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Abstract: The last few years have witnessed the great success of generative adversarial networks
(GANs) in synthesizing high-quality photorealistic face images. Many recent 3D facial texture
reconstruction works often pursue higher resolutions and ignore occlusion. We study the problem of
detailed 3D facial reconstruction under occluded scenes. This is a challenging problem; currently, the
collection of such a large scale high resolution 3D face dataset is still very costly. In this work, we
propose a deep learning based approach for detailed 3D face reconstruction that does not require
large-scale 3D datasets. Motivated by generative face image inpainting and weakly-supervised 3D
deep reconstruction, we propose a complete 3D face model generation method guided by the contour.
In our work, the 3D reconstruction framework based on weak supervision can generate convincing
3D models. We further test our method on the MICC, Florence and LFW datasets, showing its strong
generalization capacity and superior performance.

Keywords: 3D face reconstruction; face parsing; occluded scenes

1. Introduction

Single-view 3D face reconstruction refers to obtaining a user-specific 3D face surface
model given one input face image. This is a classical and fundamental problem in computer
vision [1–3]. It has a wide range of applications, such as 3D-assisted face recognition [1,4–6]
and digital entertainment [7]. Existing methods mainly concentrate on reconstructing
beautiful textures and ignore geometric details. At the same time, these methods can only
work effectively when frontal faces are unobstructed, which makes the application of scenes
very limited. When considering the occlusion of the scene, the reconstruction of the 3D face
model is challenging since part of the facial features is not visible.

In recent years, due to the rapid development of deep learning methods, similar
face inpainting tasks have made significant breakthroughs [8,9]. By comparison, because
deep learning methods cannot be applied to 3D structures end-to-end, 3D reconstruction
methods have remained far behind [10].

In 1999, Blanz and Vetter proposed early 3D morphable models (3DMM) [1,11,12],
and the field of 3D face reconstruction using a single image opened. These approaches
are based on automated template matching robust reproduction results within 1–5 min.
However, due to the constraint space’s existence, the model’s performance is still lacking in
competitiveness in terms of the expressiveness of geometric details [13]. At the same time,
3DMM and other methods also cannot deal with the situation in which faces occlude scenes
robustly (especially the texture). These methods generally indiscriminately reconstruct the
occluded field of face. Unlike previous arts, we propose a method designed to attain both
goals: detailed 3D face reconstruction and robustness to occlusions (Figure 1). How did
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we do it? With the assistance of the face parsing framework, face contour map and deep
learning method, we find a way to identify the occluded area and reconstruct the input
image to an accurate 3D face model.

Figure 1. Method overview. See related sections for details.

The main contributions are summarized as follows:

• We propose a novel approach that combines the face parsing approach and face
contour map to generate a face with complete facial features.

• Face occlusion is a common problem. In response to the problem of an invisible face
area under occluded scenes, we propose synthesizing the input face image based on
GANS rather than reconstructing the 3D face directly.

• We improved the loss function of our 3D face reconstruction framework for occluded
scenes. Our results (especially the face texture) are more accurate than other re-
cent methods.

2. Related Work
2.1. Single-View 3D Face Shape Prediction

When it comes to 3D face reconstruction, the classic methods use reference 3D face
models to fit the input face photo. The first step is face alignment. Face alignment, which
fits a face model to an image and extracts the fiducial facial landmarks, has many solutions
in the CV community. These solutions including the active appearance model [14–16] and
the constrained local model [17–19]. Besides traditional models, some recent techniques
use convolutional neural networks (CNNs) to regress landmark locations with the raw face
image [20–22].

The second step is to solve the nonlinear optimization function to regress the 3DMM
coefficients [1]. Some recent techniques firstly used CNNs to predict the 3DMM parameters
with the input face image [2,23,24]. Some works proposed a cascaded CNN structure to
regress the accurate 3DMM shape parameters [25–29]. Some frameworks explored the
end-to-end CNN architectures to regress 3DMM coefficients directly. Each calculation
usually takes a long time because the dimensionality of the data is very high [30].

