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Abstract: In France, high-speed railway lines are powered by a 2× 25 kV/50 Hz electrification system.
The substations include two single-phase transformers connected to the high-voltage electrical
transmission network on different pairs of phases according to a so-called “V-connection scheme”. In
practice, due to the large variations in the power absorbed by the trains, this connection does not
make it possible to satisfactorily limit the unbalance in the three-phase voltages. In order to correctly
size a balancing system to be associated with the substation, it is necessary to calculate, with precision,
the voltage unbalance factor as a function of the power drawn by the trains. In its first part, this paper
presents modelling of the substation and proposes an algorithm which allows for the calculation of the
upstream line voltage as a function of the power consumption at the secondary of the transformers.
The voltage unbalance factor can then be determined over a long period of operation. In the second
part of this paper, the same approach is applied with an unbalance-compensator based on Steinmetz
circuits controlled by AC choppers. Finally, in both cases, the results of the calculations are validated
by simulations performed with PLECS simulation software.
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1. Introduction

The “2× 25 kV” railway electrification system was first used in 1972 on the Shinkansen
Tokaido high-speed line in Japan, connecting the cities of Osaka and Yokohama [1]. In
France, this power supply system was installed for the first time on the Paris–Lyon high-
speed railway line in 1981 [2]. The principle, as presented in Figure 1, relies on a three-wire
circuit: the substation utilizes a single-phase transformer with two secondary windings
which supply the contact-line and a feed wire with voltages in phase-opposition. Auto-
transformers, regularly distributed along the line, boost the contact line voltage.
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1. Introduction 
The “2 × 25 kV” railway electrification system was first used in 1972 on the Shinkan-

sen Tokaido high-speed line in Japan, connecting the cities of Osaka and Yokohama [1]. 
In France, this power supply system was installed for the first time on the Paris–Lyon 
high-speed railway line in 1981 [2]. The principle, as presented in Figure 1, relies on a 
three-wire circuit: the substation utilizes a single-phase transformer with two secondary 
windings which supply the contact-line and a feed wire with voltages in phase-opposition. 
Autotransformers, regularly distributed along the line, boost the contact line voltage.  

 
Figure 1. Principle of the “2 × 25 kV” railway electrification system. 

When a train is located between two autotransformers, at the output of a substation, 
the current in the rails is canceled and the electrical power absorbed by the train is trans-
mitted by both the contact line and feed wire at a voltage of 50 kV; this halves the currents 
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Figure 1. Principle of the “2 × 25 kV” railway electrification system.

When a train is located between two autotransformers, at the output of a substa-
tion, the current in the rails is canceled and the electrical power absorbed by the train
is transmitted by both the contact line and feed wire at a voltage of 50 kV; this halves
the currents circulating in the secondary windings of the transformer. Compared to the
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classical two-wire 25 kV railway electrification system, the voltage drops and the Joule
losses are lowered [3,4]. This is why the “2 × 25 kV” system is commonly used worldwide
for supplying railway high-speed lines.

Due to the high-power supply of a high-speed line substation, it is also necessary
to limit the voltage unbalance on the three-phase power grid. As shown in Figure 2, the
substation uses a V-connection scheme with two single-phase transformers supplied by
two line-to-line voltages. As a result, a neutral point is created at the substation and the
power supply of the railway line is divided into two sectors.
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Figure 2. High-speed line substation with two transformers in “V-Connection”.

Usually, in V-connection substations, active and reactive power measurements are
carried out at the secondary windings of the transformers. As a result, the primary winding
currents are unknown and the calculation of the Voltage Unbalance Factor (VUF) at the
Interconnection Point (IP) is an issue, as described in Section 2. Several authors have
proposed empirical formulas intended to determine the unbalance factor using the apparent
powers. However, as they do not consider separately the active and reactive powers, these
calculations remain inaccurate [5–7]. Therefore, the first part of this paper presents an
algorithm which allows for the line-to-line voltages at the input of the substation to be
determined as a function of the power measurements provided by the remote metering
system. Then, knowing the line-to-line voltages on the three-phase network, the VUF
calculation is performed. A substation of the SNCF (French National Railways), located on
the high-speed line between Paris and Strasbourg, has been considered as an application
case. In the second part of the paper, the same algorithm is used to consider the connection
of a voltage balancing system at the primary side of the substation. In all cases, the results
of the calculation method are validated by simulations carried out with PLECS software [8].

