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Abstract: Verification is one of the core steps in integrated circuits (ICs) manufacturing due to
the multifarious defects and malicious hardware Trojans (HTs). In most cases, the effectiveness of
the detection relies on the quality of the sample images of ICs. However, the high-precision and
noiseless images are hard to capture due to the mechanical precision, manual error and environmental
interference. In this paper, an effective approach for processing the low-quality image data of ICs
is proposed. Our approach can successfully categorize the partial pictures of multiple objected ICs
with low resolution and various noise. The proposed approach extracts the high-frequency texture
components (HFTC) of the images and constructs a graph with the correlationship among features.
Subsequently, the spectral clustering is conducted for obtaining the final cluster indicators. The
low-quality images of ICs can be successfully categorized by the proposed approach, which will
provide a data foundation for the following verification tasks. In order to evaluate the effectiveness
of the proposed approach, several experiments are conducted in the simulated datasets, which are
generated by corrupting the real-world data in different conditions. The clustering results reveal that
our approach can achieve the best performance with good stability compared to the baselines.

Keywords: low-quality data; integrated circuits; high-frequency texture component; clustering

1. Introduction

In the integrated circuit (IC) manufacturing industry, verification is one of the core
steps during the design and production. Recently, verification techniques based on the
computer vision or artificial intelligence have attracted extensive attention [1–3]. The
effectiveness of these verification techniques basically relies on the high quality of images.
In this paper, our purpose is to effectively categorize the low-quality ICs’ images in order to
reduce the strict requirements for samples and provide a data foundation for the following
verification procedures. The hardware assurance and part obsolescence of semiconductor
microelectronics have created a critical need for the reliability verification. There are two
categories of objects including the unintentional defects and the malicious hardware Trojans
(HTs). Limited by the mechanical precision and the workmanship, various defects may exist
such as the errors of solder joints, stains and elements damages. Nowadays, the main phases
of the IC’s production are distributed globally, including design, synthesis, fabrication
and distribution [4]. This global cooperation model makes ICs become vulnerable to
the HTs, which can leak secret information, invalidate the IC or cause other catastrophic
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consequences [5–7]. In recent years, many relevant studies have been conducted. The
logic encryption techniques are applied in [8–10]. However, these techniques require
large performance overhead, and the techniques using emerging transistors [11] and
spintronic devices [12] are developed. The vision-based techniques are one of the attractive
branches in recent years. A machine vision-based defect inspection system structure is
designed, which is to show the relevant technologies in the vision defect inspection [13].
A SEM-based acquisition technique, named SEMBA, for white team HTs detection is
proposed [14], which is based on the wet etching, scanning electron microscopy and
multiple image alignment. A computer vision-based framework for the HT detection
on golden IC and IUA images is designed [15]. A HTs detection method named Golden
Gates is designed to achieve a comparable level of accuracy to reverse engineering only
with less time cost [16]. The histogram of oriented gradient (HOG) and support vector
machine (SVM) are combined for HT detection [17]. In [18], a “Trojan Scanner” framework
is proposed for the untrusted foundry threat model while the trusted golden layout is
available. Moreover, deep learning-based techniques attract a lot of attention in the field of
IC design and analysis [19–22]. In [23], carbon nanotube metal–oxide-semiconductor field-
effect transistors (CNT-MOSFETs) are modeled and simulated by ANN. An artificial neural
network-based robust hybrid algorithm, which consists of particle swarm optimization
(PSO) and limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS), is proposed
in [24]. A Deep Siamese CNN model-based technique is proposed in [25] for dealing with
the lack of IC datasets and features by few-shot learning.

