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Abstract: In the modern era of active network throughput and communication, the study of Intrusion
Detection Systems (IDS) is a crucial role to ensure safe network resources and information from
outside invasion. Recently, IDS has become a needful tool for improving flexibility and efficiency
for unexpected and unpredictable invasions of the network. Deep learning (DL) is an essential and
well-known tool to solve complex system problems and can learn rich features of enormous data. In
this work, we aimed at a DL method for applying the effective and adaptive IDS by applying the
architectures such as Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM),
Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU). CNN models have already proved
an incredible performance in computer vision tasks. Moreover, the CNN can be applied to time-
sequence data. We implement the DL models such as CNN, LSTM, RNN, GRU by using sequential
data in a prearranged time range as a malicious traffic record for developing the IDS. The benign
and attack records of network activities are classified, and a label is given for the supervised-learning
method. We applied our approaches to three different benchmark data sets which are UNSW NB15,
KDDCup ’99, NSL-KDD to show the efficiency of DL approaches. For contrast in performance, we
applied CNN and LSTM combination models with varied parameters and architectures. In each
implementation, we trained the models until 100 epochs accompanied by a learning rate of 0.0001
for both balanced and imbalanced train data scenarios. The single CNN and combination of LSTM
models have overcome compared to others. This is essentially because the CNN model can learn
high-level features that characterize the abstract patterns from network traffic records data.

Keywords: CNN; RNN; LSTM; GRU; IDS; UNSW NB15; KDDCup ’99; NSL-KDD

1. Introduction

Due to the high demand for internet connectivity between computers, IDS becomes
a vital application for network security to inspect various invasion behavior in networks.
In our work, we developed network-based IDS which inspects all coming packets and
determines any distrustful behavior. In the deployment scenario once malicious traffic
is identified, IDS notifies admins/firewalls or intrusion prevention systems. According
to methodologies, network-based IDS is divided into two methods which are Signature-
detection and Anomaly-detection. Signature detection works with pre-defined signatures
and filters. This technique can inspect the defined intrusions effectively while an undefined
attack record is not well determined. In contrast, the anomaly-detection technique relies
on heuristic methods to detect the undefined attack behavior. That means when the
system identifies a difference from benign traffic patterns then this traffic count as network
intrusions. Recent studies showed that a heuristic method is a reliable approach for
IDS. The heuristic approach is a proactive and strong method that can use ML and DL
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algorithms such as unsupervised and supervised. The DL-based system has the ability
to extract complex features from a huge amount of network traffic data and can learn the
characterization of that complex features. Therefore, the DL based approach can solve the
network security tasks and develop a reliable and flexible IDS. The amount of training data
and features of data are essential for DL as well. In our work, we used traffic data that was
gathered and labeled as either normal or abnormal traffic records from various network
resources. DL algorithms can learn reliable feature representations of the data, which
can deal with a supervised classification to achieve noticeable outcomes. In our previous
work [1] we applied CNN with various architecture and combinations of LSTM and we
achieved considerable results. Inspired by our previous work and the promise of DL, we
improved and expanded our work by applying various DL models for various datasets.
In fact, we used CNN [2,3], LSTM [4], RNN [5,6] and GRU [7] for supervised-learning task
with batch normalization and multinomial logistic regression technique. Our deep learning
model architectures are depicted in Figures 1–3. We aimed to show the comparison of
various DL models evaluation by three different datasets which are UNSW NB15 [8,9],
KDDCup ’99 [10,11], NSL-KDD [12]. The remainder of the paper is arranged as follows.
The Related Works section introduces related works which applied DL algorithms for
intrusion detection problems. The Proposed Methods section details our proposed method
of DL and its network architecture. The section of Data Description detailed all datasets
and presented data imbalance. The section of Experimental Results described details of our
models, solving an imbalanced problem, and all model results. The last section concludes
the paper.

2. Related Work

The traditional ML algorithms used to develop IDSs, such as K-Nearest Neighbors
(KNN) [13], Naive-Bayesian (NB) [14], Random Forests (RF) [15]. The ML algorithms
are applied to distinguish the normal behavior from the abnormal behavior as classifiers.
The many algorithms for IDS accomplish a feature selection technique to extract patterns
of proper characters from the network traffic records data to increase the performance
of classification. Recently, applications of DL algorithms have been experimented with
audio, speech, and image processing with success and showed unbelievable performance.
The DL methodologies intend to learn good feature representations from a huge number
of unlabeled data for an unsupervised-learning method to solve such as clustering and
association problems, and a huge amount of labeled data is for a supervised-learning
method to solve classification and regression tasks. The supervised learning method
ensures that machines can train a labeled (defined) group of input data, and on that basis,
machines make predictions.

