuracy, and robustness.

5. Potential Approaches for Improvement

As elaborated in Section 4, the diagnosis of ADHD with current EEG devices and
methodologies is not common practice. Insufficient accuracy, difficulty, and complexity
of usage in clinical situations are two main reasons for that. In the following sections,
new measurement modes, a hardware development tool, and system on chip design
considerations are presented. These advancements shall increase the usability of the next
generation of Neuropsychiatric EEG-based assessment aids for ADHD NEBAs.

5.1. New Measurement Modes

The utilized measurement mode has a significant impact on the accuracy, robustness,
interpretability, and feasibility of the diagnostic method. It would therefore seem profitable
to introduce new methodologies in this field. One approach lies in the definition of new
signal features. Features extracted from signals are not only relevant in the context of EEG
and ADHD. Naturally, signal processing is also heavily utilized in other domains, such as
telecommunications, machine vision, and human–computer interfaces. It can therefore be
drawn from a vast theoretic background.

A quite simple feature is TBR. However, due to its uni-variate nature, it may not be
suitable to depict the heterogeneity of ADHD. More generic features, therefore, have to be
used. Non-linear features are a potential contender for this role, as they perform better in
reproducing non-idealities of the signal.
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The second dominant approach is to not rely on high-level features but to directly
identify brain regions that are affected by ADHD. Sophisticated algorithms enable the
detection of increased or reduced activity in those regions. Based on this information,
ADHD treatment success can be monitored in more detail, and accurate diagnostics with a
rich rationale can be given.

5.1.1. Nonlinear Features

As the name suggests, nonlinear features are metrics that are defined for signals
generated by nonlinear systems. As the reactions of the human brain to stimuli are mostly
unpredictable and may be chaotic, it can be treated as a nonlinear system. This assumption
enables the calculation of specific features, which may bear correlation with brain defects.
Ideally, these defects can then be mapped to ADHD.

One suggested cause for ADHD is a defect in the neuron synchronization mechanism.
This circumstance would cause “jagged” EEG readings. Jaggedness can be described by a
metric called fractal dimension. There are multiple definitions for this metric, each with its
own focus. In [58], a comparison of four different definitions is made. Two other prominent
metrics are largest lyapunov exponent [59] and approximate entropy [60]. These two
target the desynchronization and chaoticness of a signal. These features are not completely
orthogonal to each other and may contain redundancy when computed on the same signal
sequence. Feature selection algorithms such as Double Input Symmetrical Relevance
(DISR) [61] and Minimum redundancy maximum relevance (mRMR) [62] can be used to
select the most descriptive features of a signal sequence.

If the features described in this section are fed to a neural network, an accuracy of
up to 93.65% can be achieved [63]. With respect to feasibility, this method seems to be
promising, as the task presented to the patient was simple and finished within a matter of
minutes. Despite the use of a machine learning algorithm, interpretability is also given, as
the nonlinear features calculated prior to the neural network already show a correlation
with the presence of an ADHD diagnosis. A point of criticism has to be noted: the extent of
the study is quite limited, as only 60 children participated. It remains to be seen if these
results can be reproduced in a larger setting.

5.1.2. Identification of Neural Mechanisms

Another quite new approach to increase the applicability of EEG readings is to identify
the effects the neural mechanism of ADHD have on the EEG signals. This approach
promises to be more concise than the abstract, high-level signal features presented in
Section 5.1.1. Reasoning based on this methodology would refer to physiological facts and
not on possibly arbitrary correlations. However, as suggested previously, the heterogeneity
of ADHD complicates this methodology. Many different neural circuits contribute to
ADHD, and not all may be known as of today. Fortunately, neural circuitry has been
extensively researched via fMRI. These insights can serve as a reference for this method.

