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Abstract: For the purpose of attaining a high degree of freedom (DOF) for the direction of arrival
(DOA) estimations in radar technology, coprime sensor arrays (CSAs) are evaluated in this paper.
In addition, the global and local minima of extremely non-linear functions are investigated, aiming
to improve DOF. The optimization features of the cuckoo search (CS) algorithm are utilized for DOA
estimation of far-field sources in a low signal-to-noise ratio (SNR) environment. The analytical
approach of the proposed CSAs, CS and global and local minima in terms of cumulative distribution
function (CDF), fitness function and SNR for DOA accuracy are presented. The parameters like root
mean square error (RMSE) for frequency distribution, RMSE variability analysis, estimation accuracy,
RMSE for CDF, robustness against snapshots and noise and RMSE for Monte Carlo simulation
runs are explored for proposed model performance estimation. In conclusion, the proposed DOA
estimation in radar technology through CS and CSA achievements are contrasted with existing tools
such as particle swarm optimization (PSO).

Keywords: cuckoo search; root mean square error; direction of arrival; root mean square error;
coprime sensor arrays

1. Introduction

In radar technology, our prime concern is to detect the target through its parameters
such as the direction of arrival, amplitude, frequency, velocity and scattering behaviour.
In these parameters, DOA estimation is a key parameter that plays a vital role in electromag-
netic spectrum sensing to locate the target. It is also applied in vast variety of applications
such as sonar [1], wireless communication [2], satellite communication [3], medical applica-
tions [4], etc. In most of the literature, two famous array structures are implemented for
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DOA estimation [5–7]. One of them is uniform linear arrays [8–10] and the second one is
sparse arrays [11,12]. A lot of research has been done on uniform linear arrays (ULA). ULA
is one of the simplest forms of antenna array structures, but it can estimate only (N − 1)
targets by using N antenna elements through subspace-based methods. In radar antenna
array signal processing, we want to enhance freedom without increasing hardware costs.
Nevertheless, sparse arrays can resolve more targets than several antenna elements. There-
fore, sparse arrays have become a scorching area of research since the last decade in order
to estimate DOA with an enhanced degree of freedom (DOF) precisely. In the perspective
of radar technology, DOF is defined as the number of sources that can be resolved with
a given number of antenna elements. Minimum redundancy array (MRA) [13,14], nested
arrays (NA) [15] and coprime sensor arrays (CSA) [16] are the most prominent types of
non-uniform linear arrays that provide higher degree of freedom. Moffet introduced MRA
in 1968 [17] to improve the DOF, but this array structure has no closed-form expression
to identify the location of antenna elements. Later on, in [18], nested array structure was
proposed by PPal and PP Vaidyanathan in 2010 and this array structure is the combination
of dense and sparse uniform linear sub-arrays. On the one hand, hole-free difference
co-array and O(N2) DOF are the features of this array structure, but on the other hand,
severe mutual coupling occurs in this array structure due to the part of dense sub-array.
This mutual coupling is the primary cause of performance degradation of nested arrays
in DOA estimation. Compared with these arrays structures, the coprime array structure
has less mutual coupling due to its sparse array structure and higher DOF. CSA consists
of two ULAs having M and N antenna elements with Nd and Md inter-element spacing,
respectively, and O(MN) DOF. CSA has been become more attractive for researchers due
to its less mutual coupling and higher achievable DOF [19] . Therefore, this paper addressed
the coprime array structure for far-field sources estimation to enhance the DOF in radar
antenna array signal processing.