In network security, DL has applied successfully for IDS and provided the expected
solution with remarkable performance. According to the results of recent studies, DL-
based IDS prevailed over traditional approaches. Yadav Balram et al. [16] represented
that comparison of recent research for applying IDS to conventional IDS methods and DL
approaches.

Javaid et al. [17] claim a DL method to build an efficient and adaptable IDS in their
work. They used the self-taught learning (STL) technique which associates sparse auto-
encoder with multinomial logistic regression. The authors evaluated their model in the
NSL-KDD dataset. STL reached an accuracy score of 88.38% for the binary classification
and 79.10% for the multi-class classification.

Shone et al. [18] represented their supervised feature learning approach by applying a
DL-based Non-Symmetric Deep Auto-encoder (NDAE) algorithm. This approach has been
evaluated in NSL-KDD and KDD Cup ’99 datasets. They reveal that the approach reaches
an accuracy score of 85.42% in multi-class (5) and 89.22% in multi-class (13) classification in
the NSL-KDD dataset.

Yin et al. [19] aimed using the DL algorithm which is RNN for IDS. For the network,
input is as 122-dimensional input neurons and output 2 as binary classification. The authors
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declare that their model reached an accuracy score of 83.28% in binary-classification (2) and
81.29% multi-classification (5) when evaluated in NSL-KDD dataset.

Vinayakumar et al. [20] reveal that they used several DL algorithms for IDS in their
work. They used combination models which are CNN-LSTM, CNN-RNN, CNN-GRU.
The combination model which is CNN-LSTM reaches an accuracy score of 99.7% in binary
(2) classification and 98.7% in multi-class (5) classification when evaluated in KDDCup ’99
dataset. Other performances are also remarkable rather than other existing works with
this dataset.

Wang et al. [21], purposed intrusion detection classification by using DL-based rep-
resentation learning method. This method is the recently developed ML approach that
directly analysis raw network activity data; This approach automatically learns features
from raw data. The accuracy of the model is not very good because of the low image
size. The authors also implemented a 5 × 5 filter size with 16 and 32 filters in their
CNN architecture.

Hsiao et al. [22], reveal their model that is Siamese CNN (SCNN). DL models require a
large number of data (many training samples) for remarkable performance. For visualizing
the malware image authors used the image processing technique. The proposed model was
successfully applied due to the big image size of malware and the architecture of Siamese
CNN has a sequence of twin CNN.

Cui Zhihua et al. [23] proposed to develop the detection of intrusions by using DL
methods and also solved imbalanced data problems. The authors first focused on visualiz-
ing the malicious code into images to then classify using a CNN. The implementation run
with different sizes of malware images (24*24, 48*48, 96*96, 192*192) and also using different
architectures of CNN respectively. The main assets of their method are that they solved
imbalanced data problems and showed a good detection speed. Due to the architecture of
very deep CNN and also resolved the imbalanced data problem, the model successfully
performed with an accuracy score of 94.5%.

Although notable progress has been made to improve the predictive ability of NIDSs
in the above-mentioned research, a recent study that investigated the impact of packet
sampling techniques on NIDS models brought new insight [24]. The study demonstrated
that even the smallest sampling rates such as 1/100 and 1/1000 drastically reduce the
performance of ML-based NIDS systems. The importance of addressing training data
imbalance is also highlighted in [25]. Defensive approaches against adversarial attacks on
has also been studied recently [26,27]. Deep learning is also being actively researched on
IoT, wireless sensor networks and edge devices [28–30].

Figure 1. The single CNN architecture. The network includes following layers: input layer, one
convolution layer, one max-pooling layer, two fully connected layers and output layer.
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Figure 2. The three architectures which are LSTM, GRU, RNN models are illustrated. Except LSTM,
GRU, RNN layers, other layers same as following layers: input layer, LSTM, or GRU, or RNN layers,
Dense layer, fully connected layer and output layer.

Figure 3. The architecture of the CNN and LSTM combination model. The architecture includes
following layers: input layer, one convolution layer, one max-pooling layer, one LSTM layer, Dense
layer, fully connected layer and output layer.