A survey conducted by [64] suggests that the brain regions responsible for visual pre-
processing are compromised in adults affected by ADHD. This deviation can traditionally
be measured through the means of ERP. More interestingly, the publication shows that
this deficit can also be made visible by applying standardized weighted low-resolution
electromagnetic tomography (swLORETA). This technique allows the localization of current
densities by analyzing EEG signals. Therefore, the spatial resolution of brain activity is
enabled. The study tasked subjects to focus on a picture. If the picture changed in a certain
way, a button had to be pressed. After 220 milliseconds, the brain state is captured via
swLORETA. Figure 1 depicts the magnitude of the difference between the control and
ADHD groups. A similar survey [65] comes to the same result, reinforcing the feasibility of
this method.
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Figure 1. An extract of the results adapted with permission from Ref. [64], © 2018 IBRO. The two
image columns show current density distributions within the brain, which have been captured by
swLORETA during an ERP run.

The outstanding advantage of this method lies in its diagnostic value. It immediately
provides images with clearly visible features. Effort for the subject and the conductor is low.
The survey in [65] demonstrated that results can be generated with the patient in resting
state and with hardware that costs no more than USD 1000. The heterogeneity of ADHD
is captured, as multiple brain regions are depicted simultaneously. However, it has to be
considered that this approach is rather new. This circumstance implies that the scale of
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the conducted surveys was rather small. Further evidence has to be collected to enable
large-scale clinical applicability.

5.2. Human-in-the-Loop Cyber-Physical Systems Framework

Building the EEG-based diagnostic or therapeutic systems requires the coordination of
hardware and software engineering. This circumstance drastically complicates the develop-
ment process. Failure to address this challenge may lead to long, expensive development
cycles and poorly scaleable products. Functional rigidity of such systems is especially of
concern since it is quite possible that new findings regarding ADHD diagnosis/therapy
emerge. The integration of such novel findings may be expensive if the system is inflexible.
This is a case that should be avoided.

A common way to tackle complexity in projects that incorporate software and hard-
ware is using domain-specific frameworks. Such frameworks provide abstraction layers,
which simplify development processes. Some research has already gone into this topic and
produced frameworks such as Angelah [66] or bHCI [67]. Both of them mainly focus on the
abstraction of hardware and data acquisition. In the Human-in-the-Loop Cyber-Physical
Systems (HiLCPS) [68] another important aspect is addressed: Via its submodule, HSyn, it
is possible to implement MATLAB algorithms directly in the embedded hardware. Due
to this feature and its support for hardware abstraction, HiLCPS emerges as a suitable
framework in the context of EEG applications. It shall, therefore, be elaborated further on
in the next paragraphs.

HiLCPS addresses three aspects important in hardware/software system development:

1. Hardware Transparent Access: Similar devices are grouped into device classes called
DevClass. Members of the same device class are accessible via the same well-defined
interface.

2. Location Transparent Access: Allows simple development of distributed systems.
Remote hardware components can be accessed as if locally connected.

3. Domain-Specfic Synthesis: The framework provides the HSyn submodule, which
allows automatic appropriation of MATLAB algorithms, so they can be implemented
on embedded hardware.

A typical HiLCPS application structure is depicted in Figure 2. It can be seen that
most hardware devices can be categorized into four groups: DAQ, stimulus, visualization,
and actuator. Therefore, a DevClass for each of those groups exists in an HiLCPS device
database.

Figure 3 illustrates the recommended workflow when using the HiLCPS framework.
It consists of three main stages. During Algorithm Design, the designer can utilize the full
extent of the MATLAB environment to compile the desired algorithm. In the Application
Design stage, the algorithm is embedded in a software application that ties inputs from mul-
tiple sensors and outputs to actors/visualization elements together. HiLCPS DevClasses are
instantiated here and can be prototyped through the MATLAB HiL mechanism. Eventually,
the application is deployed to the target systems in the Embedded Deployment step. HSyn
allows the automatization of this step, so developers do not have to manually map the
algorithms to the specific hardware. By doing so, the authors claim that a productivity gain
(i.e., development time decrease) of six orders of magnitude can be achieved.

An EEG system, focused on diagnostic/therapeutic tasks with the ADHD context,
which is built with the HiLCPS framework, could be structured as depicted in Figure 4.
Here, an ERP test is implied. The subject is presented a sequence of images. If a specific
image is displayed, the subject has to press a button. The EEG signals are captured by
an EEG cap and the corresponding controllers. Through the stimulus monitor, the image
sequence is displayed. The subject can signal the odd picture via the button. The conductors
of the test can monitor the result with the result monitor.
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DAQ 1 (EEGu1)

DAQ 2 (PAL)

DAQ ...