After receiving the signal through antenna arrays, estimation algorithms play an
important role in array signal processing for parameters estimation. In most of the litera-
ture, the two most dominant algorithms are used in array signal processing for parameter
estimation. One of them is deterministic algorithms, and the other is the heuristic ap-
proach. Deterministic algorithms are mostly sub-space based methods like multiple signal
classification (MUSIC) [20,21], signal parameter via rotational invariance Technique (ES-
PRIT) [22], root MUSIC [23], weighted subspace fitting (WSF) [24], etc. Although these
algorithms perform very well in estimation accuracy, the major issue to implementing
them is computational complexity. In this modern era of technology, this issue is resolved
using meta-heuristic algorithms. Nobody can deny the significance of heuristic techniques
such as genetic algorithm (GA) [25], particle swarm optimization (PSO) [26], differential
evolution (DE) [27], simulated annealing (SA) [28], ant colony optimization (ACO) [29],
bee colony optimization (BCO) [30], flower pollination algorithm (FPA) [31], cuckoo search
algorithm [32] and so on. These techniques are population based, and these methods
are efficient and robust. Recently in the research community, cuckoo search has become
more popular due to its easy implementation and few parameters required to execute
the algorithm compared with other heuristic approaches.

Following our literature review, no one has implemented the cuckoo search technique
through coprime arrays for DOA estimation. Therefore, a novel approach has been executed
by employing coprime antenna arrays in radar technology with an intelligent metaheuristic
optimization algorithm. The structure of the paper is organized as follows. Section 2
discusses the analytical representation of the proposed CSAs, including fitness function.
The presented methodology is investigated in Section 3 with the currently used PSO system.
Section 4 contains the material related to results and discussion of the simulation analysis
of the proposed CSA technique for DOA. The conclusion of the presented framework is
summarized in Section 5.
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2. Analytical Representation
2.1. Coprime Sensor Array Structure

In this part, the formation of the coprime array structure is discussed briefly, we then
perform the derivation of the received signal. The coprime array comprises two coprime
uniform linear arrays with P and Q antenna elements as shown in Figure 1. The inter-
element distance between two consecutive antennas of the first sub-array is Qd, and in
the second sub-array is Pd, which is more significant than λ/2 in both arrays. By merging
these two sub-arrays, we obtain the coprime antenna array with the shared the first antenna
element. P and Q are coprime integers, d is equal to the wavelength of the received signal
and P > Q for the sake of generality. MP and MQ shows the indexes of sub-array 1 and 2
while Mcoprime demonstrates the positions of the coprime array. This coprime array consists
of P + Q− 1 antenna elements having non-uniform inter-element distance among them, as
depicted in the following equations.

MP = {0, Qd, 2Qd, 3Qd, ..., (P− 1)Qd} (1)

MQ = {0, Pd, 2Pd, 3Pd, ..., (Q− 1)Pd} (2)

Mcoprime = {0, Qd, Pd, 2Qd, 2Pd, ..., (Q− 1)Pd, (P− 1)Qd} (3)

2.2. Signal Modelling

In this module, we will establish the signal model for L narrowband uncorrelated
unknown sources. Figure 1 shows each parameter of CSA for physical location and
estimated as:

Ip = {0, Qd, Pd, 2Qd, 2Pd, ..., (Q− 1)Pd, (M− 1)Pd} (4)

Figure 1. Generalized coprime antenna array structure.

The DOA of these L uncorrelated signals are summarized in vector Φ

Φ = [Φ1, Φ2, Φ3, ..., ΦL] (5)

Accordingly, the received signal of L uncorrelated sources of coprime array is specified
in Equation (6).

x(t) =
L

∑
l=0

al(Φ)sl(t) + n(t) (6)
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where

al(Φ) = [1, eπQ sin Φ1 , eπP sin Φ2 , eπ2Q sin Φ3 , eπ2P sin Φ4 , ..., eπ(Q−1)Pd sin ΦL−1 , eπ(P−1)Qd sin ΦL ] (7)

sl(t) = [s1(t), s2(t), ..., sL(t)]T (8)

In Equation (6), n(t) is the complex iid and AWGN with variance σI2 and zero mean.

n(t) = [n1(t), n2(t), ...nP+Q−1(t)] (9)