3. Proposed Method

DL algorithm CNN was successfully solved computer vision tasks such as image
classification, detection of objects, face identification, pattern recognition. The CNN is
proposed to reduce the images into a shape that is easier to manipulate, without losing
features which are essential for reaching a remarkable performance of the model. Convolu-
tion operations consist of filters (kernels) that can extract complex features of patterns from
the image. In our previous work, we have applied this CNN algorithm to dissimilar data,
which was one-dimensional numeric array data. We have supposed the feature map matrix
by the time-sequence of feature vectors as an image. The feature vectors associate with
time-sequence and represent corresponding local features, which led us to appropriate
this relationship. Inspiring our previous research, we aimed to apply our models to other
datasets and implemented other DL algorithms as well.

According to DL models, we approach various architectures which are represented
in Figures 1–3. Figure 1 illustrated the architecture of well-trained CNN model. In the
convolution layer, we used input as 41*1, 32 convolution kernels, the size of the kernel is 5,
and a ‘Sigmoid’ activation function. One kernel is able to learn one particular feature in the
first convolution layer. That is inadequate, for that reason we set up 32 kernels that led us
to generate 32 distinctive features on the first convolution layer. After the first convolution
layer, a 37 × 32 feature map matrix is generated. Every kernel consists of its weight with
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set out kernel size, the reflection of the length of the feature map. Max-pooling [31] is a
layer that is a type of convolution layer that is accepted and allows down sample output.
A filter chooses the highest value of the region to which the filter is covered in the max-
pooling layer. It cut down the dimension size of the output and decreases the number
of features and complexity of the network. We applied the max-pooling technique with
2 pooling sizes and 2 stride sizes. In the flattened layer, a tensor is reshaped which is
equal to the size of elements containing 1 × 640 dimensions. In general, fully connected
layers contain learnable parameters and neurons connected to each other. Therefore, we
add Dense layers are for two fully-connected layers to execute the classification with a
dropout technique [32] which we set 0.4 and a batch normalization [33] which we set 32.
At the end of the network, we used the softmax activation [34] function to prevent over-
fitting which calculates the probability for each class. In the training process, a dropout
provides regularization where neurons are dropped out randomly when output comes
from the previous layer. For preventing over-fitting and improving generalization this
technique plays a role and ensures the network does not over-rely on any specific input.
To make training convergence faster and more stable the batch normalization technique is
used. During the training, each feature in the batch is re-scaled again later to complete the
whole training dataset. The learned again means that variation replaces the ones achieved
at batch-level.

Figure 2 illustrated three types of architectures of the model. We only changed LSTM,
GRU and RNN and left other layers or hyperparameters. These recurrent algorithms have
units that mean dimensions of inner cells where we set 100 smart neurons in each layer.
Then we used one Dense layer which is for normalizing batch and one dropout technique
as well. At the end of the network, one dense layer acts as a fully-connected layer with a
softmax activation function.

The combination model is represented in Figure 3. According to the experiment, LSTM
corresponded well with the combination model. After one convolution operation with
32 filters, 5 filter size, and one pooling with 2 filters, 2 stride size operation, we used the
LSTM layer with 100 cells which performed well. Then batch normalization layer and
dropout technique as well. Same as previous architecture, at the end of the network we set
a fully-connected layer with softmax activation function for probability of output.