2.2. Face Parsing

A face parsing map generally serves as an intermediate representation for conditional
face image generation [31]. In addition, the image-to-image GAN model can learn the
mapping from the semantic map to realistic RGB image [32–35]. In the pixel-level image
semantic segmentation methods based on deep learning, fully convolutional networks
(FCN) [36] is the well-known baseline for generic images which analyze per-pixel feature.
Following this work, the DeepLab approaches [37–40] have achieved impressive results.
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The main feature of the series is to use dilated convolution instead of traditional convolution.
However, directly applying these frameworks for face parsing may fail to map the varying-
yet-concentrated facial features, especially hair, leading to poor results. A workable solution
should directly predict per-pixel semantic label across the entire face photo. Wei et al. [41]
proposed a novel method for regulating receptive fields with superior regulation ability
in parsing networks to access accurate parsing map. MaskGan [42] contributed a labeled
face dataset [43]. Zhou et al. [44] proposed an architecture that explores how to combine
the fully convolutional network model and super-pixel data to model together. In order to
solve the question of global image information access restriction, some methods [45] have
introduced the transformer component and achieved state-of-the-art results. The semantic
layout guides the location and appearance of facial features and further facilitates the
training. The majority of face parsing methods work require semantic labels. Hence, these
frameworks [42,46–51] usually train on the CelebA and Helen datasets, which contain
labeled attributes.

2.3. Generative Adversarial Networks

Generative adversarial networks (GANs) [52] generally consist of a generator and a
discriminator. The two components compete with each other. Since GANs can generate
realistic images, GANs have been successfully applied to various face image synthesis tasks,
such as image manipulation [53], image-to-image translation [54], image inpainting [55]
and texture blend [56–58]. For example, the face images generated by Stylegan2 [59] can be
confused with the real. With continuous improvements in regularization [60], users can
control the synthesis by feeding the generator with conditioning information instead of
noise. Our work was built on conditional GANs [61] with face parsing map inputs, which
aims to tackle facial reconstruction under occluded scenes.

2.4. Face Image Synthesis

Deep pixel-level face generating has been studied for several years. Many meth-
ods [46,62–65] have achieved remarkable results. Context encoder [66] is the first deep
learning network designed for image inpainting with the encoder–decoder architecture.
Nevertheless, the networks do a poor job in dealing with human faces. Following this work,
Yang et al. [35] used a modified VGG network [67] to improve the result of the context en-
coder by minimizing the feature difference of the photo background. Dolhansky et al. [68]
demonstrated the significance of exemplar data for inpainting. However, this method
only focuses on filling in missing eye regions of the frontal face, so it does not generalize
well. EdgeConnect [69] shows impressive proceeds, disentangling generation into two
stages: edge generator and image completion network. Contextual attention [70] takes a
similar two-step approach. First, it produces a base estimate of the invisible region. Next,
the refinement block sharpens the photo by background patch sets. The typical limitations
of current face image generate schemes are the necessity of manipulation, the complexity
of fundamental architectures, the degradation in accuracy, and the inability of restricting
modification to local region.

3. Our Method

We propose a detailed 3D face reconstruction method (as shown in Figure 1) based on
a single photo that consists of two stages:

• In response to the occlusion area, synthesizing the 2D face with complete facial
features.

• Detailed 3D shape reconstruction module based on unobstructed frontal images.

Our goal is to realize detailed 3D face shape reconstruction under occluded scenes
using our method. Given a source color face image Iori ∈ RH×W×3 with obstructions, we
obtain the final 3D face model.
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3.1. Face Mask Generation

As the first step of our 3D reconstruction framework, we need to identify the occluded
area for generating the face mask image (1 for the occluded region, 0 for background) for
the next task. Inspired by traditional face parsing tasks, as shown in Figure 2, given a
square image Iori ∈ RH×W×3 of the face under occlusion, we applied the trained face mask
generatorNmask to obtain the face mask Imask ∈ RH×W×1. This mask generation task is very
similar to the traditional face parsing task. Our face mask generator is partly inspired by
the annotated face dataset CelebAMask-HQ [42]. We trained an encoder–decoder module
Nmask based on U-Net [71] to predict the occluded region.