Taking the expectation of the output signals the computation of covariance matrix can
be performed in terms of coprime array framework, which are defined as

Rxx = E[x(t)xH(t)] (10)

where Rxx is the vectorization of the covariance matrix and can be further expanded as

Rxx = ARss AH + σ2 I (11)

The covariance matrix amplitude of the output signal is denoted by Rss and written as

Rss = E[s(t)sH(t)] (12)

With the help of Rxx the virtual uniform linear array can be computed which is
described as

z = vec(Rxx) = vec(ARssAH + σ2 I) = Bσ2 + σ2 I (13)

where B is the Kronecker product and the elements in B are expressed in the form of
following equation

ejK(qi−qj) sin ΦLi,j=1,2,...,P+Q−1. (14)

In Matlab, the vec command is used for vectorization. After performing vectoriza-
tion of Rxx, this matrix will become a column vector having the dimension z(P+Q−1)2×1.
Furthermore, this z vector will be sorted out in accordance with the exponent term of
the received signal and presented as

Ic = {(Pnd−Qmd) ∪ (Qmd− Pnd)}, where 0 < m < P− 1 and 0 < n < Q− 1 (15)

The locations of these virtual ULA elements are presented as

Iv = {(qi − qj) i, j = 1, 2, ..., P + Q− 1} (16)

Our prime concern is the continuous part of vULA of CSA in this research work.
The continuous part of vULA causes an enhancement in the degree of freedom. Moreover,
this DOF is directly proportional to the length of continuous vULA.

2.3. Fitness Function

In heuristically optimization algorithms, the fitness function plays a vital role. A fitness
function is a fundamental tool for evaluating the population and provides the difference
between actual and estimated angles. Based on this difference, algorithms perform their
estimation, and the equation for the fitness function is written in Equation (17).

f (xi) = |xa(Φi)− xe(Φi)|2 (17)

The nests and particles are analyzed for the fitness function’s proposed setup.
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3. Proposed Methodology
3.1. Cuckoo Search Algorithm

This algorithm is developed in combination with levy flights. Due to obtained accurate
optimal solution, the performance of cuckoo search is much better than other meta-heuristic
approaches. The direction of arrival estimation is the unconstrained optimization problem, and
it is minimized by implementing a cuckoo search algorithm through the following function

Minimize f (Φ) = |Φa −Φe|2; where 0 6 Φa, Φe 6 π (18)

f (Φ) is the fitness function and is also known as the objective function while Φa and
Φe are actual and estimated angles respectively and these are optimized by evaluating
the objective function through the cuckoo search algorithm. The evolution process of
the cuckoo search algorithm is elaborated in Algorithm 1, and the flow diagram of cuckoo
search is depicted in Figure 2.

Figure 2. The description of cuckoo search algorithm.
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Algorithm 1 Pseudocode: cuckoo search algorithm

Begin
F(Φ), x = [Φ1, Φ2, . . . , Φd]

T

Generate initial population
Φi, (i = 1, 2, 3. . . , n)

While (t < MaxGeneration) or (stopping criterion)
Cuckoo is picked randomly by level flights to analyze fitness

Choose a nest randomly
If (Fi > Fj)

Old nest is abandoned and new nest will be built
Keep the best solution

Find the current best
End

Post process results and visualizations
End

3.2. Particle Swarm Optimization

PSO is a nature inspired optimization technique based on the movement and in-
telligence of the swarm. In PSO, each particle continues to update its position under
the previous experience and neighbours. A particle is composed of three vectors. The first
is the x-vector, which records the current situation. The second one is the p-vector which
records the location of the best solution in search space, and the third one is v-vector which
contains the gradient for which particles will travel if undisturbed. The working of PSO
can be explained in the following four steps as illustrated in Figure 3.