Visualization 1

Visualization 2

Visualization ...

Stimulus 1

Stimulus 2

Stimulus ...

Robotic
Wheelchair

Robotic Arm

Actuator ...

HiLCPS App

Figure 2. Typical structure of an application built with the HiLCPS framework [68]. The four different
device types, digital acquisition (DAQ), visualization, stimulus, and actuators, can be seen.

HiLCPS Requirement

Algorithm Design

Algorithm Model

Application Design

MATLAB APP HiL Prototype

Embedded Deployment
HSyn: Domain-Specific Synthesis

APP SW APP HW

HiLCPS DevClass
Database

DAQDAQ

Stimulus

Visualization

HiLCPS
Design
Flow

Figure 3. The design workflow when using the HiLCPS framework [68].
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Figure 4. A hypothetical application structure of an EEG system built upon the HiLCPS framework.

5.3. System on Chip Implementations

The first form of EEG devices, which are comparable to today’s versions, were me-
chanical chart recorders similar to [69]. Since then, EEG technology went through multiple
evolutionary steps. The most notable being the digitalization of the EEG signals that was
enabled by the advent of computer technology in the 1970s. The most recent advancement
are wireless, wearable EEG devices (see Figure 5). They are made possible due to the
increasing function density, power efficiency, and decreasing area consumption of system
on chips (SoCs). The mobile nature of such wearable devices lowers the mental entry
barrier for their usage and decreases fatigue during therapy or diagnostic sessions. Because
of the importance of SoCs in the evolution of EEG diagnostic and therapeutic systems, it
shall be discussed how SoCs may contribute to the emergence of better Neuropsychiatric
EEG-based assessment aid for ADHD NEBAs.

Figure 5. An example of a wearable EEG device [70].

SoCs come in many varieties and are ubiquitously used in signal processing heavy
domains, such as mobile or wearable devices, automotive applications as well as in the
medical sector. They excel with their small size and power efficiency, enabling them to
be powered by batteries and to be realized with mobility in mind. By the release of this
publication, there are no SoCs with the specific function of ADHD diagnosis or therapy. This
circumstance serves as motivation to discuss system on chip (SoC) design considerations
and architecture requirements for other EEG-related SoCs (i.e., seizure detection and sleep
staging) and compare them to the needs of NEBAs.

When working on a concept for a certain SoC, a vast design space has to be explored.
Decisions include, among others: the selection of intellectual property (IP) cores, the
energy management policy, the on-chip communication scheme, the interfaces on the
SoC boundary, etc. With regards to NEBAs, these decisions have to be based on the four



Electronics 2022, 11, 606 11 of 17

principles stated in Section 4: accuracy, feasibility, interpretability, and robustness. The
following paragraphs shall elaborate on the trade-offs that emerge when trying to fulfill
these four aspects.

1. Accuracy: “The SoC shall produce accurate results.”

The obtainable accuracy is highly dependent on the algorithm that is implemented on
the SoC. Thus, the choice of algorithm defines, to a great extent, the trade-offs that have to
be dealt with. It has been mentioned previously that neural networks pose a possibility
to increase the accuracy of NEBAs. However, this improvement has to be bought with
increased energy consumption. Hardware-implemented neural networks, in their essence,
are expansive matrices of transistors and often multiplies in size compared to the processor
cores that feed data to them. This circumstance implies a high static energy consumption. A
comparative study, focused on EEG-related SoCs [71], confirms this assumption. According
to the study, an SoC with a hardware-implemented neural network ([72]) consumes up
to 1.589 mW, while a conventional, processor-based one ([73]) draws up to 37 nW. This
comparison clarifies that the choice of the algorithm may subsequently decide whether a
battery-powered operation of the system is feasible.