4. Dataset Description

We used three different datasets for our model evaluation. In previous work we evalu-
ated our model in UNSW_NB15 dataset but in this work, we aimed to apply KDD_cup99
and NSL-KDD datasets. The UNSW_NB15 intrusion dataset is generated in the Cyber
Range Lab of the Australian Centre for Cyber Security (ACCS) for creating a mixture of
real normal behaviors and artificial attack behaviors. This dataset was evaluated widely in
experiments of IDS. The attack classes of the dataset have 9 types, namely, Generic, Recon-
naissance, Fuzzers, Backdoors, DoS, Analysis, Exploits, Shellcode, and Worms. The features
of the dataset generated 45 features with a label. This dataset is set up labeled as attack and
normal categories respectively 0 if the activity is normal and 1 if the activity is attacked. For
comparative study and to show the reliability of DL models, we evaluated our proposed
models KDD_cup99 and NSL-KDD datasets. This is the main reason why we chose datasets
that have been used in the evaluation of network flow analysis of intrusion detection to
the highest extent. Stolfo, et al. The KDD Cup 1999 data was established by the data
captured in the DARPA IDS evaluation procedure. This dataset is older but can ensure a
good comparison for each IDS model. There are 4,898,431 network records in the dataset
and each record has 41 features. According to record features, there are 22 attack categories
but not proportional where one category attack is highest among all attack records or
other one attacks only accounted for 1%. Therefore, each record of training and test sets
is imbalanced. For the reason of imbalance, we applied binary classification that detects
attacks and normal records.
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The dataset of NSL-KDD has a reduced amount of data and improved generation
of the KDD_cup99 dataset for the evaluation of models of IDS. It is considered that the
test data is not from the same probability allocation as the training data, and it includes
specific attack types not in the training data. The analysis of KDD 99 showed that about 78%
and 75% of the traffic activities are duplicated in the train and test set, respectively. This
highly affects the performance of evaluated systems, and results in a very poor evaluation
of anomaly detection approaches. To solve these issues, an improved dataset known as
NSL-KDD was created by removing all redundant (duplicate) instances. This reduces
the size of the dataset, however, does not reduce the performance of the algorithm as
only duplicate unnecessary records are removed. In other words 78% and 75% duplicate
records which were not useful are excluded from KDD 99. According to categorically
classification, the NSL-KDD dataset heavily imbalanced dataset where the dataset contains
53% of normal class and attack classes contributed 0.78% of Remote-to-Local (R2L) class,
0.041% of User-to-Root (U2R) class, and other minor attack classes but when we apply
binary classification it is not imbalanced. These imbalances of the dataset highly affect the
performance of the classifier in the detection of the minor classes. Therefore, the binary
classification method is suitable to evaluate our models.

A partition from this dataset is configured as a training set and testing set. Due to
the amount of attack and normal being quite imbalanced, we used a Synthetic Minority
Oversampling Technique (SMOTE) [35]. We give particulars of this technology in Section 5.
The normal and attack activities as shown in Table 1.

Table 1. Distribution after Data split.

Dataset Data Split Number of Normal Number of Attack Total

Train 56,000 119,341 175,341
UNSW_NB15 Balanced Train 119,341 119,341 238,682

Test 37,000 45,332 82,332

Train 97,277 396,743 496,020
KDD_cup99 Balanced Train 396,743 396,743 793,486

Test 60,592 250,436 311,028

Train 67,343 58,630 125,973
NSL-KDD Balanced Train 67,343 67,343 134,686

Test 9711 12,833 22,544

Data Preprocessing

According to the characteristic of the UNSW_NB15 dataset, the numeric features that
integers are 41 and non-numeric features that strings are 3. Properly, we only can train our
DL models with the numeric input value and therefore we have to transform non-numeric
features into numeric features. Similarly, in case of other KDD_cup99 and NSL-KDD,
non-numeric features are processed. Moreover, we set the data type of array as float type
and removed the features such as ‘id’, ‘string label’.

5. Experimental Results

All experiments are executed by using the Keras [36], TensorFlow [37] open-source
software library and Numpy, Scikits Learn (Sklearn), Panda machine learning libraries that
provide the Python3 interface on the Ubuntu 20.04 operating system. We trained all models
on 8 GB local GPU memory. For comparative studies, we also implemented many layer
models of CNN using Keras.

5.1. Experiment of Models

CNN has the ability to identify proper features from our data and can learn that
proper features. The network included an input layer, hidden layer, and output layer
with respective criteria. Our implementations went on two tracks that used balanced and
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imbalanced data. Although we have executed the 32, 64, and 128 filters with filter sizes 3, 5,
and 10, the results are not noticeable. Our best parameters for the convolution operation
are 32 filters, the size of filter 5, and the size of batch 32 with the “Sigmoid” activation
function. In the pooling layer, we set up a max-pooling technique with the size of pooling
2 and the size of stride 2. Also, we used Batch normalization where 32 batch size with
“sigmoid” activation function and Dropout 0.5. According to the performance of the model
with various learning rates of 0.01, 0.001, and 0.0001, we used the Adam optimizer with
a learning rate of 0.0001 and run CNN model experiments until 100 epochs. However,
the recurrent models LSTM, GRU, and RNN are quite similar. The models run 0.001
learning rate due to sequence computation with many recurrent blocks and heavy training
time consumption. To see the optimal performance, we increased the number of recurrent
blocks, which is 10 to 100, but the results are not too much different. In contrast, training
time consumption is increased. In the case of the combination model, the parameters of
CNN are the same as the single CNN model that has 32 filters and the size of the filter
5. We only combined with the LSTM model which has 10 recurrent blocks due to poor
performance with other recurrent models. We decided to set 32 filters, the size of filter 5 for
the convolution operation for the CNN model and 10 recurrent blocks for the LSTM, GRU,
RNN models respectively Adam optimizer with 0.0001 and 0.001 learning rate.