Step 1: Initialization: Random particles initialize the PSO algorithm, and each particle
is a solution. Each particle searches for the optimum value by updating the generation.
In each iteration, every particle is updated. After finding the best value, the particle updates
its velocity and position. Particles can update their position by

x(t+1)
i = x(t)i + v(t)i ∗ t (19)

Particle can update its velocity by the following equation

x(t+1)
i = w ∗ v(t)i + c1 ∗ v1(xbestit − xt

i ) + c2 ∗ r2(gbestit − xt
i ) (20)

Step 2: Fitness investigation: The fitness size is analyzed for every particle. Choose the
particle with the best fitness value.

Step 3: For each particle calculate velocity and position from Equations (1) and (2)
Step 4: Evaluate Fitness f (xt

i ) Find current best
Step 5: Update t = t + 1
Step 6: Output gbest and xi(t)
The process will be repeated until the condition is met.
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Figure 3. The explanation of particle swarm optimization in terms of a flow chart.

4. Results, Discussions and Achievements

In prior studies, uniform linear arrays and plenty of heuristic algorithms were used
for DOA estimation. Still, in this work, we implemented a novel approach of the coprime
array with a cuckoo search algorithm for DOA estimation. In this part of the paper, a series
of experimental simulations are conducted to confirm the performance of the proposed
scheme for DOA estimation. In our first experiment, we analyze the estimation accuracy of
the proposed algorithm by comparing the results with PSO. After this analysis, the perfor-
mance of root means square error (RMSE) by signal to noise ratio (SNR) and the number
of snapshots is examined. Moreover, variation analysis, cumulative distribution function
analysis and histogram analysis are also performed. The experimental analyses are catego-
rized into three portions, six, nine and twelve sources estimations to validate our results
and DOF.

4.1. Estimation Accuracy

Results for estimation accuracy of CS and PSO are obtained by setting different
parameters as a signal-to-noise ratio, number of sources and their locations. The analysis
is performed based on both algorithms’ best, mean and worst estimations. In case of six
sources, results for estimation accuracy of CS and PSO are quite well at 0 dB, −5 dB and
−10 dB as shown in Tables 1–3.
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Table 1. Calculation of accuracy for six targets at 0 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 40 Φ3= 60 Φ4= 80 Φ5= 100 Φ6= 120

CS
Best 19.957 40.002 59.826 79.889 99.897 120.003

Mean 18.563 38.750 59.726 79.373 101.009 119.917
Worst 8.322 35.5332 58.7853 79.738 99.970 120.058

PSO
Best 20.090 39.932 59.714 79.996 100.287 120.000

Mean 16.361 37.489 59.579 79.983 100.113 119.697
Worst 0.145 30.027 39.150 59.312 79.567 99.001

Table 2. Calculation of accuracy for six targets at −5 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 40 Φ3= 60 Φ4= 80 Φ5= 100 Φ6= 120

CS
Best 19.784 39.820 59.855 79.886 100.259 119.980

Mean 21.610 40.151 59.092 79.256 101.344 120.111
Worst 09.287 36.093 59.598 78.986 100.932 119.839

PSO
Best 19.961 40.075 59.884 79.839 99.788 120.000

Mean 18.405 38.837 59.709 79.202 100.519 119.931
Worst 0.000 32.679 39.566 58.822 79.662 98.929

Table 3. Calculation of accuracy for six targets at −10 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 40 Φ3= 60 Φ4= 80 Φ5= 100 Φ6= 120

CS
Best 20.470 40.140 59.923 79.942 100.017 120.297

Mean 15.794 37.302 61.420 80.681 99.006 118.444
Worst 33.509 58.204 77.819 101.635 121.967 180.000

PSO
Best 20.630 39.500 59.908 79.860 99.936 120.000

Mean 16.630 36.413 59.679 78.153 101.692 120.000
Worst 16.630 36.413 59.679 78.153 101.692 120.000

In the case of the nine sources estimation, the performance of CS is much better than
PSO at 0 dB and −5 dB. At −10 dB performance of CS is slightly degraded but even then
results are much better as compared to PSO as mentioned in Tables 4–6.