On the other hand, conventional processor-based algorithms may have higher compu-
tation latency than hardware-implemented neural networks. Again, the epilepsy detection
systems of [72,73] can be considered as examples. The first publication states that it can
produce results within 2 s. The later one specifies a latency of 0.16 s. However, in the later
case, the bottleneck is the processor that calculates the features that are then presented to
the neural network. The network itself requires 250 clock cycles in order to generate results.
When driven with a 8 MHz clock (as it is the case in [73]), this corresponds to a latency
of 31.25 µs. With respect to diagnostic and therapeutic NEBAs, the latency is one of the
key design drivers. This is especially true for neuro-feedback therapy applications. In this
constellation, the patient and the NEBA form a back coupled system. Delays introduced
by the NEBA may lead to the instability of the measured data since the patient may be
presented with outdated stimuli. This behavior has been surveyed in [74], where it has
come to the conclusion that delays of more than 1 s lead to neuro-feedback sessions with
no noticeable therapeutic success. Fast computation, therefore, has to be a high priority in
NEBA design.

2. Feasibility: “The cost of the SoC shall be low, and its application shall be simple.”

An inexpensive NEBA device ensures a low entry barrier for its usage. By achieving
this requirement, widespread clinical usage may be enabled. The demand for a low-cost
electronic device can often be translated to short development cycles with low staff effort.
This circumstance constrains the types of SoC that can be used in such a development
project to Platform SoCs (PFSoCs). This variety of SoC focuses on a general-purpose
approach to achieve lower monetary costs. Re-usability through programmability enables
mass production, hence lowering the price tag for the device. Some PFSoCs are part of an
ecosystem of tools (e.g., operating systems, standardized interfaces, compilers, etc.), which
further accelerates the development with this kind of SoC. Their counterpart are domain-
specific SoCs (DSSoCs). These are highly specialized designs with superior measurements
in performance and area consumption. PFSoCs are often designed from scratch and thus
require substantially more monetary and design effort.

Examples for EEG-related DSSoCs would be the patient mood detection system pro-
posed by [75] and a sleep staging SoC stated by [76]. PFSoCs are implemented by [77,78].

Another consideration has to be taken with respect to the mobility of the device.
The ideal device is a battery-powered, transportable, and wireless NEBA headset, which
can be read out via a laptop or smartphone. This allows test personnel and clinicians
to be independent of the clinical infrastructure and enables them to bring the therapy
equipment to the patient. By developing such a mobile device, its application is exceedingly
simplified when compared to other professional EEG-related devices. A study conducted
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in [79] suggests that mobile devices can achieve similar accuracy levels when compared to
traditional EEG devices.

The transportability implies a small form factor. As in this regard, virtually any SoC is
negligible in size, and the dimensions of the device are mainly determined by the number
and scale of the attached peripherals (i.e., scalp electrodes). Therefore, no SoC-specific
trade-offs have to be considered with regards to transportability. The implications, which
are introduced by the requirement of being battery-powered, have already been discussed
under the point “Accuracy”. The requirement for being wireless will be elaborated upon
under the point Interpretability.

3. Robustness: “The result shall be impervious to noise.”

EEG signals are typically in the regime of several µV and therefore susceptible to
internal and external noise. External noise refers to disturbances that are induced from
outside the human body, e.g., 50/60 Hz mains hum, wireless communication, or poor
electrode-scalp contact. Internal noise originates, for instance, from the eye movement of
the patient. The SoC has to be able to detect the signal artifacts induced by such events
and has to filter them out or has to at least signal that the result is compromised. By
using more elaborate analog front ends, the external noise can be suppressed. However,
this often has to be bought with increased energy consumption. The power efficiency
factor (PEF) provides a figure of merit for how efficiently noise is filtered with regards
to energy consumption. The formula is depicted in Equation (1), where Vrms

noise is the root
mean square (RMS) value of the input-referred noise, Ptot denotes the total drawn power,
Vt is the thermal voltage, k is the Boltzmann’s constant, T is the temperature in Kelvin,
and BW is the bandwidth of the circuit. An efficient way of EEG signal conditioning is the
implementation of chopper amplifiers. In [80], an analog frontend with a chopper amplifier
is presented, where PEF = 3.8 is achieved. By stacking amplifier circuits, the chopper
principle can be taken even further, and a PEF of 0.85 can be achieved [81].