Figure 2. Our face mask generation module. It is slightly different from the traditional face parsing
task. The traditional face parsing task is to recognize the face as different components (usually
including eyebrows, eyes, nose, mouth, facial skin and so on). Corresponding to it is the face parsing
map (different face components are represented by different gray values). Our mask generation task
is only to recognize the occluded area. The corresponding face mask map is a binary map.

3.2. Face Image Synthesis with GANs

Our face image synthesis module is guided by the contour. First, we need to predict
the contours Csyn ∈ RH×W×1 of facial features in the occluded area. We assume that the
final unobstructed face image is Ifina ∈ RH×W×3 and the ground truth image without
obstruction Itrue ∈ RH×W×3. In the training set, the corresponding complete contour
image and gray image are Ctrue ∈ RH×W×1 and Igray ∈ RH×W×1. We trained the contour
generator Ncont to predict the contour map for the occluded region.

Csyn = Ncont
(
Îgray, Imask, Ĉtrue

)
Îgray=Igray � (1− Imask)

Ĉture=Cture � (1− Imask)

(1)

where Îgray denotes the masked grayscale image, Ĉture denotes the masked contour image
and � denotes the Hadamard product. We trained the discriminator of the module Ncont
to predict which of Csyn and Cture is a true contour map and which is a false contour map.
The adversarial loss is defined as

Ladv = E(Cture ,Igray)
[
log D1

(
Ctrue, Igray

)]
+E(Igray) log

[
1− D1

(
Csyn, Igray

)]
(2)

where E denotes the expected value of the function, and D1 denotes the discriminator of
the adversarial loss function.

In addition, we compare the feature activation maps of the discriminator. We set the
face feature matching loss as

L f f ea = E
[

K

∑
i=1

1
Ni

∥∥∥D(i)
1 (Ctrue)− D(i)

1 (Csyn)
∥∥∥] (3)
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where Ni is the number of elements in the ith activation layer, K is the final convolution
layer of the discriminator and D(i)

1 is the activation in the i-th layer of the discriminator.
After obtaining the complete contour map, we design Nsyn to generate the complete

face image Ifina. The complete contour map Cfina is formed by adding Csyn and Ctrue,
which follows Cfina=Ctrue � (1− Imask) + Csyn � Imask. In the map Cfina, we can see the
contours of all facial features, especially the occluded areas. In addition, we set Îtrue ∈
RH×W×3 to be an incomplete face picture, which follows Îtrue = Itrue � (1− Imask). So, we
utilize Nsyn to obtain the final complete face image Ifina, with occluded regions recovered,
which follows Ifina=Nsyn(Îtrue, Cfina).

We trained the module Nsyn to predict the final complete face image Ifina over a joint
loss. The adversarial loss is defined as

Lsar = E(Itrue ,Cfina)
[log D2(Itrue, Cfina)] +E(Cfina)

log[1− D2(Ifina, Cfina)] (4)

The per-pixel loss [72] is defined as follows:

Lpix =
1

Sm
‖Ifina − Itrue‖1 (5)

where Sm denotes the size of the face mask Imask, and ‖·‖1 denotes the L1 norm. Notice
that we use the mask size Sm as the denominator to adjust the penalty.

The style loss [73] computes the style distance between two face images as follows

Lstyl = ∑
n

1
Qn ×Qn

∥∥∥∥Gn(Ifina � (1− Imask))− Gn(Îtrue)

Qn × Hn ×Wn

∥∥∥∥
1

(6)

where Gn(x) =ϕn(x)T ϕn(x) denotes the gram matrix corresponding to ϕn(x), and ϕn(·)
denotes the Qn feature maps with the size Hn ×Wn of the n-th layer.

In summary, the contour generator network Ncont was trained with an objective
comprised of an adversarial loss and feature-matching loss

min
G1

max
D1
LG1 = min

G1

(
λadvmax

D1
Ladv + λ f f eaL f f ea

)
(7)

The total loss function of Nsyn follows

min
G2

max
D2
LG2 = λsarmax

D2
Lsar + λpixLpix + λstylLstyl (8)

where we set λadv = 1 , λ f f ea = 11.5, λsar = 0.1, λpix = 1 and λstyl = 250, respectively.
The values of these weights refer to the method of Lee et al. [42].

