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Abstract: Exploration in unknown dynamic environments is a challenging problem in an AI sys-
tem, and current techniques tend to produce irrational exploratory behaviours and fail in obstacle
avoidance. To this end, we present a three-tiered hierarchical and modular spatial exploration model
that combines the intrinsic motivation integrated deep reinforcement learning (DRL) and rule-based
real-time obstacle avoidance approach. We address the spatial exploration problem in two levels
on the whole. On the higher level, a DRL based global module learns to determine a distant but
easily reachable target that maximizes the current exploration progress. On the lower level, another
two-level hierarchical movement controller is used to produce locally smooth and safe movements
between targets based on the information of known areas and free space assumption. Experimental
results on diverse and challenging 2D dynamic maps show that the proposed model achieves almost
90% coverage and generates smoother trajectories compared with a state-of-the-art IM based DRL
and some other heuristic methods on the basis of avoiding obstacles in real time.

Keywords: spatial exploration; hierarchical framework; deep reinforcement learning; intrinsic moti-
vation; path planning; obstacle avoidance

1. Introduction

Spatial cognitive behaviour modelling is the basic content of human cognitive be-
haviour modelling, and is one of the hottest topics in the field of neuroscience and computer
science. At its core, the agent in an AI system needs to explore the environment to gain
enough information about the spatial structure. The possible applications include, for exam-
ple, search and rescue (SAR) missions, intelligence, surveillance and reconnaissance (ISR),
and planetary exploration. Therefore, it is important to design an efficient and effective
exploration strategy in unknown spaces.

At present, autonomous spatial exploration falls into two main categories: traditional
rule-based exploration and intelligent machine-learning-based exploration. The rule-based
exploration methods such as frontier-based method [1] is simple, convenient and efficient.
This kind of approach rely on an expert feature of maps, expanded the exploration scope
by searching for the next optimal frontier point which is between free points and unknown
points according to the explored map. However, the locomotion of the agent driven by
this method is mechanical and rigid, and it is also difficult to balance between exploration
efficiency and computational burden. As an effective tool for autonomous learning strate-
gies, deep reinforcement learning (DRL) has been more and more widely used in spatial
exploration. However, DRL suffers much from the inherent “exploration-exploitation”
dilemma, resulting in sampling inefficiency if the extrinsic rewards are sparse or even non-
existent. To solve the problem of sparse rewards, many recent DRL approaches incorporate
the concept of intrinsic motivation (IM) from cognitive psychology to produce intrinsic
rewards to make the rewards denser. However, intrinsic motivation based enhancement
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is insufficient for efficient exploration in unknown spaces. The main reason is that IM
treats all unseen states indiscriminately and ignores the structural regularities of physical
spaces. In addition, it is difficult for end-to-end DRL agent to simultaneously learn obstacle
avoidance, path planning and spatial exploration from raw sensor data.

To this end, we extend our previous work [2] and propose a three-tiered hierarchical
autonomous spatial exploration model, named Intrinsic Rewards based Hierarchical Explo-
ration with Soft-adaptive Finite-time Velocity Obstacle (IRHE-SFVO), to explore unknown
static and dynamic 2D spaces. This model consists of two parts: a Global Exploration Mod-
ule (GEM) and a Local Movement Module (LMM). GEM is used to learn an exploration
policy to produce a sequence of target points that will maximize the information gain about
the spatial structure based on the location of the agent, the trace of the agent, and the
explored portions as its spatial memory. Specifically, to make the motion pattern of the
agent more like human beings, GEM is not concerned with the immediate neighbourhood
of the agent, but determines a distant yet reasonably reachable target to be explored next.
Selected based on intrinsic rewards, such targets are usually those with a lot of unexplored
areas around them.

In the local movement phase, this paper designs a hierarchical framework to control
the movement to the target point. We separate this phase into two parts: planning and
controlling. In the planning stage, an optimistic A* path planning algorithm, which can
conduct self-adaptive path planning in a partially known environment, is used to compute
a shortest path between the current location of the agent and the target point. It assumes
that unknown areas are freely reachable and decides whether to replan the global path
according to the ongoing perception. In the controlling stage, we use the improved Finite-
time Velocity Obstacle (FVO), called Self-adaptive Finite-time Velocity Obstacle (SFVO),
and design an optimal velocity function to drive the agent to avoid moving obstacles in
real-time. This allows the agent to reach the target point quickly while avoiding collision
with moving obstacles at the same time.

Working in synergy, the modules in the three levels apply a long-horizon decision-
making paradigm instead of the step-by-step or state-by-state way used by some other
exploration methods [3]. This segmentation not only reduces the training difficulty, but
also tends to generate smooth movements between targets instead of unnatural trajectories.
In summary, the main novelties and technical contributions of this paper include: (a) a
hierarchical framework for spatial exploration that well exploits the structural regularities
of unknown environments, (b) an information-maximal intrinsic reward function for deter-
mining the next best target to be explored, (c) a hierarchical framework for local movement
that combines the global path planning with the local path planning for reaching the target
point rapidly and safely and (d) an optimal velocity function for choosing the best velocity
in collision-avoidance velocity set.

This paper is organized as follows. Section 2 describes related works in automatic
exploration, the DRL based on IM and real-time obstacle avoidance. Section 3 formulates
automatic exploration. Then, we present the details of our proposed algorithm and hy-
perparameter setting in Section 4. In Section 5, we compare our approach against several
popular competitors in a series of simulation experiments, showing that IRHE-SFVO is
promising for spatial exploration. Finally, in Section 6, we summarize our work this paper
and discuss future work.

2. Related Work

In this section, we will describe and analyse the research status and development
trends of autonomous spatial exploration, reinforcement learning based on IM and various
velocity obstacle methods in this section.