According to the investigation, the cost of the scanning electron microscope (SEM)
is too high for small or medium-sized manufacturers to afford. In order to verify the
products, they can only entrust the professional facilities at a certain price per hour for chip
verification. The inner reason is that the effectiveness of the existing verification techniques
basically depends on the high-quality of the images. Most of the existing defects and HTs
detection techniques have a strict requirement for the high-quality images of chips scanned
by the SEM. With the golden chips for references, the defects and HTs could be detected and
located. However, most of the existing techniques are still hard to implement in practical
application because of several problems. Firstly, a high-precision image is collected from
the specific equipment, which is expensive and can only be obtained by entrusting the
research institute. Secondly, there is a large scale of the pixel points in the full picture
of chips, which greatly increases the difficulty of locating the defects. Furthermore, the
scanned images of chips may contain various interferences due to mechanical error and
environmental noise. The strict requirements of the noiseless high-quality image have to be
met for the effectiveness of the existing methods, which is costly and has become one of the
biggest obstacles between academia and industry. Hence, an alternative low cost and easy
to implement way is worth exploring.

Motivated by this phenomenon, our goal is to propose an effective way to process the
low-quality images of ICs and provide a data foundation for the detection tasks. In order
to achieve this goal, the strict constrains of data needed to be relaxed by the “low-quality”
images which can be obtained under the following practice situations.

• Limited by the visual range of the general microscope and the resolution of the camera,
an image with high precision and full range of one chip is hard to obtain. The data of
one chip could consist of the partial view images captured by multiple scans.

• The environment of data acquisition is hard to strictly control. The data images
may contain a variety of noise with drastic changes of temperature, humidity and
illuminant, etc.

• Data may suffer from damages during the transmission, such as the network fluctua-
tion in wireless transmission and the data corruption of the storage medium.

In order to overcome those difficulties in practice, an effective approach is proposed
in this paper for processing the low-quality image data of ICs. In the proposed approach,
the unlabeled partial images of all object chips are assembled as a dataset. Firstly, the key
information, called the High-Frequency Texture Components (HFTC) [26], of images will
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be extracted. Subsequently, a graph of data points will be constructed with an adjacency
matrix calculated by the correlationship among the HFTC of all samples. The conventional
normalized cut (Ncut) will be applied to the graph and the data points will be categorized
into independent clusters. With the cluster indicators, each image could be easily located
to the reference golden chips and be beneficial to the verification task. The experiments on
simulation data show that the proposed approach can effectively process the low-quality
images of ICs and achieve a better performance than the benchmark and the state-of-the-art
methods.

2. Background Knowledge

In this section, the related background knowledge will be introduced briefly, including
the conventional spectral clustering and the high-frequency texture component.

2.1. Spectral Clustering

According to the Spectral Graph Theory [27], the relationship among data points can
be represented by a graph structure with vertices and edges, denoted as G =< V, E >.
The goal of spectral clustering is to conduct a cut on the edges and to obtain several
independent sub-graphs. The vertices in the same sub-graph can be categorized into
the same cluster. Given a dataset x1 · · · xN ∈ RD×N , a graph G can be determined by
calculating the weighted adjacency matrix (or similarity matrix) S ∈ RN×N . Generally, the
weights of pairwise points are estimated by Gaussian Kernel function, which is defined as

s(xi, xl) = e−
||xi−xl ||

2
2

2σ2 . Spectral clustering aims to find the best way to cut the graph apart,
which can be written as:

Cut(G1 · · ·GK) =
K

∑
i=1

E
(
Gi, Gi

)
. (1)

E(A, B) is the sum of the weights of all edges that connect subsets A and B. Without an
appropriate normalization, there could be a meaningless situation that a sub-graph contains
only one vertex while the others all belong to another sub-graph. To avoid that, all the
subsets Gi should be ensured to be “large enough”. Therefore, a normalization term should
be added. So, the object function of spectral clustering can be written as

O =
k

∑
i=1

E
(
Gi, Gi

)
ε(Gi)

, (2)

where

ε(Gi) =

{
|Gi| f orRcut

vol(Gi) f orNcut
. (3)

|Gi| denotes the number of vertices in Gi. vol(Gi) = ∑
i∈Gi

di is the sum of the degrees of all

vertices in Gi. This problem can be effectively converted to an eigenvalue decomposition
problem with some intermediate variables.

2.2. High-Frequency Texture Component

Images consist of multiple components, including the structure component and texture
component. The texture component retains the morphological information, while the
structure component represents the structure of the image. The texture component can
well reveal the essential characteristic of the image. With the information provided by
texture components, the images could be effectively reconstructed by compressive sensing
methods [28].