We evaluated our IDS models on three different datasets which are UNSW_NB15,
KDD_cup99, and NSL-KDD. According to imbalanced classes, we decided to apply binary
classification that identifies attacks (all classes of attacks counted as attack 1) among
normal (0) records. To show how imbalanced data affect performance, we trained two
tracks of implementations that use balanced and imbalanced data with the above network
structures until 100 epochs. According to all implementations, we can achieve the following
considerations on those DL models.

• CNN model performs noticeably in terms of accuracy, precision, recall, and f-score on
all three datasets.

• CNN model has trained with height results rather than other models.
• LSTM model showed remarkable performance as well
• CNN and LSTM combination model has required time and more epochs to reach

adequate results.
• With GRU and RNN combination model does not show improvement in performance

with imbalanced data of UNSW_NB15, but with balanced data, it works well
• More data and balanced data effect model performance

5.2. Parameters of Models

We experimented with various layers of convolution for CNN but an acceptable
trained model included 2 convolution layers, 2 max-pooling layers, a dropout layer, batch
normalization, and two fully-connected layers. According to features of UNSW_NB15 data,
a shape of input is 42*1 and comes in a convolution layer. The CNN creates a tensor of
shape 42*1*32 (filters 32) and it came in a max-pooling layer (size of filter 2 and size of
stride 2). The Max-Pooling technique cut down the tensor shape into 20*1*32. Decreased
tensor comes in convolution operation again and after that executed pooling operation
again as above. Then all tensors flatten that removing all of the dimensions except for
one. In the fully-connected layer all neurons are connected to each other. We used batch
normalization (batch size is 32) for training faster and stable and a dropout technique (0.5)
that ensures regularization by dropping inactive neurons where the previous layer output
to zero. At the end of the network, we used the “Softmax” function for probability. Due to
the features of KDD_cup99 and NSL-KDD being 41, input for the convolution layer was as
41*1*32 (number of filters 32). All other structures were the same as we explained above.

The recurrent models RNN, LSTM, GRU are very similar architectures. When we
train our recurrent models, we increased recurrent cells (units) to 100, but it does not affect
our experiment too much. After recurrent layer, we used batch normalization layer and
dropout technique then “softmax” function for probability.
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For the combination model, we decided to combine CNN and LSTM models. As CNN
structure, we set one convolution and one pooling layer then we used LSTM cells. The batch
normalization, dropout, and “softmax” used the same as other models.

5.3. Results

In the first track implementations, all models were trained and evaluated on the imbal-
anced data as represented in Table 2. According to the results, the model of CNN performed
best when we evaluated all the datasets such as UNSW_NB15, KDD_cup99, and NSL-
KDD, with accuracy scores of 85.8, 92.3, and 78.8, respectively. Moreover, the LSTM and
hybrid model achieved noticeable results in all datasets, but they require more time to
train. The models GRU and RNN did not show comparable performance when we feed
UNSW_NB15 data.

Table 2. First Experiment Results.