2.1. Autonomous Spatial Exploration

At present, the research on autonomous spatial exploration mainly includes two
categories: traditional rule-based autonomous spatial exploration and intelligent machine-
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learning-based autonomous spatial exploration. The mainstream of rule-based method
is frontier-based method proposed by Yamauchi in 1997 [1]. This method detects the
“frontier”, that is, the edges between the free area and the unknown area, then selects the
best “frontier point” by some principles, and the agent moves from the current position to
the selected “frontier point” by path planning and locomotion, so as to finally achieve the
purpose of exploring the whole map. The frontier-based exploration strategy is similar to
the NBV (Next Best View) problem in computer vision and graphics. Similarly, there is a
lot of literature on the second step of frontier-based exploration strategy, i.e., evaluating
and choosing the best frontier. There are generally three types of metrics: (a) cost-based
which select the next target based on the path length or time cost [4–7], (b) utility-based
which select the next target based on the information gain [8,9] and (c) the mixture [10].
Another typical traditional rule-based method is associated with information theory. These
methods leverage some metrics such as entropy [11] or mutual information (MI) [12] to
evaluate the uncertainty of the agent’s position and the evidence grid map to control the
agent to move in the direction of maximizing the information gain. In general, although
the rule-based approach is simple and efficient, the movement mode of the agent driven by
them is mechanical and rigid, and it is also difficult to balance exploration efficiency with
computational burden.

Due to the recent significant advance in DRL, a number of researchers have tried to
solve the exploration problem as an optimal control problem. Tai Lei and Liu Ming [13]
proposed an improved DQN framework to train robots to master obstacle avoidance strate-
gies in unknown environments through supervised learning based on convolution neural
networks (CNN). However, they only solved the collision avoidance problem and failed to
finish the spatial exploration task. Zhang et al. [14] trained an Asynchronous Advantage
Actor-Critic (A3C) agent that can learn from perceptual information and construct a global
map by combining it with a memory module. Similarly, an A3C network in [15] receives
the current map, the agent’s location and orientation as input, and returns the next visiting
direction, given that the space around the agent is equally divided into six sectors. Chen
et al. [16] designed a module of spatial memory and used the coverage area gain as an
intrinsic reward, and accelerated the convergence of policy through imitation learning.
Razin et al. [17] used Faster R-CNN to avoid collision and used double deep Q-learning
(DDQN) model to explore unknown space. However, although DRL can solve the problem
of limited dimensions, it has difficulty training in end-to-end control.

To solve these problems, Niroui et al. [18] and Shrestha et al. [19] combined DRL with
a frontier-based method to enable robots to learn exploration strategies from their own
experience. Li et al. [20] proposed a modular framework for robot exploration based on
decision, planning and mapping modules. This framework used DQN to learn a policy
for selecting the next exploration target in the decision module and used an auxiliary
edge segmentation task to speed up training. Chaplot et al. [21] used the Active Neural
SLAM module to address the exploration in 3D environments under the condition of
perception noises. We draw some inspiration from these two works but are more interested
in exploration in 2D environments.

2.2. RL Based on Intrinsic Motivation

To solve the notorious reward-sparse problem, many recent DRL approaches incorpo-
rate the intrinsic motivation from cognitive psychology. Intrinsic motivation is produced
from human’s natural interest in all kinds of activities that can provide novelty, surprise, cu-
riosity, or challenge [22], without any external rewards such as food, money or punishment.

Applying IM to the RL means that the agent generates an “intrinsic reward” by itself
during the interaction with the environment. The formulation of intrinsic rewards can
be roughly divided into three categories, (a) visit count and uncertainty evaluation-based
methods, (b) knowledge and information gain-based methods, and (c) competence-based
methods. The first class of methods, based on upper confidence bound (UCB), estimate the
counts of state visitation in high-dimensional feature space and large-scale state space, to



Electronics 2022, 11, 574 4 of 22

encourage the agent to visit poorly known states. This genre includes the density-based
methods [23,24], state generalization-based methods [25–28] and inference calculation-
based methods [29]. Second, the knowledge and information gain-based methods generally
establish a dynamics model of the unknown environment and measures the intrinsic
rewards using the model’s increased accuracy as the exploration progresses. The specific
formal models of this type include predict inconsistencies based model [30–32], prediction
error based model [3,33–36], learning process based model [37] and information theory
based model [36,38,39]. The third class formulates the intrinsic rewards by measuring the
agent’s competence to control the environment or the difficulty and cost of completing a
task [40]. At present, the DRL based on IM has made great progress relative to the classic
RL in applications with complex state spaces and difficult exploration (such as Atari-57
games) [41].

2.3. Velocity Obstacle

A crucial problem in exploration is how to avoid static and dynamic obstacles in real
time. The known static obstacles are usually considered in global path planning, while
unknown or dynamic obstacles are the focus of local path planning. The common collision
avoidance methods include artificial aperture method (APF) [42], dynamic window method
(DWA) [43] and behaviour method [44]. These methods have strong adaptability and
high efficiency, so many researchers often combine the intelligent control algorithms with
these methods for obstacle avoidance [45,46]. Besides, lazy rapidly-exploring random
tree method (RRT) [47] method is also used for local path planning. However, these
methods above cannot avoid collisions completely with moving obstacles or have certain
randomness which leads to low efficiency of obstacle avoidance such as [47]. Alternatively,
Velocity Obstacle (VO), first proposed by Fiorini et al. [48], is a simple and efficient
algorithm that can avoid static and moving obstacles completely. It generates a conical
velocity obstacle space in the agent velocity space. As long as the current velocity vector is
outside the VO space, the agent will not collide with obstacles at any time in the future.
However, the basic VO has many disadvantages. First, if the agent and moving obstacles
or other agents use VO for local path planning at the same time, it will lead to oscillatory
motion on both sides [49]. Secondly, the VO space excludes every velocity that may lead to
collision, that is, a velocity that can cause a collision after a long time will also be excluded.
This leads to the reduction of the range of optional collision-avoidance velocities in some
scenarios, or even no optional velocity. To overcome these problems, Abe and Matsuo [50]
proposed a common velocity obstacle (CVO) method, which provides collision detection
between moving agents and enables agents to share collision information without explicit
communication. This information allows agents to use the general VO method for implicit
cooperation, so as to achieve the effect of avoiding collision. Guy et al. [51] proposed the
finite time velocity obstacle algorithm (FVO), which expands the optional velocity vector
of the traditional VO algorithm by calculating the collision velocity cone within a certain
time. In order to solve the local oscillation problem Fulgenzi et al. [49] proposed reciprocal
velocity obstacles (RVO) by considering the velocity change of both sides of the agents.