There are several techniques for extracting the texture component of images [25,29].
One simple and efficient way for implementation is to extract the high-frequency informa-
tion. In our previous work [26], the morphology characteristic of the human face image is
effectively extracted and utilized for distinguishing different individuals. However, the
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key information of the IC’s images is the layouts and shapes of the elements. The edges of
elements will create the pixel change regions in the images, which can also be effectively
captured and extracted by the high-pass filter. Even though the images of ICs are low
resolution or noisy, the features extracted by HFTC are sufficient for categorization and
beneficial for the following procedures.

3. The Proposed Approach

For most conventional clustering methods, all the information of the data is considered
during the procedure. However, when the samples are noisy, these methods might be
invalidated, especially when the noise is not sparse or the noise energy is high. When
different samples are corrupted by large area pixel loss, traditional methods would probably
categorize them into the same cluster due to the high energy of noise. Inspired by our
previous work [26] that the HFTC features selected from face images can well maintain
the valuable morphology information while the noise is greatly weakened, we believe the
key knowledge of the low-quality ICs’ images could be better utilized through the HFTC
extraction. Specifically, the valuable information of the ICs’ images exists in the layout of
the elements, which can be effectively retained by HFTC extraction. At the same time, the
influence of environment noise or pixel loss (caused by block noise, stains, shadows or
damages) will be effectively reduced during the extraction procedure, which will promote
the success of the following clustering.

The partial images of several object chips are denoted by x1, x2, · · · , xN , where N is
the number of samples. The height and width of sample images are denoted by H and
W, respectively. Let x̂i denote the frequency domain of ith sample. The x̂i can be obtained
through two-dimensional Fast Fourier Transformation (2D FFT):

x̂i(u, v) =
H

∑
m=1

W

∑
n=1

xi(m, n)e−j2π(mu
H + nv

W ). (4)

The subscripts (u, v) and (m, n) denote the coordinates. In order to reduce the noise and
ignore the less important components, a well-designed high-pass filter H is applied. After
an inverse 2D FFT to the filtered images, the HFTC of the samples can be obtained, denoted
by xih:

xih(m, n) =
1
H

1
W

H

∑
u=1

W

∑
v=1

H x̂i(u, v)ej2π(mu
H + nv

W ). (5)

It is noteworthy that, due to the diversity of the practical environments and objects, the
selection and design of the filter could be different.

According to the Spectral Graph Theory, a graph structure could be constructed by
calculating the relationship among data points with an appropriate measurement. Gen-

erally, Gaussian Kernel function s(xi, xl) = e−
||xi−xl ||

2
F

2σ2 is a wide choice for measuring the
relationship by absolute distance. In this case, it is not a good option. For example, two
different chips with similar black regions caused by the same reason could be categorized
into the same cluster due to the adjacency measured by absolute distance. Therefore, the
correlationship matrix R is estimated by a better relationship evaluation, with the elements
defined as:

ril =
vec(xih)

Tvec(xlh)√
‖xih‖2

F‖xlh‖2
F

. (6)

The vec(·) denotes the vectorization operation. The ‖ · ‖F is the Frobenius-norm. The
element ril represents the relationship between the ith and lth samples. In order to avoid
the meaningless value of the self-correlation, the diagonal elements of R are set to be 0
specifically:

rii = 0. (7)
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Generally, a graph is constructed with fully connected vertices, where every edge
between data points is under consideration. In order to further improve efficiency, the
less important vertices, which are far from the center, could be ignored. In this paper, a
semi-connection graph is constructed by selecting the k nearest points.

Define the cluster indicator yi(i = 1 · · ·K), which indicates the belonging relationship
of data points. If the ith sample xi belongs to jth cluster, the jth element of yi is 1, otherwise
is 0. Assume that a dataset with samples of the same object are adjacent to each other.
Specifically, there are np samples in the pth cluster. Therefore, the indicator vector is
yp = [0, · · · 0, 1, · · · 1, 0 · · · 0]T with np adjacent 1s. We can have the relationship of the
indicator vector and the number of samples:

yT
p yp =

{
np, p = q;
0, p 6= q.