2. Calculation Method for the Voltage Unbalance Factor

Nowadays, the SNCF traction substations are equipped with remote metering systems.
At the request of the Transmission System Operator (TSO), the SNCF initiated a campaign
to calculate the VUF at the connection points of traction substations. Active and reactive
powers, averaged over 10 min, are stored and the number of events exceeding a 1% unbal-
ance over a one-year period is recorded. In the future, substations whose VUFs regularly
exceed 1% should be equipped with voltage balancing systems. The circuit presented
in Figure 3 constitutes the basis of this study. The high-voltage electrical transmission
network is modeled as an ideal three-phase voltage source with a positive phase-sequence,
associated with a series RL circuit. The parameters of this impedance are calculated from
the values of the short-circuit powers given by the TSO at the interconnection points of
the traction substations. The transformers’ models include the turns ratios, the magnetiz-
ing inductances, the core-loss resistances, the leakage inductances, and the resistances of
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each winding. These parameters are obtained from the data provided by the transformer
manufacturer. The loads connected to the secondary windings of the two transformers are
modeled by current sources operating at constant active and reactive powers. The powers
(P and Q) correspond to those recorded by the remote metering systems.
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Figure 3. Diagram of the electrical circuit considered for the calculation of the VUF in the case of
substations with V-connection schemes.

In order to determine the line-to-line voltages at the primary side of the two transform-
ers and then to calculate the VUF, it is first necessary to determine the currents and voltages
at the secondary side. Therefore, ten unknown complex quantities have to be determined:

• US0T1, US1T1, IS1T1, US2T1, IS2T1 for Transformer 1; and
• US0T2, US1T2, IS1T2, US2T2, IS2T2 for Transformer 2.
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To determine these complex quantities, it is necessary to solve a system of ten equations
with ten unknowns.

For Transformer 1, the following relationship between voltages and currents can be
written from the circuit of Figure 3:

IHT_T1 = m1(IS1T1 + IS2T1) +
US0T1

ZtT1·m1
(1)

with IHT_T1 corresponding to the current at the primary side of Transformer 1.

US0T1 = US1T1 + ZS1T1·IS1T1 (2)

For the first (“upper” in Figure 3) secondary side of Transformer 1.

US0T1 = US2T1 + ZS2T1·IS2T1 (3)

For the lower secondary side of Transformer 1.
Similarly, the expressions for Transformer 2 are:

IHT_T2 = m2(IS1T2 + IS2T2) +
US0T2

ZtT2·m2
(4)

with IHT_T2 corresponding to the current at the primary side of Transformer 2.

US0T2 = US1T2 + ZS1T2·IS1T2 (5)

For the upper secondary side of Transformer 2.

US0T2 = US2T2 + ZS2T2·IS2T2 (6)

For the lower secondary side of Transformer 2.
The phase-to-phase voltages on the primary side are defined as:

U12 = E12 − Zcc
(
2IHT_T1 − IHT_T2

)
(7)

and
U23 = E23 − Zcc

(
2IHT_T2 − IHT_T1

)
(8)

Relations established from Kirchhoff’s laws should be completed by the complex
apparent powers at each secondary winding of the transformers. The S1T1, S2T1, S1T2, S2T2
powers are directly calculated from the power measurements:

SS1T1 = US1T1·I∗S1T1 = PS1T1 + jQS1T1

SS2T1 = US2T1·I∗S2T1 = PS2T1 + jQS2T1

SS1T2 = US1T2·I∗S1T2 = PS1T2 + jQS1T2

SS2T2 = US2T2·I∗S2T2 = PS2T2 + jQS2T2

Then, the complex apparent powers, which are at the primary side of Transformers 1
and 2, can be calculated by Relations (9) and (10), respectively:

U12 × IHT_T1
∗ = ZPT1 × I2

HT_T1 +
U2

S0T1
ZtT1

∗×m2
1
+ ZS1T1 × I2

S1T1 + SS1T1

+ZS2T1 × I2
S2T1 + SS2T1

(9)
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where S1T1 and S2T1 are the complex apparent powers for both secondary windings of
Transformer 1, determined from the power measurements:

U23 × IHT_T2
∗ = ZPT2 × I2

HT_T2 +
U2

S0T2
ZtT2

∗×m2
2
+ ZS1T2 × I2

S1T2 + SS1T2

+ZS2T2 × I2
S2T2 + SS2T2.