3.3. 3D Shape Model

A 3DMM consists of three model parts: the shape, texture and camera models. Let us
denote the 3D shape and texture of an object with n vertices as a 3n× 1 vector:

S = (x1, y1, z1, . . . , xn, yn, zn) (9)

T = (r1, g1, b1, . . . , rn, gn, bn) (10)

where Si = (Xi, Yi, Zi) denotes the object-centered shape vector of the i-th vertex, and
Ti = (ri, gi, bi) denotes the texture vector of the i-th vertex.
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The face model to be solved can be weighted and combined by the m face model in
the dataset: 

Smod =
m
∑

i=1
αiSi

Tmod =
m
∑

i=1
βiTi

m
∑

i=1
αi =

m
∑

i=1
βi = 1

(11)

where α, and β denote the weighting coefficient of the face model.
However, the basis vectors here are not orthogonally related. We normally use the

following formula when building the model:

Smod = S +
m−1

∑
i=1

α̃iS̃i, Tmod = T +
m−1

∑
i=1

β̃iT̃i (12)

where S and T denote the average shape and average texture, α̃i ∈ R80, β̃i ∈ R80 denote
the eigenvalue of the covariance matrix arranged in descending order by the value, and
S̃, T̃ denote the eigenvector of the shape and texture covariance matrix.

In fact, only the first few components of S̃ and T̃ need to be selected to make a better
approximation to the face sample. Not only can the number of parameters that needs to
be estimated be greatly reduced, but the accuracy will not be significantly reduced. We
describe the basic 3D face space with PCA:

Sbasi = S + Aidαid + Bexpβexp, T = T + Btβt (13)

where Aid , Bexp and Bt denote the PCA bases of identity, expression and texture, αid ∈ R80

and βexp ∈ R64, and βt ∈ R80 are the corresponding 3DMM coefficient vectors. We adopt
the Basel Face Model (BFM) [12]. It is a publicly available 3DMM dataset for a single view
face model.

3.4. Camera and Illumination Model

After the 3D face is reconstructed, it can be projected onto the image plane with the
perspective projection

V2d(P) = f × Pr × R× Smod + t2d (14)

where V2d(P) denotes the projection function that turned the 3D model into 2D face posi-
tions, f denotes the scale factor, Pr denotes the projection matrix, R ∈ SO(3) denotes the
rotation matrix, and t2d ∈ R3 denotes the translation vector.

Therefore, we approximated the scene illumination with spherical harmonics (SH) [74–77]
parameterized by coefficient vector γ ∈ R9 . In summary, the unknown parameters to
be learned can be denoted by a vector y = (αid, βexp, βt, γ, p) ∈ R239, where p ∈ R6 =

{pitch, yaw, roll, f , t2D} denote face poses. In this work, we used a fixed ResNet-50 [78]
network to regress these coefficients. We used a coarse-to-fine network based on the graph
convolutional networks of Lin et al. [79] for producing the fine texture Tfin.

3.5. Loss Function of Shape Reconstruction

Given a synthetic face photo Ifina, we used the ResNet to regress the corresponding
coefficient y. Because the collection of large scale high-resolution 3D texture datasets is still
very costly and scarce, the ResNet was trained under weak supervision. The corresponding
loss function consists of four parts:

Lshape=λ f eatL f eat + λreguLregu + λphotLphot + λlandLland (15)

The second term is a regularizer, and the other terms are data terms. We used fixed
λ• values to weigh the losses. Here, we set λ f eat= 0.2, λregu = 3.6× 10−4, λphot = 1.4,
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λland = 1.6× 10−3, respectively, in all our experiments. The values of these weights refer to
the method of Deng et al. [77].

Face Features Level Consistency [77,79,80]. Face recognition is a very mature research
area. In order to measure the difference between the 3D face and the two-dimensional face,
we introduced the loss at face features level. The face features level consistency measures
the difference between the 2D input image Ifina and rendered image Ij.