The proposed model in this paper combines the DRL, intrinsic motivation and ve-
locity obstacle. Due to the features of exploration in 2D dynamic spaces, we reshape the
generating paradigm of intrinsic reward. In order to ensure the safe and fast movement
of the agent, we propose another hierarchical approach that combines a variation of the
A* path planning method (called optimistic A*) and improved FVO (called self-adaptive
FVO, SFVO).

3. Problem Formulation

Before giving the details of the proposed model, this section first formulates the
exploration problem in a 2D environment.
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Definition 1. A Working Space, denoted as WSM , represents a 2D grid map of the size M×M.
Any element in WSM can be represented as (x, y), 1 ≤ x, y ≤ M. Each cell in the grid is
represented by T(x, y): T(x, y) = 0 means a free cell while 1 is for a location occupied by an
obstacle. Besides, we assume that the area of each cell is 1.

Definition 2. Definition 2 Observation Range (ObsR) of an agent is the set of any point whose
vertical and horizontal distance to the current position of the agent is not more than the observation
radius (n):

ObsR(xi, yi) = {(x, y)|(|x− xi| ≤ n, |y− yi| ≤ n)} (1)

Definition 3. Exploration Range (ExpR) of an agent is the set of any point whose vertical and
horizontal distance to the current position of the agent is not more than the exploration radius(m),
and it can be covered more than half of the area by the ‘radar wave’ emitted by agent:

ExpR(xi, yi) = {(x, y)|(|x− xi| ≤ m, |y− yi| ≤ m), S((xi, yi)→ (x, y)) >
1
2
} (2)

S((xi, yi)→ (x, y)) means the covered area by the “radar wave” emitted from (xi, yi)
to (x, y). A specific example is shown in Figure 1.

(a) (b) (c)

Figure 1. An example of Exploration Range. (a) shows the obstacles around the agent, where the red
solid circle represents the agent, and the black squares represent two obstacles. (b) shows the range
that can be covered by the “radar wave” emitted from the agent. The gray shaded areas indicate that
these areas are not covered by the “radar wave”. (c) shows whether each cell in this scenario can be
regarded as an explored area under Definition 3 when m = 3. The blue cells are the areas that the
agent has been explored, while the agent has not explored the white areas.

Note that the region observed by the agent does not represent where it has been
explored.As a simple example, imagine that we are searching for gold that cannot be seen
from the earth’s surface, so that we should use a gold detector to explore the region as far
as it can extend into. We cannot find gold using our eyes, but the detector can. In general,
the “detection range” (m) should not be greater than the “length of field of view” (n), i.e.,
m ≤ n and ExpR(xi, yi) ⊆ ObsR(xi, yi).

4. The Proposed Model

This paper combines the advantages of DRL algorithms, traditional non-learning
planning algorithms and real-time collision avoidance algorithms, and propose a novel
approach to solve the exploration problem in the 2D dynamic grid. The proposed model
is modular and hierarchical so that it cannot only exploit the structural regularities of the
environment but also improve the training efficiency of DRL methods. The overall structure
of our model is shown in Figure 2. GEM determines the next long-term target point to be
explored based on a spatial map mt maintained by the agent. LMM takes the next target
point as input and computes the specific action to reach the target point. We use tg to index
the step of selecting the next target in only GEM. For example, we select a target point at
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initial time, t = tg = 1, and we assume the agent takes 10 steps to reach this target and
select a next target point, then t = 11 and tg = 2 at this moment.

Current 

Location (   )tx

Observation

(   )
tO

Observation map (      )

Explored map (      )

Location map (      )

Visited Location (     )
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1:tP
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Next Target 

Point (    )tg

A* path 
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(        )tpath
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Map Builder

No obstacle blocking
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Figure 2. The overview of our IRHE-SFVO. In Global Exploration Module (GEM), the agent uses
the current location and observation to build a spatial map mt, then input mt into Global Policy and
output the next target point that will be explored. The Local Movement Module (LMM) determines
the specific action to reach the target point quickly and safely based on the agent’s current location,
the next target point, and the obstacle map maintained by the agent.

4.1. Global Exploration Module

We want to learn an exploration policy πg that enables the agent to select a location to
explore so that the information gain about the environment can be maximized. For this
purpose, we design an intrinsic reward function, favouring states where the agent can
increase its exploration range at a fastest speed. Proximal Policy Optimization (PPO) [52]
is used for training πg. Importantly, πg is learned on a set of training maps and tested on
another set of unseen maps. This setting is to demonstrate the desirable generalization of
our method across different environments.

4.1.1. Spatial Map Representation

First, as shown in the top block in Figure 2, GEM maintains a four-channel spatial
map, mt, as the input of the global policy. Then, the policy network outputs a next target
point (gtg ) that will be explored. To be specific, the spatial map contains four matrices of the
same size, i.e., mt = {0, 1}4×M×M, where M is the height and width of the explored maps.
Each element in the first channel represents whether the location is an obstacle (OMt):
0 is for a free cell and 1 is for a blocked one. In the beginning, OM0 = {0}M×M based on
the assumption of free space. Each element in the second channel represents whether the
location has been explored (EMt). The third channel encodes the current location (Pt) in a
one-hot manner, i.e., the element corresponding to the agent location is set to be 1, and the
others are 0. The fourth channel labels the visited locations (P1:t) from the initial time to
the current time. The rationality of establishing these four channels is that the agent can
fully exploit all spatiotemporal information useful for target decision-making. In particular,
this elegant design is: (a) to enable the agent to use the structural regularities of the spatial
environment to make correct decisions, (b) to prevent the agent from selecting the points
that have already been explored when choosing the next target point, and (c) to make the
agent select the best next target point based on the current location, considering the time
cost and exploration utility comprehensively.