(10)

Expressions (1) to (10) correspond to a system of non-linear equations with ten complex
electrical values. Indeed, the relations of the complex apparent powers involve products of
voltage and current, which are unknown quantities. In this context, an iterative numerical
method has been selected [9]. The principle of the method used is illustrated by Figure 4:
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Figure 4. Principle for determining voltages and currents.

The Equations from (1) to (8) are written in a form that allows them to be solved by
iterative methods: the sum of the voltages in a mesh is zero and the sum of the currents at a
node is also zero. In addition, the power balance, given by Relations (9) and (10), completes
the requirements of the objective functions that are used to search for the final (converged)
set of voltage and current values.

2.1. Method Description

The iterative methods are based on the error calculation, which starts from an ini-
tial conditions vector [x0mi] and which, by successive approaches, converges toward the
solution for a given operating point. Therefore, they involve evolving the vector [θk] to
minimize an error criterion corresponding to the sum of the square of the errors. In other
words, the objective of the method is to find the solution vector

[
θoptimum

]
such that the

function Jθ = f (θ) is a minimum for that presented above. It is therefore an unconstrained
optimization problem such as:

min [ Jθ ] = min
i=20

∑
i=1

(εi)
2 (11)

This technique is based on three important choices, which are as follows.
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1. The initial conditions: A good knowledge of the initial conditions offers a reduced
computation time (lower number of iterations, allowing for faster convergence to-
wards a solution) and a better (more accurate) convergence. In the considered case,
the initial conditions are calculated by determining the powers at the output of the
transformers and neglecting the voltage drops in all the series impedances.

2. The recurrence method: Due to the non-linear nature of the model, the Levenberg-
Marquardt algorithm has been used, which is a deterministic algorithm. This means
that for the same starting point, the algorithm will always give the same result. It
combines two algorithms: the gradient descent method when the observed values
are “far” from the optimum (the first derivative is used) and the Gauss–Newton
method when the observed values are close to the optimal solution (use of the second
derivative). Thus, it is possible to ensure a more robust convergence with a low
resolution time.

3. The stopping criterion: For the practical use of such a method, it is necessary to
introduce a criterion to interrupt the iterative process when the approximation is
judged “satisfactory”. For that, several choices are possible:

• define a maximum number of iterations;
• apply a tolerance δ on the parameter’s increment (observation of two successive

iterations); in this case, the iterations end when |θk − θk+1| ≤ δ;
• set a tolerance ε on the criterion of the objective function; in this case, the iterations

end when |Jθk − Jθk+1| ≤ ε; and
• apply a tolerance µ on the gradient of the objective function J′θ ; the iterative process

will then be interrupted when J′θ ≤ µ.

In our case, the δ-stopping criteria have been attributed a value of 1× 10−3. This value
reflects the relative tolerance accepted on the parameter’s evolution.

This method has been implemented in Matlab software and the results for a real case
are presented in the next section.

2.2. Case Study

The SNCF has 47 substations with V-connections for more than 2800 km of high-speed
lines. The traction substation located at “Trois Domaines” on the high-speed line between
Paris and Strasbourg is considered as an application case (Table 1).

Table 1. “Trois domaines” substation characteristics.

Circuit Parameters

Power supply voltage (kV) 225
Upstream network short-circuit power (MVA) 1304

Transformer power (MVA) 2 × 27.5
Transformer 1 voltage ratio 0.122
Transformer 2 voltage ratio 0.122

2.2.1. Analysis of the Algorithm Operation for one Operating Point of the Substation

Active and reactive powers measured at the secondary sides of the two transformers
are given in Table 2.