Table 4. Calculation of accuracy for nine targets at 0 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 35 Φ3= 50 Φ4= 65 Φ5= 80 Φ6= 95 Φ7= 110 Φ8= 125 Φ9= 140

CS
Best 19.593 34.793 50.403 65.458 80.113 95.054 110.006 124.515 140.290

Mean 21.243 33.810 51.328 64.016 76.648 91.598 106.852 123.380 140.346
Worst 29.671 44.863 62.467 78.987 95.309 112.152 127.871 138.777 180.000

PSO
Best 21.756 34.090 50.015 61.225 74.220 88.506 100.388 109.193 120.000

Mean 21.368 32.547 48.221 58.335 68.618 80.331 93.256 107.042 120.000
Worst 03.442 33.559 34.329 52.492 59.308 74.175 90.715 106.549 120.000

Table 5. Calculation of accuracy for nine targets at −5 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 35 Φ3= 50 Φ4= 65 Φ5= 80 Φ6= 95 Φ7= 110 Φ8= 125 Φ9= 140

CS
Best 19.644 36.090 50.107 64.055 79.008 94.836 110.112 125.026 140.428

Mean 19.403 34.089 48.515 61.256 76.077 91.722 105.888 122.097 138.261
Worst 34.872 47.166 62.034 79.183 95.973 112.682 127.446 137.827 179.951

PSO
Best 22.095 35.295 50.271 60.816 73.875 87.558 98.122 108.159 120.000

Mean 21.727 34.366 47.335 57.730 70.796 80.923 93.077 106.002 120.000
Worst 02.153 32.069 34.862 50.530 58.640 74.127 90.846 105.415 120.000
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Table 6. Calculation of accuracy for nine targets at −10 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 35 Φ3= 50 Φ4= 65 Φ5= 80 Φ6= 95 Φ7= 110 Φ8= 125 Φ9= 140

CS
Best 17.914 35.130 51.020 64.460 79.595 95.440 110.391 124.074 139.448

Mean 13.768 32.605 47.946 64.958 79.856 98.667 113.959 130.077 140.819
Worst 32.106 47.430 62.859 79.176 99.025 115.902 131.446 137.429 179.741

PSO
Best 25.352 34.606 53.414 65.818 76.683 91.433 103.044 109.174 120.000

Mean 24.897 31.474 46.282 57.235 69.460 77.796 91.801 106.276 120.000
Worst 01.602 32.134 35.065 49.745 60.489 69.987 80.391 96.584 111.233

In the case of the twelve sources estimation, CS again performed well, whereas PSO
could not handle this scenario as well as CS. Performance of CS at 0 dB,−5 dB and−10 dB is
remarkable in all three cases. Results obtained from CS and PSO are illustrated in Tables 7–9.

Table 7. Calculation of accuracy for twelve targets at 0 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 30 Φ3= 40 Φ4= 50 Φ5= 60 Φ6= 70 Φ7= 80 Φ8= 90 Φ9= 100 Φ10= 110 Φ11= 120 Φ12= 130

CS
Best 20.771 29.991 40.635 49.744 60.279 69.337 79.937 89.905 100.259 108.893 119.588 131.413

Mean 15.644 33.214 36.495 49.199 58.992 68.778 78.185 88.490 99.042 107.952 118.438 130.534
Worst 32.892 34.780 49.417 59.459 71.079 80.331 89.889 99.921 109.528 118.439 130.460 179.997

PSO
Best 25.423 25.724 43.204 51.689 63.631 71.924 82.989 90.470 100.336 107.281 120.000 120.000

Mean 23.636 23.944 37.693 47.767 54.461 64.581 72.960 82.334 90.031 99.924 107.863 120.000
Worst 21.932 30.708 31.234 49.225 49.640 63.914 70.749 80.705 88.585 98.879 107.166 120.000