4.1.2. Network Architecture

The policy network takes mt as input and outputs a gtg 7→ πg(mt; θg), where θg are
the parameters of the global policy. As shown in Figure 3, the spatial map mt is first
passed through an embedding layer and the layer outputs a four-dimensional tensor of
size 4× N ×M×M×M, where N represents the length of each embedding vector. Then,
add the four constituent 3D tensors along their first dimension and we get a tensor with
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rich information whose size is N ×M×M×M. Then, this 3D tensor is passed through
three convolution layers and three fully connected layers successively, and finally outputs a
next target point: gtg . Note that the embedding layer is essential for preserving information
embedded in the input because its input is 0− 1 matrices of size 4×M×M×M, which
are all very sparse. Although the convolutional and pooling operations can extract spatial
structure information, they will result in loss of many valuable information, and ignore
the association between the overall and part as well if we send a matrix to the CNN and
pooling layer directly. Therefore, to ensure the integrity of the information, it is necessary
to map the mt to a higher-dimensional vector first.

0-1

Matrix

Embedding 

Layer Embedding 

Value

...

Embedding 

Value

...

Embedding 

Value

...

Embedding 

Value

...

Embedding 

Value

...

Conv Layer

ReLU

MaxPool

Conv Layer

ReLU

MaxPool

Conv Layer

ReLU

MaxPool

Fully

Connect

ReLU

Fully

Connect

ReLU

Fully

Connect

Softmax

Fully

Connect

Next

Goal

Value

: 4tm M M 
4 N M M  

[0]sum

 ,t g gg x y

tg

Figure 3. The structure of the actor-critic network in GEM. N represents the size of each embed-
ding vector.

4.1.3. Intrinsic Reward

The effectiveness of DRL relies on rewards heavily. However, the exploration task
is a reward-sparse RL problem. To alleviate the problem, we design an intrinsic reward
(denoted by ri

tg
) and combine it with the external rewards (denoted by re

tg
) given by the

environment, i.e., rtg = ri
tg
+ re

tg
, so that the rewards along the exploration trajectory

becomes denser. This is critically helpful to speed up the convergence of the policy and
for the emergence of directed exploration. In literature, possible IM formulations include
“curiosity” [34], “novelty” [53] or “empowerment” [40] to generate intrinsic rewards as
described in Section 2. However, these approaches use blackbox models that cannot be
initialized at each episode because the weights of neural networks cannot be reset in
different episodes, resulting in the intrinsic reward getting smaller and smaller after each
episode under the same scenario. To solve this problem, we design a simple yet effective
intrinsic reward function that resets ri at each episode. We use the increase of the explored
area deduced from EMt when the agent arrives at a new target point as the intrinsic
rewards ri

tg
.

4.2. Local Movement Module

To be able to explore in dynamic spaces, the agent needs both to reach the target point
quickly and avoid colliding with moving obstacles. To achieve this goal, we design another
hierarchical framework in local movement module including two levels: planning and
controlling. In the planning stage, we use optimistic A* algorithm to plan an optimal path
under partial observability, and then divides the path into several segments according to
some rules. The end point of each segment is called a key point. In the controlling stage,
we design an SFVO (Self-adaptive FVO) for the agent to reach these key points sequentially,
and finally completes the movement along the path.
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4.2.1. Planning Stage

There are many global path planning algorithms such as breadth first search , depth
first search and Dijkstra. Instead of using the less efficient Generalized Dijkstra’s algorithm
to solve the Shortest Path Problem (SPP) in [54], we use A* algorithm which has better
search efficiency to plan the optimal global path. The basic A* algorithm performs well
in fully observable environments, but it does not work directly in our task since the OMt
dose not reflect the whole map. So we use a variation of A*, called optimistic A* algorithm.
We assume that all unknown cells of the obstacle map are traversable and then plan a path
between the current position of the agent and the target point. If the agent observes some
static obstacles while moving, then it will replan the path using A* algorithm.

Once an optimal path is computed, we select several key points on this path to guide
the agent reach the target point. For the motion controller, presented below, to drive the
agent to move between them. As shown in Figure 4, this paper categorizes three types of
key points: (a) turning points on the path, (b) boundary points on the path that crosses the
known and unknown region and (c) the destination point of the path, i.e., the target point.

(a) (b)

Figure 4. Examples of key points. The left figure shows the first and third types of key points, while
the right figure shows the second and third types of key points. The green squares are the current
locations of the agent. The blue squares represent the target points, which is also the third type of key
points. The red lines represent the optimal path that was generated by A* algorithm and the orange
squares are the first or second type of key points. The shaded area represents the unknown range of
the agent while the other area represents the known range that has been observed by the agent.

Note that, the second type of key points are selected in the known area. Otherwise,
if we select the boundary point in unknown area (the neighbour square above the orange
square in Figure 4b, an obstacle might be selected as the key point.

In particular, the rationality of the selection strategy is that: (a) each segment of the
path between key points is straight without considering dynamic obstacles, so that it is
convenient for the controller to control the movement; (b) it is applicable to unknown
spatial exploration problems under the partial observation conditions. We always choose
the locations known for the agent as the key point, making its performance more similar to
human exploration behaviour.