Accuracy Precision Recall F-Score

KDD_cup99

CNN 92.3 99.8 91 95.2
LSTM 91.8 98.6 91.1 94.7
GRU 90.7 99.7 88.7 93.8
RNN 91.7 99.4 90.2 94.6

CNN + LSTM 92.7 99.8 91 95.2

NSL-KDD

CNN 78.8 96.7 65 77.7
LSTM 76.2 96.9 60.2 74.2
GRU 72.5 98.7 52.4 68.5
RNN 73.2 94.6 56.2 70.5

CNN + LSTM 85.5 96.1 77.1 85.9

UNSW_NB15

CNN 85.8 80.9 99.4 87.8
LSTM 84.9 79.2 98.3 87.7
GRU 57 56.3 97.3 71.3
RNN 55 55.1 100 71

CNN + LSTM 80.8 74.4 99.3 85

In second track implementations in Table 3, Due to imbalanced classes, we used
SMOTE technique that oversampled the instance in the minority class. That means simply
duplicating instances from the minority class in the training dataset. As we mentioned
above, we considered all attack classes as one class (1) and a normal class (0) and balanced
these two classes that make an equal amount of attack and normal. According to the out-
comes of the experiment, models performed much better than previous track experiments
as illustrated in the Table 3. In this track, the CNN trained best on UNSW_NB15 and
KDD_cup99 dataset respectively accuracy score of 91.2 and 95.2 but on NSL-KDD dataset
combination model overcame with an accuracy score of 82.6. Other models also showed
much better improvement particularly GRU and RNN significantly raised when model
trains on UNSW_NB15 data rather than previous trail experiment respectively accuracy
score of 77.9, 71.9.

The best train and test accuracy scores of the CNN model on the KDD_cup99 dataset
are illustrated in Figure 4. Here the curve of training accuracy rate reaches roughly 100%
after about 20 epochs and the curve of test accuracy around 95.3%. The GRU, RNN, and
combination models are required more training time consumption rather than CNN because
of models recurrently and sequentially computing and also the complexity of network.
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Table 3. Second Experiment Results.

Accuracy Precision Recall F-Score

KDD_cup99

CNN 95.2 99.5 90.7 94.9
LSTM 95.4 99.4 91.4 95.1
GRU 94.1 99.1 88.9 93.8
RNN 94.1 98 90 93.6

CNN + LSTM 95.2 99.5 90.8 94.9

NSL-KDD

CNN 79.3 95.5 61.4 74.8
LSTM 75.8 95.4 54.2 69.2
GRU 79.1 95.4 61.2 74.5
RNN 76.1 88 60.5 71.7

CNN + LSTM 82.6 94.9 68.9 79.8

UNSW_NB15

CNN 91.2 87.5 96.1 91.5
LSTM 88.9 84.8 94.8 89.5
GRU 77.9 75.3 83.2 79
RNN 71.9 65.8 91.3 76.5

CNN + LSTM 87.6 85.5 90.6 88

Figure 4. Training and Testing accuracy of CNN on KDD_cup99 dataset.

Our best-performed model evaluated in the KDD_cup99 dataset and detected 91% of
all attack behaviors truly and 9% is wrongly detected. In case of normal behaviors, 100% of
all normal behaviors are identified truly, 0.004% of them are wrongly identified. In case of
the best-trained model, the evaluation of a confusion matrix is presented in Figure 5.
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Figure 5. Confusion matrix of CNN model on balanced KDD_cup99 dataset.

6. Conclusions

In this work, we expanded and developed our previous work [1] that adapted DL
models for network intrusion detection by using flow-level data. In this regard we exploited
flow-level datasets such as KDD Cup99, NSL-KDD, and UNSW NB15. We applied CNN,
LSTM, GRU, RNN, and hybrid CNN and LSTM DL models, the size of the batch was set to
32, the Adam optimizer with a learning rate of 0.0001 for all networks. We implemented
all models by ourselves and trained on both the balanced and imbalanced data of three
different datasets by using GPU CUDA acceleration. Three different datasets created
header-based high-level data. This method does not depend on IP addresses or payload
data. More and balanced data significantly affects DL models as shown in Figure 6.

Figure 6. Impaction of data amount in case of CNN.

Tables 2 and 3 show throughput comparison of all explored models which evaluated
three different balanced and imbalanced datasets. The effection of imbalanced data where
an unequal set of classes of data leads to defective performance in DL models. To avoid the
defective performance of models, we balanced a number of attacks and normal functions
by using SMOTE over-sampling techniques.
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According to the experiment, the DL models showed comparable performance, par-
ticularly CNN and combination models. Although the DL models achieved the highest
accuracy score when it trained KDD_cup99 data, it is not the best solution due to this
dataset is the oldest one compared to others. Figure 7 shows a comparison of the accuracy
of all models on three different datasets. According to this research, we can claim that DL
approaches are compatible with time-sequence data of network traffic of TCP/IP packet
headers. The main benefits of the DL approach are the robustness in the achievement when
providing a huge amount of data. Motivated by the current incredible performance of DL,
in future work, we also aim to research cross dataset performance of IDS where training
and evaluation are done on two different datasets instead of splitting the same dataset into
train and test set.

Figure 7. Results of all models using balanced data.
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