L f eat= 1−
< F(Ifina), F(Ij) >

‖F(Ifina)‖ ·
∥∥F(Ij)

∥∥ (16)

where F(·) denotes the feature extraction function by FaceNet [81], and < ·, · > denotes
the inner product.

Regularization Consistency [77]. To prevent shape deformation, we introduce the prior
distribution to the parameters of the 3DMM face model. We add the regularization consis-
tency on the regressed 3DMM coefficients.

Lregu=ωα‖α̃i‖2 + ωβ

∥∥∥β̃i

∥∥∥2
(17)

here, we set ωα = 1.0, ωβ = 1.75× 10−3 respectively.
Photometric Consistency [11,82–84]. As a common weak supervision method, it is easy

to think of the dense photometric discrepancy. The rendering module renders back an
image I

(i)

j to compare with the image I
(i)

fina .

Lphot(y)=
∑i∈Ψ Zi·

∥∥∥I(i)fina − I(i)j

∥∥∥
2

∑i∈Ψ Zi
(18)

where i denotes the pixel index, ψ is the reprojected face region which was obtained with
landmarks [85], ‖·‖2 denotes the L2 norm, and Zi is the occlusion attention coefficient
which is described as follows.

To gain robustness to accurate texture, we set

Zi =

{
1 where the reconstructed mesh projects to
0.1 otherwise

for each pixel i.

Landmark-wise Consistency [77,86,87]. As landmarks convey the topological informa-
tion of the face, we ran the faceboxes toolbox to predict 68 landmarks P ∈ R68 as the
reference. We compared the 2D landmarks of Ifina with sparse vertices of the reconstruc-
tion which correspond to these landmarks. We attained the landmarks L ∈ R68 from the
landmark vertex.

Lland=
1
N

N

∑
k=0
‖Pk−Lk‖2

2 (19)

Here, N = 68, Lk denotes the 2D projection of the kth landmark vertex, and ‖·‖2
denotes the L2 norm.

4. Implementation Details

Our mask generation process is very similar to the traditional face parsing process.
Considering the generation of the training dataset of Nmask, we adopted the CelebA-HQ
dataset, a high-quality version of CelebA that consists of 30,000 images at 1024× 1024
resolution, each having a segmentation mask and sketch. We designed Nmask with U-
Net [71] as the backbone.

To obtain Cfine ∈ RH×W×1, we generate contour maps using the Canny toolbox [88]
as the training dataset. The sensitivity of the Canny toolbox is regulated by the standard
deviation of the Gaussian smoothing filter δ. In our work, we analytically found that
δ ≈ 1.8 yields the best results. Our proposed network is implemented in PyTorch. We
used 256× 256 images with a batch size of ten to train the model of Ncont. To train Nsyn,
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we followed the design of Pix2PixHD [35] with four residual blocks. The network is
trained using 512× 512 images with a batch size of 12. Before training the ResNet, as an
initialization, we take the weights from pre-trained R-Net [77]. We set the input image
size to 224× 224. Our texture refinement network is designed according to the method of
Lin et al. [79].

5. Experimental Results
5.1. Qualitative Comparisons with Recent Arts

Figure 3 shows our results compared with the other work. The last columns show
our results. The remaining columns demonstrate the results of 3DDFA [89], PRNet [30],
and DF2Net [90] (Chen et al. [91]). Our results show that our results have better handled
the occlusion area than other methods. Figure 3 shows that our method can reconstruct a
complete face shape with geometry details under occlusion scenes, such as glasses, food
and fingers. The approach of 3DDFA was aimed at extremely large poses. Therefore, it
cannot reconstruct a correct face texture under occluded scenes. Other methods focused on
generating high-resolution face textures rather than distinguishing occluders. At the same
time, it must also be pointed out that other methods do not set up a dedicated de-occlusion
component and, therefore, do not perform well under occlusion scenarios.