4.2.2. Controlling Stage

To avoid colliding with moving obstacles, we propose Self-adaptive Finite-time Veloc-
ity Obstacle algorithm (SFVO) built on FVO. Let A be the agent and B be an obstacle. For
ease of calculation, we assume the agent and obstacles are dish-shaped. We use D(p, r) to
represent a circular region with center p and radius r:

D(p, r) = {q| ‖ q− p ‖< r} (3)
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The finite-time velocity obstacle FVOτ
A|B represents the set of relative velocity values

between A and B that will cause the collision in time τ in the future:

FVOτ
A|B = {v|∃t ∈ [0, τ], tv ∈ D(pB − pA, rA + rB)} (4)

The collision-avoidance velocity (CA) of the agent is:

CAτ
A|B(VB) = {v|v /∈ FVOτ

A|B ⊕VB} (5)

According to the features of autonomous spatial exploration in dynamic environments,
we change the fixed time τ into into adaptive dynamic time τd, i.e., τd

0 = τmax and τd(n) =
τmax − ∆τ · n, n represents the number of rounds of a cycle, ∆τ represents the reduction
of finite time. This method is called Self-adaptive Finite-time Velocity Obstacle (SFVO).
Figure 5 tells that the larger τd we set, the larger range of FVOτd

A|B ⊕VB, and the smaller

range of CAτd

A|B(VB). Therefore, we will adaptively adjust the velocity obstacle range of

the agent by decreasing τd gradually. Specifically, at the beginning, the agent calculates
the CAτd

A|B(VB) under the condition of τd = τmax. If CAτd

A|B(VB) = ∅, decrease the τd by a
fix time interval ∆τ, and then calculate the collision-avoidance velocity again. If there is
still no alternative velocity when τd = 0, the agent stays idle until the next time step to
continue the process above. The pseudo-code of SFVO is shown in Algorithm 1.

|A BFVOτ |A B BFVO Vτ ⊕

Figure 5. FVO algorithm diagram. In the left figure, the shaded area shows the relative velocity that
will cause collision in time in the future. The right figure shows the collision velocity (shaded area)
and collision-avoidance velocity (white area) of the agent given the velocity of the obstacle.

Algorithm 1 SFVO

1: τd ← τmax
2: for τd > 0 do
3: FVOτ

A|B = {v|∃t ∈ [0, τ], tv ∈ D(pB − pA, rA + rB)}
4: CAτ

A|B(VB) = {v|v /∈ FVOτ
A|B ⊕VB}

5: if CAτd

A|B(VB) = ∅ then

6: τd ← τd − ∆τ
7: continue
8: else
9: return CAτ

A|B(VB)

10: end if
11: end for
12: return ∅
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Based on the SFVO, the agent can avoid static and dynamic obstacles in real time, and
its collision-avoidance velocity is vA ∈ CAτd

A|B(VB). However, if there is more than one
element in set vA, how can we choose an optimal velocity that not only drives the agent to
reach the target point quickly, but also minimizes the risk of collision.

Inspired by Kim et al. [55], we design an optimal velocity evaluation function which
consists of two parts: Expected Velocity Direction Evaluation Function ( fv) and Relative
Vertical Distance Evaluation Function ( fd). As shown in Figure 6. The target point of the
agent is known, so the direction of its expected velocity (vv) is the direction from the agent’s
current position points to the target point. So, fv can be expressed as Equation (6).

fv = kv|vv − vA| ⇒ kvcos〈vv, vA〉 = kv
vv · vA
|vv||vA|

(6)

Note that, the action space of the agent in our task is discrete, and the agent moves
one unit at each step, i.e., the length of its velocity is fixed. So cos〈vv, vA〉 is equivalent to
|vv − vA|.

𝐏𝐏𝐴𝐴

𝐏𝐏𝑩𝑩

Target point

𝑟𝑟𝐵𝐵

𝑟𝑟𝐴𝐴 𝐯𝐯𝐴𝐴

𝐯𝐯𝐵𝐵

𝒅𝒅𝑣𝑣

𝐯𝐯
𝜃𝜃

𝐯𝐯𝑣𝑣

Figure 6. Schematic diagram of the expected velocity and the relative vertical distance. The green
disks represent the agent and the obstacle, respectively, and the red point represents the target point.

The relative vertical distance (dv) is defined as Equation (7).

dv = |PA − PB|sinθ =
v× (PA − PB)

|v| (7)

v is the relative velocity of the agent and the obstacle, i.e., v = vB − vA. A smaller dv means
that the obstacle is prone to collide with the agent. Note that dv can be negative according
to Equation (7), indicating that the obstacle is moving away from the agent and there is no
danger for the agent. And the large |dv| is, the safer the agent is. According to the analysis,
fd is designed as Equation (8):

fd =

{
−dv dv ≤ 0
− 1

dv
dv > 0

(8)

Finally, an overall evaluation function can be defined to be a weighted sum of fv and
fd, as shown in Equation (9). The importance of each part can be regulated by the weights
k1 and k2.

f = k1 fv + k2 fd (9)

When increasing k1 and decreasing k2, fv dominates and the agent is more inclined to
approach the target. In contrast, the agent takes priority in obstacle avoidance.
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4.2.3. The Hybrid Algorithm

The optimistic A* algorithm can calculate the shortest global path in the partially
known environment, but it cannot timely avoid the moving obstacles in dynamic environ-
ments. The SFVO with optimal velocity evaluation function can avoid collision in real time,
but it lacks global guidance and has only one expected direction. More specifically, in a
space with many moving obstacles, it is easy to fall into local minima, resulting in planning
longer paths or even failing to plan. With this problem in mind, we combine the planning
and controlling methods described above. The workflow of the hybrid algorithm is shown
in Figure 7.

Start

 (Input:    ,        ,     )

A* Path Planning

Update      and tP tOM

Reach the 

target point?
Blocking?

Finish

Y

N

Extract/update the 

key points

SFVO algorithm

Evaluation 

Function

Optimal velocity

Reach the 

key point

Y

N

N

Y

Select the first key point

tP tOM
gt

g

Figure 7. Flowchart of the hybrid algorithm.