(8)

Assisted with yp, the values of the graph cut can be expressed conveniently as follows:

E
(
Gp, Gq

)
= yT

p Ryq
vol
(
Gp
)
= ∑i∈Gp di = yT

p Dyp
E
(
Gp, Gp

)
= ∑i∈Gp ∑k∈Gp

Gik = yT
p (D−R)yp,

(9)

where D represents the degree matrix, which is a diagonal matrix with the elements defined
as the sum of rows or columns of R. The object function (2) of spectral clustering can be
rewritten as:

JRcut =
K

∑
p=1

yT
p (D−R)yp

yT
p yp

, (10)

JNcut =
K

∑
p=1

yT
p (D−R)yp

yT
p Dyp

. (11)

According to the definition of cluster indicator, the elements of yi are either 1 or 0. Each
vector yi contains 2N (N is the number of samples) possibilities. When the graph is cut into
K sub-graphs, the possibility of the indicator matrix Y is K2N . The optimization problem
is NP-hard and unsolvable. Due to the discrete restriction of yp, the problems above are
NP-hard. In order to make these problems solvable, an alternative continuous solution of
yp is obtained. Set Y =

[
y1√
n1

, · · · , yK√
nK

]
and the problem (10) can be transformed into an

optimization problem:
min

Y
Tr
(

YTLY
)

s.t.YTY = I, (12)

where L is the Laplacian matrix defined by L = D− R. The Tr(·) is the trace of matrix.
Similarly, for Ncut (13), set Y =

[
y1√
d1n1

, · · · , yK√
dKnK

]
, and the problem can be written as an

optimization objective function:

min
Y

Tr
(

YTLY
)

s.t.YTDY = I. (13)

Therefore, the problems above can be effectively solved with eigenvalue decomposition
(EVD). The final discrete cluster indicators are obtained by applying conventional Kmeans
to Y. The core steps of the approach are summarized in Algorithm 1. The proposed scheme
is easy for implementation with the following major procedures. Given a set of low-quality
partial images of multiple chips, the first step is to extract the HFTC of samples by (4) and
(5). Subsequently, the semi-connection graph of data points is constructed by (6). Finally,
the cluster indicators can be obtained by conducting the spectral clustering methods (12)
or (13).
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Algorithm 1 HFSC for the low-quality images of ICs.

Input: A set of the partial view images of ICs X = {x1, x2, · · ·, xN} ∈ RD×N , number of the
clusters K, the order n1 and the cut-off frequency D0 of the Butterworth filter
Output: The cluster indicators corresponding to each data point

Initialize filter by parameters n1 and D0
for all xi do

Apply 2D FFT to each sample for the frequency domain information as
x̂i(u, v) = ∑H

m=1 ∑W
n=1 xi(m, n)e−j2π(mu

H + nv
W )

Extract HFTC for all samples by the Butterworth filter according to
xih(m, n) = 1

H
1

W ∑H
u=1 ∑W

v=1 H x̂i(u, v)ej2π(mu
H + nv

W )

end for
Construct the graph by calculating the element of R by

ril =
vec(xih)

Tvec(xlh)√
‖xih‖2

F‖xlh‖2
F

Compute the degree matrix D
Compute the Laplacian matrix L = D−R

Symmetrize by (L+LT)
2 if needed

Compute F by solving Function
minY Tr

(
YTLY

)
s.t.YTY = I

or
minY Tr

(
YTLY

)
s.t.YTDY = I

Obtain the cluster indicators by conducting Kmeans to Y

4. Experimental Results

For evaluating the effectiveness of the proposed approach, several experiments are
conducted in the simulation datasets, which are generated from the real-world scanning
electron microscope with different settings.