Figure 3. Comparison of qualitative results. Baseline methods from left to right: 3DDFA,PRNet,
DF2Net, Chen et al. and our method. The blank area means that this method does not work.
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5.2. Ablation Study

In this section, we define the ablation study as a scientific examination of a deep
learning system by removing its loss function blocks in order to gain insight into their
effects on its overall performance. Here, we present various ablation results on the MICC
and FaceWarehouse datasets [92,93]. The MICC dataset contains challenging face models
of 53 subjects. For the test set, we use 90 identities with various expressions from the
FaceWarehouse dataset. Table 1 shows that our ablation study produced various recon-
struction evaluation results on the two datasets. Study results demonstrate that the best
reconstruction results can be achieved only when the four loss functions are used fully.

Table 1. Average reconstruction errors (mm) on MICC datasets [92] and FaceWarehouse datasets [93]
for ResNet trained with different loss combinations.“X” denotes employed, while “−” denotes
unemployed. Our total hybrid-level loss yields considerably higher accuracy than other baselines on
the two datasets.

Loss Function MICC Face WarehousL f eat Lregu Lphot Lland

X − − X 1.83± 0.42 2.29± 0.25
− X X − 1.90± 0.12 1.92± 0.29
X − X X 1.88± 0.33 1.90± 0.28
− X X − 1.78± 0.40 1.88± 0.77
X X X X 1.61± 0.73 1.79± 0.57

5.3. Quantitative Comparison
5.3.1. Comparison Result on the MICC Florence Datasets

We evaluate the accuracy of the shape regression on the MICC Florence dataset [92].
The dataset is a 3D face dataset that contains 53 subjects with their ground truth 3D face
scans. The ground truths are provided for 52 out of the 53 people. We artificially added
some occluders (i.e., eyeglasses) as input. We calculated the average 90% largest error
between the generative model and the ground truth model. Figure 4 shows that our method
can effectively handle occlusion.

Figure 4. Comparison of error heat maps on the 3D shape recovery on MICC Florence datasets. Digits
denote 90% error (mm).

5.3.2. Quantitative Comparison

The acceptance rate of face recognition is straightforward to think of as a reconstruction
effect test method. Inspired by the method of Deng et al. [77], our choice of using the ResNet-
50 to regress the shape coefficients ensure robustness. The basic shape is the cornerstone
of our method, and we tested our approach on the Labeled Faces in the Wild datasets
(LFW) [94]. Test system setting details followed the approach of Anh et al. [6].

The left of Figure 5 shows the comparison of the method of sensitivity of our method
and the approach of Sela et al. It can be easily discovered that a method of Sela et al. cannot
reconstruct the occluded chin. The mistake may be because their method focuses more
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on local details than on the consistency of global shapes. It can be seen from Figure 5 that
our method can generate a full face with the chin, which shows that this method can deal
with occlusion robustly. Though 3DMM also limits the details of shape, we use it only as a
foundation and add geometry details separately.

Figure 5. Basic shape reconstructions with natural occlusions.(Left): Qualitative results of
Sela et al. [95], and our shape. (Right): LFW verification ROC for the shapes, with and with-
out occlusions.

We further quantitatively verify the robustness of our method to occlusions. Table 2
(top) reports the verification results on the LFW benchmark [2], with and without occlusions
(see also ROC in Figure 5 (right)). Though occlusion does affect the accuracy, the decline of
the curve is limited, demonstrating the robustness of our approach.

Table 2. Quantitative comparison on LFW.

Method 100%-EER Accuracy nAUC

Tran et al. 89.40± 1.52 89.36± 1.25 95.90± 0.95
Our Shape and occlusions

Ours(w/Occ) 83.89± 1.08 85.25± 0.85 89.75± 0.87
Ours(w/o Occ) 89.78± 1.21 90.33± 0.67 95.91± 0.64

6. Conclusions

In this work, we describe a method capable of producing 3D face reconstructions with
convincing texture from photos taken in occluded scenes. These occlusions include fingers,
food that is about to enter the mouth, glasses, and so on. At the heart of our method is its
weakly supervised design, which decouples the task of estimating a robust fundamental
shape from the task of estimating its mid-level details, represented here as the bump maps.
Comprehensive experiments have shown that our method outperforms previous methods
by a large margin in terms of both accuracy and robustness. As part of our next step, we
will try to use self-supervision to reconstruct the 3D face model.
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