At the time t, the algorithm puts the target point (gtg ), which is produced by the
Global Exploration Module Pt and OMt into A* algorithm, plans a global path: patht =
fA∗(Pt, gtg |OMt). And extract the key points on the patht: {K1, K2, ..., Kn}. Then, put
the set of collision-avoidance velocities VA which is calculated by the SFVO algorithm
(Algorithm 1) VA = CAτ

A|B(VB), the observation (Ot) of the agent and the sequence of
key points into evaluation function ( f ), and calculate an optimal velocity of the agent
vopt ← f (VA, K1, K2, ..., Kn|Ot, OMt, Pt). Then, the agent moves one step at this velocity,
and updates OMt → OMt+1 and Pt → Pt+1 at the same time. At time t + 1, if there
is an obstacle on patht, i.e., ∃(i, j) ∈ patht, OM[i, j] = 1, conduct the A* path planning
again: patht+1 = fA∗(Pt+1, gtg |OMt+1), and continue with the above process. Otherwise,
patht+1 = patht and determine whether the agent has reached the key point K1. If so, the
sequence of key points is updated. Otherwise, the agent continues to use SFVO algorithms
for local movement control. When the agent reaches the target point (gtg ), the LMM stops
running. Then the GEM chooses a new next target point (gtg+1).

In addition, to make the motion trajectory smoother and reduce unnecessary local
oscillation, the agent can be regarded as reaching the key points as long as it reaches the
eight adjacent cells around the key point.
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These are all the functional modules of the IRHE-SFVO above. As we can see in
Figure 2, we use the Global Policy in GEM for generating next target points which the
agent will go to, then plan a best path between the current position and the target point
and extract the key points in the planning stage. Then, in the controlling stage, we use the
SFVO algorithm (Algorithm 1) and evaluation function (Equation (9)) to decide a specific
action of the agent, and then update the current knowledge of the spatial structure which
decides whether to replan the A* algorithm or update the key points sequence. We run the
above functional modules sequentially until the exploration is completed.

5. Empirical Evaluation

The goal of this paper is to build agents that can autonomously explore novel 2D
dynamic environments with moving obstacles. To verify the effectiveness of the proposed
method, we implement mentioned components for performance evaluation.

5.1. Experimental Setup

In order to evaluate the effect of the proposed model, we construct 2D grid maps by
referring to reference [56] to represent the layout of indoor scenes such as offices. The maps
are sized of M = 40, as shown in Figure 8. The first six maps make up the training set, and
the rest are test maps. These maps have different spatial layouts and there is no intersection
between the training set and the test set.

We use the ratio of the explored region as the metrics, which is calculated by dividing
the coverage area by the total area that can be explored. It is defined as:

ExpRatio =
C(EMt)

∑
x,y=M
x,y=0 (1− T(x, y))

(10)

where C(EMt) represents the total area that is explored.

(a) Train map 1 (b) Train map 2 (c) Train map 3 (d) Train map 4 (e) Train map 5

(f) Train map 6 (g) Test map 1 (h) Test map 2 (i) Test map 3 (j) Test map 4

Figure 8. The different 2D grid maps without moving obstacles.

In these 2D grid maps, we set several obstacles which move independently of each
other. The initial positions and moving directions of the moving obstacles are randomly
selected, their movement mode is similar to that of the intelligent sweeping robots. As
shown in Figure 9, the obstacles move straight until they collide with the obstacle or touch
the boundary of the map, and then change the moving direction randomly.
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(a) (b)

Figure 9. The diagram of the initial distribution of moving obstacles and their movement trajectory.
The red cells represent the dynamic obstacles, and the yellow dotted line represents the possible
movement trajectory of this obstacle in left figure. When the environment is initialized, moving
obstacles are randomly generated in the blank area of the map, and each obstacle is independent of
each other. The right figure shows the initialization of the moving obstacles.

To simplify the calculation, both the agent and the moving obstacle are regarded as
circles with a radius of 0.5. Table 1 shows the parameters used in this experiment.

Table 1. Dynamic environment parameter details.

Parameter Value

The weight/height of grid maps (M) 40
Number of moving obstacles (i) 10

Observation range of the agent (n) 5
Exploration range of the agent (m) 2
Physical radius of the agent (rA) 0.5

Physical radius of the moving obstacles (rB) 0.5
The maximum of finite time in SFVO (τmax) 2
The reduction of finite time in SFVO (∆τ) 1

Total steps the agent moves (T) 800

Training Details. We use multi-process paralleled PPO to train the global policy in
GEM, with a different process for each map. The hyperparameters of PPO and global policy
network are shown in Tables 2 and 3, respectively.

Table 2. PPO hyperparameter details.

Hyperparameter Value

Number of parallel environment 6
Number of minibatches 12

Number of episodes 100,000
Number of optimization epochs 4

Learning rate 0.0001
Optimization algorithm Adam

Entropy coefficient 0.001
Value loss oefficient 0.5

λ 0.95
γ 0.99

ε/Clip range 0.1/[0.9, 1.1]
Max norm of gradients 0.5



Electronics 2022, 11, 574 14 of 22

Table 3. Global policy network details.

Layer Parameters
Embedding Size of embedding vector = 16

Conv1 Output = 32, Kernel = 3, Stride = 1,
Padding = 1

Conv2 Output = 64, Kernel = 3, Stride = 1,
Padding = 1

Conv3 Output = 16, Kernel = 3, Stride = 1,
Padding = 1

MaxPool Kernel size = 2
Linear1 Output size = 64
Linear2 Output size = 32

Baselines. We use some classical methods and end-to-end DRL methods as baselines,
and all methods were tested 15 times on four test maps with random initial positions:

• RND-PPO: A popular IM based DRL approach. We adapt the source code from [3]
to the problem settings in this paper. RND is a SOTA (state-of-the-art) DRL method
based on prediction error, which has outstanding performance in Atari games. The
network of PPO is similar to the proposed model, and an LSTM module [57] is added.
The intrinsic discount factor γi = 0.999 and the other hyperparameters as the same as
the proposed model. The target and prediction network consist of 3 fully connected
layers and the learning rate of optimizing the prediction network lrRND = 0.0025. In
addition, we design an external reward that is given a negative reward (−10) when
the agent collides with an obstacle or moves out of the map;

• Straight: This method is widely used in intelligent sweeping robots. It works by
moving the agent in a straight line and performing a random turn when a collision
will occur in next time step [58];

• Random: The agent takes a sequence of random actions to exploration.
• Frontier: A method which is based on geometric features to decided its next best

frontier, drives the agent always goes to unknown spaces [59].