4.1. Data Preparation

In the implementation, it is hard to collect sufficient samples by limited quantities of
the low-resolution equipment. An alternative scheme is to generate simulated samples
with the high-quality images for the following reasons. Firstly, the high-quality image itself
represents the upper bound of the data samples, which means all “low-quality” images
should be in a worse situation than the original high-quality image. Secondly, by setting
different downsampling rates, the resolutions could be expediently regulated for simulating
different equipment conditions. Last but not least, the signal-to-noise ratio (SNR) of picture
is closely related to the sensor size, which is the main difference between the high-precision
and low-precision equipment. By covering different strengths and types of noise, the low-
quality images are almost consistent with the actual pictures captured by the low-precision
equipment. In order to better simulate the practice situation, we entrust an authoritative
research institution, named Science and Technology on Reliability Physics and Application
of Electronic Component Laboratory, for the high-quality chip images scanned by electron
microscope. The full view of one chip is presented in Figure 1. The height and width of
this picture are 6960 pixels and 5084 pixels, respectively. Figure 2 presents the local partial
views of the full picture. Because of the high-precision equipment and the well-controlled
environmental interference, the layout and outlines of elements can be clearly recognized.
The defects of chips exist in the scanned images in the form of the irregular black regions
(such as the stains in Figure 2).
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Figure 1. The full view of the chip’s image scanned by electron microscope.

Figure 2. The partial views of the real-world chip’s image.

Before the clustering experiment, the raw image data of the chip are processed by two
major steps. Firstly, all the lines of the raw images are detected by the Hough transform.
Then, the required edges and angles of the lines are obtained by a filter in the horizontal
direction. Based on the obtained angle, all pictures can be rotated to the unified direction.
Secondly, all samples are converted to gray-scale images for the reason that the proposed ap-
proach focuses on the texture components rather than the color. The histogram equalization
is applied for the gray-scale images in order to widen the gray level range of the samples,
which will enhance the contrast of the images. In the practice situation, high-quality images
of chips are hard to obtain, limited by the accuracy of the equipment, the interference of
environment and the error of operation. Without the high-precision equipment, the full in-
formation of a chip usually consists of several partial views scanned by the lower precision
lens. We split the full view pictures into several parts and further control the resolution
by downsampling in proportion. The real defects of chips are extracted and covered on
the simulated data samples by setting different sizes and numbers. The environmental
interference is simulated by adding the Gaussian noise and the salt-and-pepper noise in
different strengths. Figure 3 presents a part of the simulated low-quality images of ICs. The
simulated datasets are presented in the table below.
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Figure 3. Data samples corrupted by Gaussian noise or salt-and-pepper noise with different intensity
and simulated defects.

The parameters are limited in an appropriate range, which is reasonable in the actual
data acquisition. The number after the noise category is the strength parameter. “Gaussian
10” denotes that the intensity of Gaussian noise is 10 dB. “Salt-and-pepper 20” denotes that
the density of the salt-and-pepper noise is 20%, which means 20% of pixels are noised. The
“10” in “defects” indicates the number of the simulated defects on a chip. The values of the
parameter indicate the severity of data corruption.

It is noteworthy that the noise has different structures and distributions in different
datasets in practical situations. Therefore, the most suitable filter parameters for different
datasets might be different and must be comprehensively considered in practice.

In this section, five general performance indicators are selected. The accuracy (ACC)
is calculated by conducting the Hungarian algorithm to best map among ground true
labels and cluster results. The normalized mutual information (NMI) is a normalized
measurement of the similarity between labels of the same sample. The Purity is an estimate
of the proportion, which denotes how many samples are correctly categorized to all samples.
The F-measure (F) is obtained by calculating the weighted ratio of precision and recall.
The adjust rand index (ARI) indicates the similarity between two clusters. The mentioned
indicators will be recorded as percentage. The larger indicator values denote the better
clustering performance.

4.2. Single Factor

In this section, the influence of a single factor will be tested. The unexpected defects
could be in various sizes. The data corruption during the transmission will also cause the
pixel loss. These situations can be simulated by setting different sizes and numbers of the
defects, which can cause the pixel loss and create the black regions.