Table 8. Calculation of accuracy for twelve targets at −5 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 30 Φ3= 40 Φ4= 50 Φ5= 60 Φ6= 70 Φ7= 80 Φ8= 90 Φ9= 100 Φ10= 110 Φ11= 120 Φ12= 130

CS
Best 20.609 30.658 40.470 49.065 58.658 69.505 79.987 90.209 99.895 108.988 120.244 130.064

Mean 16.200 33.655 35.757 49.880 59.819 71.005 79.543 88.954 96.921 106.396 118.447 129.422
Worst 33.631 36.751 51.618 60.733 71.977 80.107 91.166 100.355 110.272 121.987 130.929 180.000

PSO
Best 24.594 26.424 40.313 49.013 56.839 68.693 76.945 88.490 101.784 106.160 120.000 120.000

Mean 19.786 30.707 37.353 51.786 52.633 66.785 72.0238 83.242 88.560 98.188 105.903 120.000
Worst 18.306 29.093 29.594 46.470 49.143 61.943 69.262 78.375 87.403 96.631 106.210 120.000

Table 9. Calculation of accuracy for twelve targets at −10 dB SNR.

Actual Angles (Degrees) Φ1= 20 Φ2= 30 Φ3= 40 Φ4= 50 Φ5= 60 Φ6= 70 Φ7= 80 Φ8= 90 Φ9= 100 Φ10= 110 Φ11= 120 Φ12= 130

CS
Best 19.231 30.410 39.738 50.089 59.972 68.568 78.721 89.754 101.099 110.242 118.923 128.847

Mean 13.739 32.169 36.198 46.861 59.284 69.950 80.950 93.324 103.538 113.336 121.217 132.087
Worst 32.608 34.556 46.973 59.788 64.350 78.185 95.780 106.395 114.413 122.340 132.117 180.000

PSO
Best 25.788 26.402 41.916 51.693 60.857 68.785 79.025 90.077 101.744 108.859 119.960 120.000

Mean 20.911 30.796 36.900 49.856 56.640 71.017 71.499 84.186 91.056 101.661 106.794 120.000
Worst 5.759 28.905 29.014 42.225 47.788 59.724 65.001 76.072 87.495 97.088 108.557 120.000

4.2. Overview of Robustness against Noise

Robustness against noise is considered a powerful tool for evaluating the outcomes
of parameters estimation algorithms in radar array signal processing. In this analysis,
the value of RMSE is monitored at different SNR levels. Therefore, RMSE is called a per-
formance indicator in this analysis. In Figure 4, CS shows much robustness against noise
than PSO. When SNR is increased from −15 dB to −5 dB, the value of RMSE decreases
abruptly in the case of six sources. In the scenario of nine sources estimation, CS performs
much better than PSO, as shown in Figure 5. Similarly, in the case of twelve sources, again,
CS provides better results than PSO, as illustrated in Figure 6. In all of the instances, CS
performs much better than PSO for the direction of arrival estimation.
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Figure 6. Robustness against noise for twelve sources.

4.3. RMSE Analysis against Multiple Snapshots

In this analysis, we investigate the value of RMSE against multiple snapshots. There-
fore, this analysis is also known as robustness against snapshots. In Figure 7, we examine
that value of RMSE of CS is decreasing as the number of snapshots increases as compared
to PSO. In the region of 0 to 100 snapshots, RMSE is falling off rapidly for both optimization
schemes, and the overall performance of CS is better than PSO. In the scenario of nine and
twelve targets estimation, the version of CS is better than PSO. Therefore, the required
degree of freedom is achieved using CS, as shown in Figures 8 and 9.
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Figure 7. Estimation of robustness using six sources in terms of snapshots.
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Figure 8. Estimation of robustness using nine sources in terms of snapshots.
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Figure 9. Estimation of robustness using twelve sources in terms of snapshots.