PEF = Vrms
noise

2 2Ptot

πVt · 4kT · BW
(1)

Internal noise is produced within the EEG signal bandwidth. This means that it has
to be suppressed algorithmically. Independent component analysis (ICA) is one of those
algorithms and is implemented in order to reject eye blink artifacts. Typically, ICA is a
statistical method applied to static data. However, in [82], an EEG system is proposed that
implements an ICA variant. This ICA version specifically allows the real-time processing
of EEG signals. This results in a more robust signal acquisition but also introduces latency
between the neurological event and its detection by the EEG system. (In [82], a latency
of 0.25 s has been introduced.) Furthermore, additional analog channels may have to be
considered (a total of eight channels are used in [82]), resulting in an increase in scalp
electrodes. This inevitably leads to a bulkier device, which contradicts the issues discussed
under the point “Feasibility”. The algorithm proposed in [83] offers a remedy for this
circumstance by implementing a curve fitting method that identifies eye blink artifacts by
certain inflection points. After such an artifact has been detected, it is subtracted from the
raw EEG signal. It has been shown that this method is feasible even for single-electrode
setups.

4. Interpretability: “The result of the SoC shall be accessible and comprehensible.”

Ultimately, the computational result of the SoC has to be displayed to the medical per-
sonnel in order to enable patient evaluation. This circumstance poses two main challenges.
Firstly, the transmission of the result data and, secondly, the comprehensibility of the data.
Regarding the challenge of data transmission, a mobile device shall be assumed. Given this
requirement, the favorable transmission method would be wireless technology. However,
using wireless media brings up the question of whether data processing shall be carried
out on the SoC or remotely (e.g., on the displaying device). This consideration does not
only include concerns regarding the energy consumption of the SoC but also privacy issues.
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In case processing is conducted locally on the NEBA device, the transmitted data hold
highly concentrated, patient-specific data. These data may be relevant with respect to
patient–doctor confidentiality and therefore have to be encrypted. Hence, the SoC also has
to implement encryption functionality, which further increases the complexity. If only raw
data are sent, encryption is optional since the expressiveness of such data is limited. In [76],
it was decided to implement the processing on the SoC. The main driver for this decision
was the gain in flexibility on the receiver end. Processing results are sent via the Bluetooth
Low Energy protocol. This means that any device that supports that protocol (i.e., virtually
any modern smartphone, tablet, or laptop) can receive the results of the SoC. However,
data privacy was no concern of this publication.

Any serious diagnostic and therapeutic method has to be comprehensible. With
regards to NEBAs, this means that the data on which the final decision is based on have
to be expressive and have to be accessible to the medical personnel. A prime example
for expressiveness has already been given with the X-ray image in Section 4. Although
otherwise promising, traditional neural networks are the opposite of expressive. The output
of such a network is often limited to a boolean value, which leaves no space for additional
interpretation. The evaluation of the neural network’s neurons is no remedy either since
their causal relationship is hard to analyze. Without further efforts, neural networks are,
therefore, not fit for therapeutic or diagnostic applications. One of such efforts is presented
in [84], where an additional explanatory layer is introduced. This layer provides a heat map
that allows the interpretation of the neural network’s decision. By giving that possibility,
the method qualifies itself for clinical usage.

6. Conclusions

This paper gave an overview of the pathology of ADHD, EEG as a diagnostic tool,
and conventional EEG-supported diagnosis of ADHD. Potential new measurement modes,
which aim for more accurate ADHD diagnoses, have been presented. A system-level design
framework has been shown, which shall enable fast and cost-effective development of
NEBAs. Finally, design considerations regarding EEG-related SoCs have been taken into
account and have been discussed.

The shown methods indicate that there is still considerable room for improvement
in NEBAs, especially with regards to accuracy, feasibility, interpretability, and robustness.
The application of SoCs enables the implementation of new and more complex algorithms
while simultaneously allowing mobile and wireless operation. This is especially evident
when comparing the novel designs to the traditional TBR-based systems. Preliminary
studies achieve an accuracy of 93.65%, whereas the accuracy of TBR-based methods has
not gone beyond 54%. By implementing new development principles, such as system-level
frameworks, NEBA devices can be made cheap and accessible, thus enabling widespread
clinical usage.
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