The RND-PPO is an end-to-end method, taking the observation as input and out-
putting a specific action of the agent. This kind of methods are hard to train for a desirable
policy. Compared with RND-PPO and Random, the Straight is more stable, as it changes
the velocity of the agent only when the agent will collide with an obstacle. Besides, the
frontier-based method is also hierarchical as ours, whose workflow is still to select a po-
sition and then move to it, and we find that the SOTA DRL exploration methods are also
difficult to achieve its performance in terms of exploration ratio [16].

5.2. Local Real-Time Obstacle Avoidance

We first verify the effectiveness of SFVO and the optimal velocity evaluation function
for real-time obstacle avoidance, as shown in Figures 10–12. The green squares represent
the positions of the agent at the current time, and the blue squares represent the target
points. The red squares represent the moving obstacle with downward velocity, and the
orange squares represent key points. The task of the agent is to reach the target point
quickly while avoiding static and dynamic obstacles at the same time.

Because of the existence of key points and the four-direction (up, down, left and right)
action space, each part of the path that between two key points forms in a straight line,
so the agent has to move perpendicular to the line or in the opposite direction in order
to avoid the moving obstacles. As a result, the expected velocity direction evaluation
function fv of the agent during obstacle avoidance is not greater than 0. Then, the agent
completely depends on the relative vertical distance evaluation function fd to select the
optimal velocity. On other words, if the theory described above is correct, no matter how
large k2 is, it will always play a role in obstacle avoidance. Then, after obstacle avoidance,
the agent needs to change its velocity to approach the key point, and the velocity selection
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at this time completely depends on the expected velocity direction evaluation function fv.
That is to say, no matter how large k1 is, it always plays a role in the velocity selection of
approaching the key point after completing obstacle avoidance. Therefore, the combination
of weighting coefficients in the evaluation function set in this experiment (Equation 9) is
relatively single. We set three groups of different weighting coefficients: k1 = 0, k2 = 1;
k1 = 1, k2 = 0; k1 = 1, k2 = 1. The trajectories of the agent under the three groups of
coefficients are shown in Figures 10–12.

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 8 (h) t = 10

Figure 10. The trajectory of the agent under the condition of k1 = 0, k2 = 1 set in f .

As shown in Figure 10, when k1 = 0, k2 = 1, the moving trajectory of the agent is more
and more away from the obstacle, but does not move towards key points. In essence, the
agent is still taking random movements on the basis of avoiding collision with obstacles.

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 23 (g) t = 24 (h) t = 38

Figure 11. The trajectory of the agent under the condition of k1 = 1, k2 = 0 set in f .

When k1 = 1, k2 = 0, the agent will ignore the risk of collisions while moving. As
shown in Figure 11, at t = 3, the agent judges that it will collide with the moving obstacle
in the next two steps with the current motion direction through SFVO algorithm, so that it
needs to make obstacle avoidance action. The agent is close to the static obstacle on the right
and far from the one on the left. Therefore, the best obstacle avoidance action of the agent at
this time should be to move left, which can avoid colliding with the moving obstacles and
reduce the risk of collision with other obstacles, as shown in Figure 12. However, the agent
does not consider the relative vertical distance dv from the obstacle under the condition of
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k1 = 1, k2 = 0, nd has a 50% probability of moving right, as shown in Figure 11, which
increases the risk of collision with other obstacles.

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 23 (g) t = 24 (h) t = 38

Figure 12. The trajectory of the agent under the condition of k1 = 1, k2 = 1 set in f .

Figures 11 and 12 not only show the effectiveness of SFVO algorithm and evaluation
function for obstacle avoidance, but also demonstrate the efficaciousness of the hybrid
algorithm for path planning. At t = 0, the orange square which close to the agent is the
second type of key points, the square that is far from the agent is the first type, and the blue
square is the third type. When the agent reaches a key point or one of its adjacent eight
squares, it is deemed to have reached the key point, so it continues to select the subsequent
key points for local path planning. Finally, it guides the agent to the target point.

5.3. Comparison with Baselines on Spatial Exploration

We test the IRHE-SFVO with weighting coefficient k1 = 1, k2 = 1 of the evaluation
function and compare it with the baselines on the test maps. The results are shown in
Figure 13 and Table 4. It is worth noting that, from the perspective of safety, when the agent
will collide with an obstacle, it should stop moving or change the direction immediately.
However, the vanilla frontier-based strategy has no such specific design.

Table 4. The average exploration ratios of the proposed method and baselines on the four test maps.
The brackets indicate the average number of times when the agent driven by the frontier-based
strategy collides with moving obstacles in 15 spatial explorations on different test maps.

IRHE-SFVO RND-PPO Random Straight Fronteir
Test map 1 0.8656 0.2258 0.2406 0.5276 0.9943 (4.53)
Test map 2 0.8552 0.2707 0.2107 0.6078 0.9992 (3.06)
Test map 3 0.8842 0.2501 0.1861 0.4721 0.9966 (5.13)
Test map 4 0.8953 0.2177 0.2287 0.5498 0.9997 (4.13)
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(a) Test map 1 (b) Test map 2

(c) Test map 3 (d) Test map 4

Figure 13. Coverage Performance. Policies are tested in 800 steps (15 random start locations on each
of the 4 testing maps). Darker line represents mean exploration ratio and shaded area represents the
standard deviation across the 15 runs.

Figure 13 shows the coverage performance of different methods on the four test maps.
Combining Table 4, we can see that the order of coverage from low to high is: Random and
RND-PPO, Straight, IRHE-SFVO, Frontier. Specifically, we first notice that RND-PPO and
Random method have similar poor performance. The reasons are as follows: the core of the
dynamics-based curiosity agent such as RND is that if a state is encountered many times,
its novelty will continue declining due to network parameter updates during training. So,
in these grid maps, the agent needs to come out of its familiar area which is around the
initial location at each episode. However, after several episodes of training, the “novelty”
of the states around the initial position drop to a low level, and the agent does not touch
the high-novelty world outside so that it is difficult for the agent to walk out of its familiar
area. Second, the policy learned by the RND agent lacks the ability to explore since the
intrinsic reward is to encourage agents to traverse more states rather than teaching the
agent to learn how to explore. To be specific, its intrinsic reward will gradually decrease as
training times due to the black-box model, so that the learned policy will depend more and
more on the external reward, and the policy is dependent on external rewards completely
at the end of training. In our experimental setting, RND only has a collision punishment as
its external reward, so the agent moves randomly and only learns to avoid collision at the
end. This is why the RND-PPO algorithm is slightly better than the Random algorithm.