4.4. Variation Analysis of RMSE

Variation analysis of RMSE is one of the popular tools to express the distribution
of error concerning Q1,Q2,Q3 min and max values of given data. These values are dis-
tinguished using outlier, where the performance of estimation algorithm can be easily
identified of used parameters. The performance of proposed CS and PSO are compared
in Figure 10 for maximum RMSE of FPA using 40, 55 and 60 at 0 dB, −5 dB and −10 dB,
respectively. The result elaborates the outcomes of FPA against the current PSO system.
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As for nine targets, the RMSE of FPA has less expansion than PSO at 0, −5 and 10 dB
as mentioned in Figure 11. Similar performance of FPA as compared to PSO can be seen
in Figure 12 at 0, −5 and −10 dB.

Figure 10. Variation analysis of CS and PSO by estimating six sources.

Figure 11. Variation analysis of CS and PSO by estimating nine sources.

Figure 12. Variation analysis of CS and PSO by estimating twelve sources.

4.5. Cumulative Distribution Function of RMSE

The cumulative distribution function belongs to the family of non-decreasing func-
tions. This function shows the steadiness and failure of the optimization techniques based
on Monte Carlo simulation runs. In Figure 13, at 0 dB, RMSE occurred after 75% runs
in the case of CS optimization, and RMSE occurred at 30% of Monte Carlo simulation runs
of PSO optimization. At −5 dB, RMSE occurred after 50% Monte Carlo simulation runs in
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both algorithms. RMSE rises in CS algorithm after 60% of Monte Carlo simulation runs,
and in PSO algorithm, it raised after 40% of Monte Carlo simulation tuns. At −10 dB,
RMSE occurred at 40% of Monte Carlo simulation runs, but an increase in RMSE is more
rapid in PSO than CS. So the overall performance of CS is strongly preferable concerning
PSO in the case of six sources estimation.

In the case of nine and twelve sources estimation, the performance of CS is signif-
icantly better than PSO, as shown in Figures 14 and 15. We have successfully achieved
the maximum DOF of coprime arrays up to O(MN) by estimating twelve sources through
the CS algorithm.
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Figure 13. RMSE investigation in terms of CDF using six targets for various values of SNR.
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Figure 14. RMSE investigation in terms of CDF using nine targets for various values of SNR.
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Figure 15. RMSE investigation in terms of CDF using twelve targets for various values of SNR.

4.6. Histogram Analysis of RMSE

Histogram analysis shows how much error occurred against the different Monte Carlo
simulation runs. By this analysis, we evaluate the performance of optimization schemes.
In histogram analysis, bars are in the form of continuous grouping. In the case of six sources
estimation, RMSE of CS and PSO is very good at 0 dB, −5 dB and −10 dB SNR over the 500
iterations. Figure 16 explored the analysis for nine targets in terms of RMSE and compared
the outcomes among proposed CS and PSO, where the performance of CS is more efficient
than PSO. Furthermore, the spread of RMSE at 0, −5 and 10 dB is analyzed for PSO using
500 iterations as discussed in Figures 17 and 18.
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Figure 16. Correlation of proposed CS and PSO models based on RMSE using six targets.
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Figure 17. Correlation of proposed CS and PSO models based on RMSE using nine targets.
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Figure 18. Correlation of proposed CS and PSO models based on RMSE using twelve targets.

5. Conclusions

This paper estimates the DOA of electromagnetic waves for far-field sources by imple-
menting coprime arrays through a cuckoo search algorithm. We have achieved maximum
freedom in a low SNR environment using metaheuristic algorithms while the performance
of deterministic algorithms is degraded at a low SNR regime. Nevertheless, cuckoo search
provides better resolution and higher DOF at low SNR. In the future, we can also estimate
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the frequency, amplitude and other parameters of the electromagnetic wave as per our
requirement by using this methodology.
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