In this experiment, datasets are set up with the same salt-and-pepper noise in 20%
density and gradually increase the size or number of the black regions. The accuracy of the
HFSC and the baseline methods are presented by the line chart in Figures 4 and 5. As can
be seen, the proposed approach obtains the best clustering performance compared to the
baselines. Furthermore, when the size or number of the defects increases, the conventional
clustering techniques may suffer from the impact caused by the pixel loss and the accuracy
tends to decrease. On the contrary, the proposed approach can well maintain the valuable
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information and weakened the influence of the corruption, so that the accuracy can hold at
a high level.

Figure 4. The clustering accuracy varies with the size of the defects. The diamond, square and
triangle represent the HFSC, Ncut and Kmeans, respectively.

Figure 5. The clustering accuracy varies with the number of the defects. The diamond, square and
triangle represent the HFSC, Ncut and Kmeans, respectively.

4.3. Comprehensive Factors

In this section, the effects of comprehensive factors will be tested. We conduct clus-
tering to the simulated datasets both in different noise and pixel loss conditions. The
setups for the objected datasets are listed in Table 1 with the corresponding indexes. The
clustering results are presented in Tables 2 and 3 by the five performance indicators. Three
conventional clustering methods are selected for comparison, including spectral clustering
with normalized cut (Ncut), Kmeans and sparse subspace clustering (SSC) [30]. Two newer
clustering algorithms from recent years are also added for comparison, USENC [31] and
SC-SRGF [32]. As shown in the table, HFSC achieves the best performances among all
datasets. Furthermore, the proposed approach has a stability property. As the intensity of
noise and the level of the pixel loss changes, the performances of the general methods may
oscillate. Specifically, the accuracy of Ncut, Kmeans and SSC are fluctuating in the range
of 15.83%, 21.67% and 16.67%, respectively. Most of the situations’ HFSC achieve 100%
accuracy and fluctuate within 6% in the remaining datasets. This phenomenon reveals that
our approach can well maintain the valuable information of the low-quality ICs’ images
with different corruptions. Moreover, the stability property of the proposed approach can
well deal with ICs’ images captured in the various conditions.
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Table 1. Simulated datasets with different settings.

Index Noise Defects
1 Gaussian 10 10
2 Gaussian 10 20
3 Gaussian 10 25
4 Gaussian 15 10
5 Gaussian 15 20
6 Gaussian 15 25
7 Salt-and-pepper 20 10
8 Salt-and-pepper 20 20
9 Salt-and-pepper 20 25
10 Salt-and-pepper 30 10
11 Salt-and-pepper 30 20
12 Salt-and-pepper 30 25

Table 2. The clustering performances of the proposed approach and the comparison methods for the
simulated datasets (1∼6). The bold denotes the best results.

Datasets Methods ACC NMI Purity F ARI

1

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
43.33
83.33
84.17
79.17
99.17

100.00
61.34
90.70
84.67
86.78
98.88

100.00
51.67
85.00
84.17
80.83
99.17

100.00
34.39
82.82
71.42
75.40
98.24

100.00
27.80
81.19
68.92
73.11
98.10

2

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

97.50
40.83
85.83
85.83
70.00
97.50

97.20
52.13
88.65
83.44
82.14
97.06

97.50
47.50
85.83
85.83
75.00
97.50

95.28
27.00
82.11
72.54
67.38
94.93

94.90
19.21
80.52
70.15
64.19
94.51

3

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

99.17
38.33
86.67
95.83
67.50
96.67

98.88
46.03
91.42
95.37
78.78
95.47

99.17
45.83
87.50
95.83
70.83
96.67

98.24
23.19
82.35
91.76
63.52
93.00

98.10
14.40
80.78
91.08
47.08
92.43

4

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
34.17
92.50
92.50
89.17
97.50

100.00
40.60
95.59
91.57
95.35
97.64

100.00
41.67
92.50
92.50
91.67
97.50

100.00
23.84
91.47
84.94
89.56
95.32

100.00
13.75
90.72
83.68
88.64
94.93

5

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
49.17
90.83
90.83
81.67
93.33

100.00
57.50
95.35
88.57
90.70
92.27

100.00
55.00
91.67
90.83
83.33
93.33

100.00
33.18
90.69
82.06
80.93
86.31

100.00
26.56
89.87
80.55
79.15
85.16

6

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
50.83
90.83
95.00
74.17
95.00

100.00
64.69
95.35
93.55
80.10
94.77

100.00
54.17
91.67
95.00
75.83
95.00

100.00
38.63
90.69
89.30
63.66
90.48

100.00
32.95
89.87
88.41
59.94
89.69
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Table 3. The clustering performances of the proposed approach and the comparison methods for the
simulated datasets (7∼12). The bold denotes the best results.