Table 2. Active and reactive power measurements.

Power Transformer 1 Transformer 2

Active power Secondary 1 (MW) 3.29 11.34
Reactive power Secondary 1 (MVAR) 0.33 4.06

Active power Secondary 2 (MW) 2.54 7.68
Reactive power Secondary 2 (MVAR) 0.23 2.28
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For this operating point, Table 3 summarizes the obtained results after running the
Matlab calculation routine.

Table 3. Matlab calculation results.

Iteration Residual

0 1606 × 1012

1 4918 × 109

2 862,025
3 1 5835 × 10−10

1 Optimization stopped because the parameter’s increment, δ, is less than 1 × 10−3.

Starting from the initial conditions (Iteration 0), the algorithm finds a solution and
converges in three iterations, and the stopping criterion is the relative value of the parame-
ter’s evolution. The residual value corresponds to the square of the error of the objective
function for each iteration, as follows:

Residual =
(
∑ J2

θ

)
k

(12)

The residual value of 5835 × 10−10 confirms the fact that the solver has converged to
an acceptably accurate solution.

Figure 5 shows the evolution of the currents (real and imaginary parts) at the secondary
side of the transformers according to the rank of the iterations. The solution found is close
to the starting point, highlighting the importance of defining “good” initial conditions.
From Iteration k = 1, the values evolve slightly, which leads to a fast convergence towards
the solution.
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2.2.2. Calculation of Voltage Unbalance Factor

Knowing the currents at the secondary side of the transformers, it is then possible to
calculate the complex values of the currents and the voltages at the primary side of the
substation. Using the Fortescue method [10,11], the symmetrical voltage components of the
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positive and negative sequences of the three-phase voltage system at the interconnection
point of the substation can be calculated according to Relations (13) and (14):

U+ =
1
3

(
U12 + aU23 + a2U31

)
(13)

U− =
1
3

(
U12 + a2U23 + aU31

)
(14)

where the complex operator ‘a’ is defined as a = ej 2π
3 .

The voltage unbalance factor, also known as the “voltage asymmetry factor”, is defined
as the ratio of the negative and the positive sequence modulus:

VUF =

∣∣U−∣∣∣∣U+
∣∣ (15)

For the considered operating point, the calculated unbalance factor is 1.55%.

2.2.3. Calculation of the VUF over a Long Period

The method previously presented is used to determine the evolution of the VUF over
a one-year period. The calculation is carried out from average 10 min active and reactive
power data recorded by the telemetry system; that is a total of 52,560 operating points to be
considered per year. Figure 6 summarizes the number of operating points that exceed the
1% limit.
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Figure 6. Number of out-of-limit operating points vs. VUF without balancing system over one year.

In principle, a VUF of higher than 1% is prohibited by the TSO. Nevertheless, a
tolerance of a few tens of events over a year beyond this limit is accepted. Thus, the analysis
of the calculation results clearly shows that the current situation is not acceptable and
necessarily requires the installation of a balancing system.
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3. Voltage Unbalance Calculation with the Compensation System Connected

There are mainly two voltage-balancer topologies: the voltage source inverter
(VSI) [12–14] and the High Voltage Balancing System (HVBS). The second solution re-
lies on a Steinmetz circuit and combines both inductors and capacitors whose impedances
are continuously controlled by means of AC choppers [15]. This approach is more attractive
than the inverter solution (VSI) due to lower losses in the power semiconductors and
the smaller sizes of all passive components [16]. C.P. Steinmetz showed that the voltage
unbalance caused by unbalanced currents can be eliminated by adding a symmetrization
inductor and a symmetrization capacitor to the original circuit [17]. Figure 7 illustrates
this principle for a resistive load connected across two lines. In this case, the three-phase
currents I1, I2, I3 will be balanced as long as Relation (16) is satisfied.

Lω =
1

Cω
= R
√

3 (16)
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Figure 7. Basic principle of the Steinmetz balancing circuit.