Then, we notice that the Straight method performs much better than Random and
RND-PPO because this method takes random actions only when a collision occurs. It
is more stable than the Random and RND-PPO algorithms, which move randomly at
every step.

Overall, these methods perform largely worse than IRHE-SFVO because our algorithm
has an instructive high-level exploration strategy and an effective local movement module.
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At the beginning of training GEM, the target points are selected almost randomly. As
the training proceeds, the agent, driven by the intrinsic rewards which are generated by
itself, gradually choose the points that are distant but easily reachable. Intrinsic reward,
generated from intrinsic motivation, can make individual feel satisfied psychologically or
emotionally because of increase of obtained knowledge or control [60]. In our exploration
task, the intrinsic rewards are calculated by the increase of the explored area, so the agent
will fill more cheerful when it chooses the point in an unknown region that is further away
from it. Furthermore, the agent will reasonably adjust the distance between itself and the
selected target point as the training progresses with the fixed number of target points that
will be chosen during an exploration task. For example, the distances will be larger when
the number of the target points is 10, while they will be smaller when the number of the
target points is 20. In addition, LMM can adapt the agent to the planned path and avoid
colliding with moving obstacles according to its perception, which can reach the target
points quickly and safely.

Finally, we notice that the frontier-based strategy has achieved the highest exploration
ratio in all the test maps. This method selects frontier points that lie on the boundary
between the known free space and unknown region according to the maps built by the
agent, and the experimental environments in this paper are very realistic, without any
perceived noise or action errors, which is highly favourable to the frontier-based exploration
agent. In the environment with moving obstacles, although this method may miss some
“frontier points” at some time, resulting in that the spaces around them are not explored for
a period of time. However, at a later time, this method can always select these “frontier
points” again for spatial exploration. Because the motion trajectories of moving obstacles
are random, it is impossible for them to stay at the positions where the frontier method
always misjudges these “frontier points”, so the exploration ratio of the frontier-based
method is almost unaffected by dynamic obstacles. However, safety is a crucial problem
that we must consider in spatial exploration. And Table 4 shows that the frontier-based
method has collided with dynamic obstacles many times during exploration, while the
others do not.

In addition, we visualize the paths and coverage areas of IRHE-SFVO and baselines
on test map 2, the initial position of the agent is (1, 1) on the bottom left. As shown in
Figure 14, in each row of subfigures from left to right are the trajectories at step 0, step 40,
step 200, step 400, Step 600 and step 800 respectively.

We can see that IRHE-SFVO algorithm covers almost all space, and its motion trajectory
is relatively smoother and more reasonable than those of its competitors. It can be thought
that it produces similar exploration strategies as human beings. Although frontier-based
method has high exploration coverage, its motion trajectory is mechanical and very zigzag,
such as the upper left corner and the blank area in the middle of the map. In addition,
combined with Figure 13 we can also see that the exploration efficiency of IRHE-SFVO is
slightly higher than that of the frontier in the initial exploration stage, because IRHE-SFVO
aims to maximize the information gain of each step, but this is also the reason for its
insufficient local exploration. Every time IRHE-SFVO selects a target point, it tends to select
the locations where a large number of unexplored areas around it, so that the agent can
quickly obtain a large amount of map information, but the exploration is insufficient for
local details.

In summary, we use the DRL based on the intrinsic motivation to simulate the human
high-level cognitive behavior during exploration, so that the agent always chooses those
places that are particularly unknown to explore. And as for the quick and safe movement,
we use a hierarchical framework including planning and controlling instead of learning
methods that have difficulty in joint training to simulate the human low-level real-time
response. Therefore, combining the two modules above, the IRHE-SFVO algorithm could
meet the requirements of high efficiency and quasi-humanity of spatial exploration.
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(a) The trajectory of IRHE-SFVO

(b) The trajectory of Frontier

(c) The trajectory of RND-PPO

(d) The trajectory of Random

(e) The trajectory of Straight

Figure 14. Sample trajectories of the competing approaches along with the coverage region in Test
map 2. The orange point represents the initial location of the agent. The solid green lines represent
the trajectories that the agent has traversed and the blue shaded region shows the explored area.

6. Conclusions and Future Work

This paper proposed a three-tiered hierarchical autonomous spatial exploration model,
IRHE-SFVO, that combines a high-level exploration strategy (GEM) and a low-level module
(LMM) including a planning phase and a controlling phase. This decomposition not only
overcomes the disadvantage of the end-to-end training difficulty, but also generates smooth
movements which makes the behaviours of agent more reasonable and safely. We showed
how to design and train these modules and validated them on multiple challenging 2D
maps with complex structures and moving obstacles. The results showed that the proposed
model has consistently better efficiency and generality than a state-of-the-art IM based
DRL and some other heuristic methods. Although the proposed approach tends to revisit
explored locations in some time, resulting in the lower coverage performance compared
with frontier-based method, IRHE-SFVO still meets the application requirements to a
certain extent.

For future work, we would like to extend this work to the following directions. First,
in order to further improve the coverage of exploration, we would like to design more
complex mechanisms like incorporating spatial abstraction into the framework to improve
the efficiency of exploration and the rationality of motion mode. Second, more complex
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constraints should be considered, such as uneven terrains, diverse surface features and
the energy of the agent. Third, we would like to work on multi-agent collaborative spa-
tial exploration, which faces the problems of non-stationary environments, incomplete
observations and inefficient exploration of single agent in complex environments.
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