Datasets Methods ACC NMI Purity F ARI

7

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
50.00
83.33
80.00
88.33
99.17

100.00
59.67
90.70
74.63
93.54
98.88

100.00
54.14
84.17
80.00
90.00
99.17

100.00
35.62
82.48
57.56
86.99
98.24

100.00
29.29
80.84
53.77
85.83
98.10

8

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
49.17
81.67
91.67
78.33
97.50

100.00
58.93
88.18
89.64
88.76
97.64

100.00
52.50
82.50
91.67
82.50
97.50

100.00
33.15
78.03
83.67
77.43
95.32

100.00
26.68
75.98
82.30
75.36
94.93

9

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

100.00
44.17
86.67
96.67
71.67
95.00

100.00
53.89
90.81
95.58
82.05
93.70

100.00
49.17
89.17
96.67
75.83
95.00

100.00
29.18
83.40
93.00
66.57
89.91

100.00
22.48
81.94
92.43
63.27
89.07

10

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

95.83
35.83
80.00
90.00
71.67
92.50

95.02
44.72
82.81
87.71
80.22
93.32

95.83
45.00
81.67
90.00
73.33
92.50

92.05
23.35
73.33
78.44
65.17
87.30

91.40
14.42
71.00
76.59
61.56
86.22

11

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

96.67
41.67
80.00
94.17
67.50
77.50

95.58
51.29
80.76
92.89
79.91
80.89

96.67
48.33
80.83
94.17
70.83
79.17

93.26
28.34
70.11
87.85
63.56
67.68

92.71
21.61
67.53
86.85
60.05
64.78

12

HFSC
Ncut

Kmeans
SSC

SC-SRGF
USENC

94.17
45.83
70.83
92.50
63.33
75.83

93.62
52.36
74.06
90.36
71.66
78.58

94.17
47.50
74.17
92.50
63.33
77.50

88.67
28.96
58.72
85.22
55.07
66.15

87.73
22.35
55.05
83.99
50.33
63.16

There are still some directions of the proposed approach that are worth studying in
the future. In order to obtain the valuable features, expert guidance is needed for the
parameters tuning of the filters. It will be great progress to propose a scheme which can
tune the parameters without the prior human knowledge. Moreover, there may be a
challenge for this approach to obtain a high accuracy for very large ICs, chips or data with
high noise and a large number of defects. Furthermore, how to effectively utilize the HFTC
information to improve the existing verification techniques is worth exploring.

5. Conclusions

In this paper, we focus on the low-quality images of integrated circuits. With the
developing needs of the verification in IC manufacturing, many techniques have been
invented for defects and hardware Trojan detection. However, most of the existing methods
have a strict requirement for the quality of data images. In practice, the high-quality images
can only be captured by the high-precision equipment in a strictly controlled environment,
which is expensive. Furthermore, interference is unavoidable due to mechanical error or
the workmanship. In a normal manufacturing environment, the visual range and resolution
of the camera are limited. The objected chips are scanned by multiple partial views, which
may suffer from noise and data corruption. Therefore, an approach is proposed in this
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paper for processing the low-quality images in order to provide a data foundation for the
following verification tasks. The high-frequency texture components of the samples are
firstly extracted, which contain the morphological features of images. Assisted with the
correlationship among the HFTC of samples, a graph structure of data points is constructed.
The clustering indicators are obtained by conducting a normalized cut to the graph. The
simulated datasets are made from the real-work scanning electron microscope of chips in
various conditions according to the practice data acquisition. The experiments in simulated
datasets reveal the effectiveness of the proposed approach with the high clustering precision
and the stable property to the level of the data corruption.
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