Relation (16) can also be written in terms of the active power (P) absorbed by the
resistive load and the reactive powers in both inductor L and capacitor C:

|QL| = |QC| =
P√
3

(17)

For a variable resistive load, the reactive power in inductor L and capacitor C have
to be adjusted. In the case of a single-phase traction substation, the balancing circuit
is composed of two branches (i.e., inductive and capacitive branches) with several AC
choppers connected in series, according to Figure 8. A three-phase transformer is used
to stepdown the voltage level. The duty cycle “α” of the AC choppers is then controlled
according to Relation (18), where P is the active power absorbed by the load (i.e., the trains)
and QX is the maximum reactive power in the inductive and capacitive branches:

α2 =
P√

3·QX
(18)

The main characteristics of this compensation system are summarized in Table 4.
In the case of a substation using a V-connection, the High Voltage Balancing System

(HVBS) has to include an active Steinmetz circuit for each transformer. The connection is
given in Figure 9.
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Table 4. Characteristics of the voltage balancer based on the Steinmetz circuit controlled by AC choppers.

Parameters Values

Transformer nominal power, Sn (MVA) 7
Turns ratio (20 kV/225 kV) 0.08

Nominal reactive power per branch, Qx (MVAR) 3.3
Number of AC choppers in series 36

IGBT collector-emitter voltage, VCES (V) 1700
IGBT DC collector current, IC (A) 450

Switching frequency (kHz) 18
Inductive branch inductor LSt (mH) 9.75

Capacitive branch auxiliary inductor Laux (mH) 2.4
Capacitive branch capacitor CSt (µF) 750

Input filter capacitor Cf (µF) 22

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17 
 

 

In the case of a substation using a V-connection, the High Voltage Balancing System 
(HVBS) has to include an active Steinmetz circuit for each transformer. The connection is 
given in Figure 9. 

 
Figure 9. Implementation of the High Voltage Balancing System in a substation with a V-connection scheme. 

To take into account the influence of the HVBS on the VUF, the averaged model of 
the AC choppers was considered. Thus, the inductive and capacitive branches are mod-
eled by two variable complex impedances, namely 𝑍௅ and 𝑍஼, which depend on the duty 
cycles 𝛼ଵ and 𝛼ଶ. The control of the balancing system is very simple: the duty cycle of 
each active Steinmetz circuit is fixed according to the total active power delivered by the 
corresponding transformers: 𝛼ଵଶ = 𝑃ௌଵ்ଵ + 𝑃ௌଶ்ଵ√3. 𝑄௑  (19) 

and 𝛼ଶଶ = 𝑃ௌଵ்ଶ + 𝑃ௌଶ்ଶ√3. 𝑄௑  (20) 

Figure 10 illustrates the final circuit, which is considered to establish the new equa-
tions of the electrical circuit. 

Figure 9. Implementation of the High Voltage Balancing System in a substation with a V-connection
scheme.

To take into account the influence of the HVBS on the VUF, the averaged model of the
AC choppers was considered. Thus, the inductive and capacitive branches are modeled by
two variable complex impedances, namely ZL and ZC, which depend on the duty cycles α1
and α2. The control of the balancing system is very simple: the duty cycle of each active
Steinmetz circuit is fixed according to the total active power delivered by the corresponding
transformers:

α2
1 =

PS1T1 + PS2T1√
3·QX

(19)
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and
α2

2 =
PS1T2 + PS2T2√

3·QX
(20)

Figure 10 illustrates the final circuit, which is considered to establish the new equations
of the electrical circuit.
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Figure 10. Equivalent circuit of the substation with the HVBS connected.

With this new configuration, Equations (7) and (8), which express the phase-to-phase
voltages, become:

U12 = E12 − Zcc

(
2IHT_T1 − IHT_T2 + U12

(
1

ZL1
+

2
ZL2

+
1

ZC2

)
+ U23

(
1

ZL1
− 1

ZC1
+

1
ZC2

))
(21)

and
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U23 = E23 − Zcc

(
2IHT_T2 − IHT_T1 + U12

(
1

ZL1
− 1

ZL2
+

1
ZC2

)
+ U23

(
1

ZL1
+

2
ZC1

+
1

ZC2

))
(22)

These two expressions form a system of two equations with two unknown variables
that can be solved numerically and thus the calculation of VUF is carried out in the same
way as in Section 2.2.2.

According to the power consumption of the traction substation located at “Trois Domaines”,
the calculation results showed that it is necessary to install two HVBS in parallel in order to
bring the VUF to a maximum value of around 1%. Figure 11 gives the result of an analysis over
a one-month period considering the measurements of active and reactive powers averaged
over 10 min, which represents 4320 points. Before compensation, 131 points are beyond 1%
and only three points after compensation. Considering a period of one year, 1627 operating
points out of 52,560 were over the 1% limit. With two HVBS connected in parallel, only
69 operating points exceed 1% and the averaged value of VUF over one year is 0.53%, which is
perfectly tolerable for the TSO.
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Figure 11. Data analysis over a one-month period: the red curve represents the voltage unbalance
factor without compensation and the green curve represents the voltage unbalance factor with two
Steinmetz active compensators connected.

The entire circuit, including the two HVBSs, was implemented in PLECS software
using the averaged model of the AC choppers [18]. To illustrate the calculation results,
simulations were performed for the operating point presented in Table 2.

Figure 12a shows the negative sequence components of the three-phase currents at differ-
ent points of the circuit. The HVBS absorbs a negative sequence current in phase-opposition
with that of the substation. The negative sequence current at the point of interconnection is
halved, which is enough to bring the VUF back below 1%. Figure 12b shows the three-phase
current waveforms at the substation and at the interconnection point. Specifically, these
waveforms highlight the fact that the HVBS rebalances the magnitude and the phase of the
three-phase currents at the interconnection point.
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Figure 12. (a) Negative sequence currents. (b) Substation currents (primary of both transformers
T1 and T2) and upstream network currents.

The simulations show the effect of the HVBS on the VUF. Figure 13 shows, in the complex
plane, the positive and negative sequence voltages before and after compensation. Phase-
to-phase voltage E12 is the reference of E12 = E12e−j0. The negative sequence voltage is
decreased by 50% and the VUF goes from 1.55% to 0.77%. The simulation results also confirm
the validity of the calculation method proposed in Section 2. As a comparison, considering
the same operating point, the empirical formulas presented in papers [5,6] give, respectively,
a value of the unbalance factor of 1.34% and 1.37%, i.e., a relative error of 13.5% and 11.7%. It
should be noted that these formulas cannot be used with a balancing system.
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4. Conclusions

The calculation method presented in this paper makes it possible to accurately deter-
mine, from power telemetry, the VUF for traction substations with V-connection schemes.
The processing of the 52,560 points corresponding to a year’s operation was carried out in
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1.5 h on a desktop computer. It moves away from empirical methods which are still used in
practice.

• A complete modelling of the substation, including the transformers and the upstream
electric network, was proposed.

• An iterative algorithm was proposed for solving the circuit equations. Once all the
electrical quantities have been calculated, it is possible to determine the VUF at the
connection point of the substation.

• In Section 3, the circuit equations were easily modified to include a balancing sys-
tem based on a Steinmetz circuit controlled by AC choppers and the same iterative
algorithm was used.

In all cases, the results obtained from the iterative calculation method were compared
with simulations carried out with PLECS power electronic circuit simulation software. The
error on all voltage and current quantities always remains as less than 1%. Finally, the
calculation tool presented in this paper is essential for a railway network operator. On the
one hand, it allows for the determination of the VUF from the power consumption of a
substation and, on the other hand, it makes it possible to analyze the effect of installing a
balancing system based on a Steinmetz circuit controlled by AC choppers.

Author Contributions: Methodology, P.L. and D.F.; software, D.F.; validation, P.L.; writing—original
draft preparation, D.F.; writing—review and editing, D.F., P.L. and E.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by ADEME (French Agency for Ecological Transition) in the frame
of the HVBS (High Voltage Balancing System) project. URL: https://librairie.ademe.fr/recherche-et-
innovation/579-hvbs-high-voltage-balancing-system.html (accessed on 2 February 2022).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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